Chemical potential: Baierlein's idea
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: October 13, 2018)

1. Introduction

Figure 1 sets the scene. Two volumes, vertically thin in comparison with their horizontal extent, are separated in height by a distance H. A narrow tube connects the upper volume V_{u} to the lower volume V_{l}. A total number of helium atoms are in thermal equilibrium at temperature T; we treat them as a semi-classical ideal gas What value should we anticipate for the number N_{u} of atoms in the upper volume, especially in comparison with the number N_{l} in the lower volume? We need the probability $P\left(N_{i}, N_{u}\right)$ that there are N_{l} atoms in the lower volume and N_{u} in the upper.

Fig. A model of the variation of atmosphere pressure with altitude: two volumes of gas at different heights in a uniform gravitational field, in thermal and diffusive contact.

The one-particle partition function:

$$
Z_{l}(1)=\frac{V_{l}}{\lambda_{t h}^{3}}, \quad Z_{u}(1)=Z_{\text {atom }} Z_{\text {trans }}=e^{-\beta m g H}\left(\frac{V_{u}}{\lambda_{t h}^{3}}\right)
$$

where $\lambda_{t h}=\left(\frac{2 \pi \hbar^{2}}{m k_{B} T}\right)^{1 / 2}$ is the thermal de Broglie length. The N-particle partition function for two different heights

$$
Z_{l}\left(N_{i}\right)=\frac{\left[Z_{l}(1)\right]^{N_{l}}}{N_{l}!}=\frac{1}{N_{l}!}\left(\frac{V_{l}}{\lambda_{t h}{ }^{3}}\right)^{N_{l}}
$$

or

$$
\ln Z_{l}\left(N_{i}\right)=N_{l} \ln \left(\frac{V_{l}}{\lambda_{t h}^{3}}\right)-N_{l} \ln N_{l}+N_{l}
$$

and

$$
Z_{u}\left(N_{u}\right)=\frac{\left[Z_{u}(1)\right]^{N_{u}}}{N_{u}!}=\frac{1}{N_{u}!}\left(\frac{V_{u}}{\lambda_{t h}{ }^{3}} e^{-\beta m g H}\right)^{N_{u}}
$$

or

$$
\ln Z_{u}\left(N_{u}\right)=N_{u} \ln \left(\frac{V_{u}}{\lambda_{t h}{ }^{3}} e^{-\beta m g H}\right)-N_{u} \ln N_{u}+N_{u}
$$

The partition function of the total system:

$$
\begin{aligned}
Z\left(N_{l}, N_{u}\right) & =Z_{l}\left(N_{i}\right) Z_{u}\left(N_{u}\right) \\
& =\frac{\left[Z_{l}(1)\right]^{N_{l}}}{N_{l}!} \frac{\left[Z_{u}(1)\right]^{N_{u}}}{N_{u}!} \\
& =\frac{1}{N_{l}!}\left(\frac{V_{l}}{\lambda_{t h}^{3}}\right)^{N_{l}} \frac{1}{N_{u}!}\left(\frac{V_{u}}{\lambda_{t h}^{3}} e^{-\beta m g H}\right)^{N_{u}}
\end{aligned}
$$

or

$$
\begin{aligned}
\ln Z\left(N_{l}, N_{u}\right) & =\ln Z_{l}\left(N_{i}\right)+\ln Z_{u}\left(N_{u}\right) \\
& =N_{l} \ln \left(\frac{V_{l}}{\lambda_{t h}^{3}}\right)-N_{l} \ln N_{l}+N_{l} \\
& +N_{u}\left[\ln \left(\frac{V_{u}}{\lambda_{t h}^{3}}\right)-\beta m g H\right]-N_{u} \ln N_{u}+N_{u}
\end{aligned}
$$

where

$$
N_{\text {total }}=N_{u}+N_{l}=\text { constant }
$$

We now take a derivative of $\ln Z\left(N_{l}, N_{u}\right)$ with respect to N_{l}

$$
\begin{aligned}
\frac{\partial \ln Z\left(N_{l}, N_{u}\right)}{\partial N_{l}} & =\frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}}+\frac{\partial \ln Z_{u}\left(N_{\text {total }}-N_{l}\right)}{\partial N_{l}} \\
& =\frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}}-\frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial N_{u}}
\end{aligned}
$$

or

$$
\frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}}=\frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial N_{u}}
$$

We note that

$$
\begin{aligned}
\frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}} & =\ln \left(\frac{V_{l}}{\lambda_{t h}^{3}}\right)-\ln N_{l} \\
& =\ln \left(\frac{V_{l}}{\lambda_{t h}^{3} N_{l}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial N_{u}} & =\ln \left(\frac{V_{u}}{\lambda_{t h}^{3}}\right)-\beta m g H-\ln N_{u} \\
& =\ln \left(\frac{V_{u}}{\lambda_{t h}^{3} N_{u}}\right)-\beta m g H
\end{aligned}
$$

