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The content of this chapter mainly comes from a text book [C. Kittel, Thermal Physics]. 

Kittel uses the word “orbital”. An orbital is a state of the Schrodinger equation for only one 

particle. In spite of many particles for the fermion and boson systems, one can realize that the 

problems can be treated as one-particle problem when the interaction between particles is 

negligibly weak. Depending on the nature of the system (fermions or bosons), we need to use the 

Fermi-Dirac distribution function or Bose-Einstein distribution function. Although there are so 

many particles in these statistics, we have only to take account of the all the states for a single 

particle (in other words, one-particle states). The reason for this is discussed below using the 

method proposed in the Kittel’s textbook of Thermal Physics. 

 

1. Introduction 

The ideal gas is a gas of non-interacting atoms in the limit of low concentration. The thermal 

average occupancy is called the distribution function: 
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where   is the energy of the orbital.  

An orbital is a state of the Schrödinger equation for only one particle. If the interaction 

between particles are weak, the orbital model allows us to approximate an exact quantum state of 

the Schrödinger equation of a system of N particles in terms of an approximate quantum state 

that we construct by assigning the N particles to orbitals, with each orbital a solution of one 

particle Schrödinger equation. The orbital model gives an exact solution of the N-particle 

problem only if there are no interactions between the particles. It is a fundamental result of 

quantum mechanics that all species of particles fall into two distinct classes, fermions and bosons. 

Any particle with half-integral spin is a fermion, and any particle with zero or integral spin is a 

boson. 

An atom of 3He is composed of 2 electrons, 2 protons and 1 neutron – each of spin 1/2, so 

that 3He is a fermion. An atom of 4He has 2 electrons, 2 protons, and 2 neutrons, so there are 

even number of particles of spin 1/2, and 4He is a boson. The result of quantum theory as applied 

to the orbital model of non-interacting particles, appear as occupancy rules. 

 

(a) An orbital can be occupied by any integral number of bosons of the same species, 

including zero. 

(b) An orbital can be occupied by 0 or 1 fermion of the same species (Pauli exclusion 

principle). 



 

The two different occupancy rules give rise to different Gibbs sums for each orbital. There is a 

boson sum over all integral values of orbital occupancy N, and there is a fermion sum in which N 

= 0 or N = 1 only. Different Gibbs sums lead to different quantum distribution functions 

),,(  Tff  , for the thermal average occupancy. When 1f , the fermion and boson 

distribution functions must be similar. This limit is called the classical; regime. 

 

((Summary)) 
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ASN is the abbreviation of all states of the systems for all numbers of particles 

 

(a) Fermion: Fermi-Dirac distribution function 

We consider a system composed of a single orbital that may be occupied by a fermion. The 

system is placed in thermal and diffusive contact with a reservoir. A real system may consist of a 

large number 0N  of fermions, but it is very helpful to focus on one state and call it the 

system.All other orbitals of the real system are thought of as the reservoir. An orbital can be 

occupied by zero or by one fermion. No other occupancy is allowed by the Pauli exclusion 

principle. The Gibbs sum is 
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The distribution function is given by 
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We introduce for the average occupancy the conventional form )(f  that denotes the thermal 

average number of particles in an orbital energy , 

 

1)exp(

1
)(






Tk

f

B


  

 

This result is known as the Fermi-Dirac distribution function 

 

 
 

The chemical potential  is often called the Fermi level.  depends on the temperature T. 
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F  is called the Fermi energy. 

 

(i) The unoccupied state 

 

 
 

Fig. In the subsystem in the unoccupied state 

0 the number of fermion 

0 the energy 

 

In the reservoir,  

 

0N  the number of fermions 

0E  the energy 

) ,( 00 ENg  the number of states 

 

The entropy is given by 
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The probability is 
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(ii) The occupied state 

 

 
 

In the reservoir,  

 

10 N  the number of fermions 

0E  the energy 

 

In the subsystem with the occupied state; 

 

1 the number of fermion 

  the energy 

 

The entropy is given by 
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The probability is proportional to 
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2. Boson: Bose-Einstein distribution function 

We consider the distribution function for a system of non-interacting bosons in thermal and 

diffusive contact with a reservoir. We assume the bosons are all of the same species. Let   

denote the energy of a single state when occupied by one particle. For 1 particle, we have energy 

 . For N particles, we have energy N . 

 

 
 

Reservior: 

 

nN 0   bosons,  

nE 0 :  energy 
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Entropy: 
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The probability is 
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Note that n = 0, 1, 2, 3, …,  . Then the Gibbs sum is given by 
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since 
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Then the distribution function is given by 
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This result is known as the Bose-Einstein distribution function. 

 



 
 

Fig. Fermi-Dirac and Bose-Einstein distribution function as a function of 
Tk
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two functions are approximately equal in the classical limit ( TkB  ). 

 

A gas is in the classical regime when the average number of atoms in each state is much less than 

1. 

 

1)( f    Classical limit 

 

1)( f    Quantum limit 

 

3. Classical Limit 

)(f  is the average occupancy of a state at energy  , where   is the energy of a state occupied 

by one particle, 
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where + (FD) and – (BE). In order that 1)( f , we must have in this classical regime, 
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Then 
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with 
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((Note)) 

Eq.(1), although called classical, is still a result for particles described by quantum mechanics. 

We shall find that the expression for z  or   always involves the quantum constant ℏ . 
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APPENDIX 

 

(a) Fermi-Dirac statistics for the one-site state 

There are two possible states (Pauli’s exclusion principle): there is no particle on the site -1, 

or there are one particle in the energy site site-1. 
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The partition function for the site-1 (energy site  ) is 
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The average number is 
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  (Fermi-Dirac distribution) 

 

(b) Bose-Einstein statistics for the one-energy site 

There are many possible states  there is no particle on the site -1, or there are many particles 

(n particles) on the energy site   (denoted by site-1) 

 

OccupiedUnoccupied
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Fermi Dirac



 
 

The partition function for the energy site   is 
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The average number is 
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  (Bose-Einstein distribution) 
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