Monoatomic ideal gas in grand canonical ensemble
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: September 26, 2016)

Here we derive the chemical potential of monoatomic ideal gas using the grand canonical ensemble.

1. Grand canonical ensemble

The partition function for the canonical ensemble is given by

$$
Z_{C N}=\frac{1}{N!}\left(Z_{C 1}\right)^{N}
$$

Using this, the grand partition function is obtained as

$$
\begin{aligned}
Z_{G} & =\sum_{N=0}^{\infty} z^{N} Z_{C N} \\
& =\sum_{N=0}^{\infty} \frac{1}{N!}\left(z Z_{C 1}\right)^{N} \\
& =e^{z Z_{C 1}}
\end{aligned}
$$

The average number;

$$
\langle N\rangle=\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln Z_{G}=\frac{1}{\beta} \frac{\partial}{\partial \mu}\left(z Z_{C 1}\right)=\frac{1}{\beta} \frac{\partial z}{\partial \mu} \frac{\partial}{\partial z}\left(z Z_{C 1}\right)=z Z_{C 1}
$$

since $\quad z=e^{\beta \mu}$ and $\frac{\partial}{\partial \mu}=\frac{\partial z}{\partial \mu} \frac{\partial}{\partial z}=\beta z \frac{\partial}{\partial z}$. We note that

$$
P V=k_{B} T \ln Z_{G}=k_{B} T\left(z Z_{C 1}\right)=k_{B} T\langle N\rangle
$$

The grand potential is

$$
\Phi_{G}=-k_{B} T \ln Z_{G}=-P V .
$$

2. Chemical potential

$$
Z_{C 1}=n_{Q} V
$$

with

$$
n_{Q}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2}
$$

(quantum concentration)

Since

$$
\langle N\rangle=z Z_{C 1}=n_{Q} V e^{\beta \mu}
$$

we have

$$
\frac{\langle N\rangle}{V}=n=n_{Q} e^{\beta \mu}, \quad \mu=k_{B} T \ln \left(\frac{n}{n_{Q}}\right)
$$

We also have

$$
P V=\langle N\rangle k_{B} T, \quad \text { or } \quad \frac{\langle N\rangle}{V}=n=\frac{P}{k_{B} T}
$$

Then we have a chemical potential

$$
\mu=k_{B} T \ln \left(\frac{P}{k_{B} T n_{Q}}\right)
$$

The chemical potential is equivalent to a true potential energy. Only difference of chemical potential has a physical meaning. When external potential steps are present, we can express the total chemical potential of the system as

$$
\mu=\mu_{t o t}=\mu_{e x t}+\mu_{\mathrm{int}} .
$$

where $\mu_{\text {ext }}$ is the potential energy per particle in the external potential, and $\mu_{\text {int }}$ is the internal chemical potential. In the equilibrium condition one get

$$
\Delta \mu=0 .
$$

or

$$
\Delta \mu_{e x t}=-\Delta \mu_{\mathrm{int}}
$$

((Example)) Evaluatiuon of the chemical potential of He gas

For $T=300 \mathrm{~K}$ and $P=1 \mathrm{~atm}=101.325 \mathrm{kPa}$

$$
\begin{aligned}
& m(\mathrm{He})=4.002602 u=6.64648 \times 10^{-27} \mathrm{~kg} \\
& n_{Q}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}=7.81982 \times 10^{30} / \mathrm{m}^{3} \\
& n=\frac{P}{k_{B} T}=2.44571 \times 10^{25} / \mathrm{m}^{3}
\end{aligned}
$$

The chemical potential

$$
\mu=k_{B} T \ln \left(\frac{n}{n_{Q}}\right)=k_{B} T \ln \left(\frac{P}{k_{B} T n_{Q}}\right)=-0.3276 \mathrm{eV}
$$

If the concentration is increased while holding the temperature fixed, μ becomes less negative, indicating that the gas becomes more willing to give up particles to other nearby systems.