Thus we have

$$
\begin{array}{ll}
\text { Process: } & \mu_{l}<\mu_{u} \\
& \text { so } N_{l} \text { increases }
\end{array}
$$

$\mu_{u}<\mu_{l}$
so N_{u} increases
2. Reformulation and generalization

The Helmholtz free energy:

$$
F=U-S T=-k_{B} T \ln Z
$$

with

$$
\begin{aligned}
& F_{l}\left(N_{l}\right)=-k_{B} T \ln Z_{l}\left(N_{l}\right) \\
& F_{u}\left(N_{u}\right)=-k_{B} T \ln Z_{u}\left(N_{u}\right)
\end{aligned}
$$

Since

$$
\frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}}=\frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial N_{u}} \quad \text { (in thermal equilibrium) }
$$

The chemical potential is defined as

$$
\mu=\left(\frac{\partial F}{\partial N}\right)_{T, V}
$$

and the pressure is defined as

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T, N}
$$

where

$$
\begin{aligned}
d F & =d(U-S T) \\
& =T d S-p d V+\mu d N-S d T-T d S \\
& =-S d T-p d V+\mu d N
\end{aligned}
$$

Using this definition of the chemical potential, we get

$$
\begin{aligned}
\mu_{l} & =\frac{\partial F_{l}\left(N_{i}\right)}{\partial N_{l}} \\
& =-k_{B} T \frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial N_{l}} \\
& =-k_{B} T \ln \left(\frac{V_{l}}{\lambda_{t h}^{3} N_{l}}\right) \\
& =k_{B} T \ln \left(\frac{\lambda_{t h}^{3} N_{l}}{V_{l}}\right) \\
& =\mu_{l}^{(0)}
\end{aligned}
$$

and

$$
\begin{aligned}
\mu_{u} & =\frac{\partial F_{u}\left(N_{u}\right)}{\partial N_{u}} \\
& =-k_{B} T \frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial N_{u}} \\
& =-k_{B} T \ln \left(\frac{V_{u}}{\lambda_{t h}^{3} N_{u}} e^{-\beta m g H}\right) \\
& =m g H-k_{B} T \ln \left(\frac{V_{u}}{\lambda_{t h}^{3} N_{u}}\right) \\
& =m g H+k_{B} T \ln \left(\frac{\lambda_{t h}^{3} N_{u}}{V_{u}}\right) \\
& =m g H+\mu_{u}^{(0)}
\end{aligned}
$$

In thermal equilibrium, we get the condition

$$
\mu_{u}=\mu_{l}
$$

or

$$
\mu_{u}^{(0)}+m g H=\mu_{l}^{(0)}
$$

Note

$$
\mu_{u}^{(0)}=k_{B} T \ln \left(\frac{n_{u}}{n_{Q}}\right), \quad \quad \mu_{l}^{(0)}=k_{B} T \ln \left(\frac{n_{l}}{n_{Q}}\right)
$$

and

$$
\ln \left(\frac{n_{u}}{n_{Q}}\right)+\beta m g H=\ln \left(\frac{n_{l}}{n_{Q}}\right)
$$

or

$$
\ln \left(\frac{n_{u}}{n_{l}}\right)=-\beta m g H
$$

or

$$
n_{u}=e^{-\beta m g H} n_{l}
$$

where $n_{Q}=\frac{1}{\lambda_{t h}{ }^{3}}=\left(\frac{m k_{B} T}{2 \pi \hbar^{3}}\right)^{3 / 2}$ is the quantum concentration.

We note that

$$
\begin{aligned}
P_{l} & =-\left(\frac{\partial F_{l}\left(N_{i}\right)}{\partial V_{l}}\right)_{T, N} \\
& =k_{B} T \frac{\partial \ln Z_{l}\left(N_{i}\right)}{\partial V_{l}} \\
& =k_{B} T \frac{N_{l}}{V_{l}} \\
& =k_{B} T n_{l} \\
P_{u} & =-\left(\frac{\partial F_{u}\left(N_{u}\right)}{\partial V_{u}}\right)_{T, N} \\
& =k_{B} T \frac{\partial \ln Z_{u}\left(N_{u}\right)}{\partial V_{u}} \\
& =k_{B} T \frac{N_{u}}{V_{u}} \\
& =k_{B} T n_{u}
\end{aligned}
$$

Using the expression of the pressure, we have

$$
\frac{P_{u}}{P_{i}}=e^{-\beta m g H}
$$

((Example))

We consider an isothermal atmosphere composed of nitrogen molecules.

$$
m=m\left(N_{2}\right)=\frac{28 \times 10^{-3}}{N_{A}}=4.64885 \times 10^{-26}(\mathrm{~kg})
$$

$$
T=290 \mathrm{~K}
$$

Fig. Decrease of atmospheric pressure with altitude. $T=290 \mathrm{~K}$.

