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Here we derive the chemical potential of monoatomic ideal gas using the grand canonical 

ensemble. 

 

1. Grand canonical ensemble 

The partition function for the canonical ensemble is given by 
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Using this, the grand partition function is obtained as 
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The average number; 
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. We note that 
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The grand potential is 

 

PVZTk GBG  ln . 

 

2. Chemical potential 
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  (quantum concentration) 

 

Since 
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we have 
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We also have 
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Then we have a chemical potential 
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The chemical potential is equivalent to a true potential energy. Only difference of chemical 

potential has a physical meaning. When external potential steps are present, we can express the 

total chemical potential of the system as 

 

int  exttot . 

 

where ext  is the potential energy per particle in the external potential, and int  is the internal 

chemical potential. In the equilibrium condition one get 

 

0 . 

 



or 

 

int  ext  

 

((Example)) Evaluatiuon of the chemical potential of He gas 

 

For T = 300 K and P=1 atm = 101.325 kPa 

 

m(He) = 4.002602 u = 6.64648 x 10-27 kg 
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The chemical potential 
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If the concentration is increased while holding the temperature fixed,   becomes less negative, 

indicating that the gas becomes more willing to give up particles to other nearby systems.  

 

3. Example-1 

 

Variation of barometric pressure with altitude (isothermal). 
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The first term is int , and the second term is the potential energy per molecule at the height h. M 

is the particle mass. 

 



 
 

Fig. A model of the variation of atmospheric pressure with altitude: two volumes of gas at 

different heights in a uniform gravitational field, in thermal and diffusive contact. (Kittel, 

Thermal Physics). 

 

In equilibrium, )()0( h  ,  

 

or the chemical potential at h = 0 is equal to that at h. Thus we have 
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or 

 

)exp()0()(
Tk

Mgh
nhn

B

  

 

The pressure of an ideal gas is given by 
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Therefore the pressure )(hP  at altitude h is 
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where )(hP  is the characteristic height, 
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Fig. The plot of )0(/)( PhP  vs height h (km) for N2 gas and T = 290 K. 

 

4. Example-2 

Chemical potential of mobile magnetic particles in a magnetic field 

 

We consider a system of N identical particles each with a magnetic moment m. For simplicity 

suppose that each moment is directed either parallel (  ) or antiparallel (  ) to an applied 

magnetic field B. Then the potential energy of a   particle is mB, and the potential energy of a 

  particle is +mB. 
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with 
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In equilibrium,  

 

)()(  tottot  . 

 

The solution is given by 
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