3. Example-1

Variation of barometric pressure with altitude (isothermal).

$$
\mu=k_{B} T \ln \left(\frac{n}{n_{Q}}\right)+M g h
$$

The first term is $\mu_{\text {int }}$, and the second term is the potential energy per molecule at the height $h . M$ is the particle mass.

System (2)

Fig. A model of the variation of atmospheric pressure with altitude: two volumes of gas at different heights in a uniform gravitational field, in thermal and diffusive contact. (Kittel, Thermal Physics).

In equilibrium, $\quad \mu(0)=\mu(h)$,
or the chemical potential at $h=0$ is equal to that at h. Thus we have

$$
\mu(h)=k_{B} T \ln \left(\frac{n(h)}{n_{Q}}\right)+M g h=\mu(0)=k_{B} T \ln \left(\frac{n(0)}{n_{Q}}\right)
$$

or

$$
n(h)=n(0) \exp \left(-\frac{M g h}{k_{B} T}\right)
$$

The pressure of an ideal gas is given by

$$
P V=N k_{B} T, \quad \text { or } \quad P=\frac{N}{V} k_{B} T=n k_{B} T \quad \text { (equation of states). }
$$

Therefore the pressure $P(h)$ at altitude h is

$$
P(h)=P(0) \exp \left(-\frac{M g h}{k_{B} T}\right)=P(0) \exp \left(-\frac{h}{h_{c}}\right)
$$

where $P(h)$ is the characteristic height,

$$
h_{c}=\frac{k_{B} T}{M g}
$$

Fig. The plot of $P(h) / P(0)$ vs height $\mathrm{h}(\mathrm{km})$ for N_{2} gas and $T=290 \mathrm{~K}$.

4. Example-2

Chemical potential of mobile magnetic particles in a magnetic field

We consider a system of N identical particles each with a magnetic moment m . For simplicity suppose that each moment is directed either parallel (\uparrow) or antiparallel (\downarrow) to an applied magnetic field \boldsymbol{B}. Then the potential energy of a \uparrow particle is $m B$, and the potential energy of a \downarrow particle is $+m B$.

$$
\begin{aligned}
\mu_{\text {tot }} & (\uparrow)=\mu_{\text {int }}(\uparrow)+\mu_{\text {ext }}(\uparrow) \\
& =\mu_{\mathrm{int}}(\uparrow)-m B \\
& =k_{B} T \ln \left(\frac{n_{\uparrow}}{n_{Q}}\right)-m B \\
\mu_{\text {tot }}(\downarrow) & =\mu_{\text {int }}(\downarrow)+\mu_{\text {ext }}(\downarrow) \\
& =\mu_{\text {int }}(\downarrow)+m B \\
& =k_{B} T \ln \left(\frac{n_{\downarrow}}{n_{Q}}\right)+m B
\end{aligned}
$$

with

$$
n=n_{\uparrow}+n_{\downarrow}
$$

In equilibrium,

$$
\mu_{t o t}(\uparrow)=\mu_{t o t}(\downarrow) .
$$

The solution is given by

$$
k_{B} T \ln \left(\frac{n_{\uparrow}}{n_{Q}}\right)-m B=k_{B} T \ln \left(\frac{n_{\downarrow}}{n_{Q}}\right)+m B=\text { constant }
$$

where

$$
\begin{aligned}
& n_{\uparrow}=\frac{1}{2} n(0) \exp \left(\frac{m B}{k_{B} T}\right) \\
& \begin{aligned}
n_{\downarrow} & =\frac{1}{2} n(0) \exp \left(-\frac{m B}{k_{B} T}\right)
\end{aligned} \\
& \begin{aligned}
n(0) & =n_{\uparrow}+n_{\downarrow} \\
n(B) & =n_{\uparrow}(B)+n_{\downarrow}(B) \\
& =n(0) \cosh \left(\frac{m B}{k_{B} T}\right)
\end{aligned}
\end{aligned}
$$

