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1. Fermi-Dirac and Bose-Einstein statistics
We discuss the grand canonical distribution. The grand partition function is given by

Zs =YY exp[-B(E,(N)— uN)]
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where g is the chemical potential and £ = ﬁ The average number is given by
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Here we consider a quantum state of the N particles systems, where there is no interaction between
particles. The particle number N and the energy of the N particles system E,(N) can be uniquely

expressed by using a single particle state;

N = Zn i E.(N)= Zn € (the number representation)
J J

where | j> is the quantum state of the single particle system. For the N particles system, n; is the
number of particles at the quantum state | j > with the energy eigenvalue ¢,. When the Hamiltonian

of the one particle system is H ,» we have the relation

A

H,

i)=¢li).
In the expression of Z;, E,(N) and N are replaced as

EN)>Yne,, N->Yn,
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or
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Then we have
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In the Grand canonical ensemble, the particle number N is not fixed. So the calculation using the
grand canonical ensemble is easier than the calculation using the canonical ensemble (the case

where N is fixed). The average number <N > consists of the sum of the probability distribution

function at each energy level of the quantum state (one particle quantum state). In this sense, the
nature of the statistical mechanics is essentially related to the quantum mechanics of single-particle
system. In quantum mechanics, there are two kinds of particles; fermion and boson. The
probability distribution function of fermion is different from that of boson.

(a) Bose-Einstein statistics (boson)
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where

<n> = ! (Bose-Einstein distribution function)
exp[f(s; — )] -1

So the problem is reduced to the one-single particle state of a system (fermion).



(b) Fermi-Dirac statistics (fermion)
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where

<ni> — ! (Fermi-Dirac distribution function)
exp[B(e; — )] +1

The problem is reduced to the one-single particle state of a system (boson).

(c) Maxwell-Boltzmann statistics (classic)

For exp[f(s, — )] >>1,
(N)=2m =Y expl-Ble, — =23 e .
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Fig. The mean occupation number of a single-particle energy state " in a system of non-
interacting particles: curve 1 is for fermions, curve 2 for bosons, and curve 3 for the
Maxwell-Boltzmann particles.

2. Probability
The derivation of the Bose-Einstein and Fermi-Dirac distribution functions is discussed here

(a) Bose-Einstein statistics
The one-particle partition function for the system having the specified energy ne(n =0, 1,2, ....)
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The probability for find the system with the energy (ne)
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We note that



1 0 _ I & B 3
70 30 20O = gy el fn(e — )
)

=ﬁ<n

Then we have the Bose-Einstein distribution function
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;Bose-Einstein distribution function.
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we get the expression for the probability
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(b) Fermi-Dirac statistics
The one-particle partition function for the system having the specified energy ne(n =0, 1)
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The probability for find the system with the energy (ng) with n =0, 1
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The Fermi-Dirac distribution function is obtained as
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Using this distribution function,
P.()=(n,)
P.(0)=1-(n,)
(©) Maxwell-Boltzmann statistics
The one-particle partition function for the system having the specified energy ¢ (n =0, 1, 2,
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The probability is given by
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The distribution (1) can be rewritten as a Poisson distribution
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Fig. Poisson distribution for the Maxwell-Boltzmann distribution function, where <né>

is the occupation number.

2. Fluctuation of numbers
We discuss the number fluctuations for the Fermion and bosons. The number fluctuation AN
is given by
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(b) Boson
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