3. Isothermal adsorption (Langmuir)

We consider the adsorption of atoms on the substrate (Langmuir).

The one-particle partition function for the adsorbed atom is

$$
\begin{aligned}
Z_{\text {adsorbed }}(1) & =Z_{\text {atom }}(1) Z_{\text {translate }}(1) \\
& =e^{\beta \varepsilon_{0}} \frac{A}{\lambda_{\text {th }}{ }^{2}}
\end{aligned}
$$

where

$$
Z_{\text {atom }}(1)=e^{\beta \varepsilon_{0}}
$$

and

$$
\begin{aligned}
Z_{\text {translate }}(1) & =\sum_{k(2 D)} e^{-\frac{\beta \hbar^{2} \boldsymbol{k}^{2}}{2 m}} \\
& =\frac{A}{(2 \pi)^{2}} \int_{0}^{\infty} 2 \pi k d k e^{-\frac{\beta \hbar^{2} k^{2}}{2 m}} \\
& =\frac{A}{2 \pi} \int_{0}^{\infty} k d k e^{-\frac{\beta \hbar^{2} k^{2}}{2 m}} \\
& =A \frac{m k_{B} T}{2 \pi \hbar^{2}} \\
& =\frac{A}{\lambda_{t h}^{2}}
\end{aligned}
$$

The partition function of the adsorbed atoms $\left(N_{\text {adsorbed }}\right)$ is

$$
Z_{\text {adsorbed }}\left(N_{\text {adsorbed }}\right)=\frac{\left[Z_{\text {adsorbed }}(1)\right]^{N_{\text {adsorred }}}}{\left(N_{\text {adsorbed }}\right)!}
$$

The chemical potential of the adsorbed atoms is

$$
\begin{aligned}
\mu_{\text {adsorped }} & =-k_{B} T \ln \left[\frac{Z_{\text {adsorbed }}(1)}{N_{\text {adsorped }}}\right] \\
& =-k_{B} T \ln \left(\frac{A e^{\beta \varepsilon_{0}}}{\lambda_{t h}^{2} N_{\text {adsorped }}}\right) \\
& =-k_{B} T \ln \left(\frac{A}{\lambda_{t h}^{2} N_{\text {adsorped }}}\right)-\varepsilon_{0}
\end{aligned}
$$

or

$$
\mu_{\text {adsorped }}=\mu_{\text {adsorped }}^{(0)}-\varepsilon_{0}
$$

with

$$
\mu_{\text {adsorped }}{ }^{(0)}=-k_{B} T \ln \left(\frac{A}{\lambda_{\text {th }}^{2} N_{\text {adsorped }}}\right)
$$

On the other hand, the chemical potential of the gas is given by

$$
\mu_{g}=-k_{B} T \ln \left[\frac{Z_{g a s}(1)}{N_{g a s}}\right]=-k_{B} T \ln \left[\frac{V}{\lambda_{t h}^{3} N_{g a s}}\right]
$$

The pressure of the gas is

$$
P_{g a s}=\frac{N_{g a s}}{V} k_{B} T
$$

In thermal equilibrium, we have

$$
\mu_{g}=\mu_{\text {adsorbed }}
$$

or

$$
-k_{B} T \ln \left(\frac{A e^{\beta \varepsilon_{0}}}{\lambda_{t h}{ }^{2} N_{\text {adsorped }}}\right)=-k_{B} T \ln \left[\frac{V}{\lambda_{t h}^{3} N_{g a s}}\right]
$$

or

$$
\frac{A e^{\beta \varepsilon_{0}}}{\lambda_{t h}{ }^{2} N_{\text {adsorped }}}=\frac{V}{\lambda_{t h}^{3} N_{\text {gas }}}
$$

or

where

$$
N_{\text {total }}=N_{g a s}+N_{\text {adsorbed }}, \quad P_{g a s}=\frac{N_{g a s}}{V} k_{B} T
$$

Thus we get

$$
P_{\text {gas }}=\frac{N_{\text {adsorped }}}{A} \frac{k_{B} T}{\lambda_{\text {th }}} e^{-\beta \varepsilon_{0}}
$$

Then the coverage is

$$
\theta=\frac{N_{\text {adsorbed }}}{N_{\text {total }}}=\frac{N_{\text {adsorbed }}}{N_{\text {gas }}+N_{\text {adsorbed }}}
$$

In summary we have

$$
\mu_{g}=\mu_{\text {adsorbed }}=\mu_{\text {adsorped }}{ }^{(0)}-\varepsilon_{0}
$$

REFERENCES

R. Baierlein, Thermal Physics (Cambridge, 1990).
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman, 1980).

