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1. Blundell-Blundell: Thermal Physics
Problem 22.2
The fugacity z is defined as z = e’ . Using
p=k,Tin(nd,})
show that
z=nl,’

for an ideal gas, and comment on the limits z <<1 and z >>1.

((Solution))
The chemical potential is given by

1= kT n( N ;T )=k,T'In(nA,’)

The fugacity z is defined as

Then we have

Inz = fu=In(ni,’),

leading to the relation

where the quantum concentration n,, is defined by
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For z>>1 (high density limit; n >>n,): quantum effect (low temperatures)is dominant.

For z <<1 (low density limit: n <<n, ), classical effect (high temperatures)is dominant.

2 Blundell-Blundell: Thermal Physics
Problem 21-4
An atom in a solid has two energy levels: a ground state of degeneracy g, and an excited state of

degeneracy g» at an energy A above the ground state. Show that the partition function Z,  1is

Zatom = gl + g2e_ﬂA
Show that the heat capacity of the atom is given by

_ g8A’e"”
kBT2 (g + gze_ﬂA )2

A monatomic gas of such atoms has a partition function given by

N
ZN — (Zl)
N!

| . .
=— 1s the partition function due to the
th

translational motion of the gas atom. Show that the heat capacity of such a gas is

where Z=Z,7Z and Z

atom ™ translation translation

2 A
C=NEk,+ S8
2 kyT™(g +g,¢")

((Solution))
The particle partition function of atom is

_ -pA
Zatom - gl + gZe



The internal energy

Ag,e ™
Uatom = _i ln Zatom = LM
op g tg,e

The heat capacity:
C — dUatom
atom dT
— 1 dUatom
k,T> dp
88 2A2€_ﬂA

kT (g, +g,e ™)
The partition function of the system including the translational motion is

_@)"
tot N ' >
where

Z =7

1 atom ™ translation

and

7 V
translation — ﬂ, 3
th

We note that

InZ, =NInZ —InN!

The internal energy:



0

U=-—InZ,
op
=-N i(ln zZ, +In L3)
op h
= —Nianmm +§Nilnﬂ
op 2 op
= —Niln Z,. +é Nk, T
op 2
where
AN | 27k’
A, = , In4, =—[In B +In ]
m 2 m

The heat capacity is obtained as

2 —pA
C=NEk,+— 588
2 kyT°(g +8g,e ")

3. Blundell-Blundell: Thermal Physics
Problem 21-6
Show that the single-particle partition function Z, of a gas of hydrogen atoms is given

approximately by

7 = :LeﬂR

1 Ztram'lation atom l 3
th

where R = 13.6 ¢V and the contribution due to excited states has been neglected.
((Solution))

We assume that the energy of hydrogen atom is given by -R. The partition function of atom is
given by
zZ. =,

atom

The partition function of hydrogen atom including the translational motion is given by



z,=2, 7

atom“ translation

:eﬂR

V
7

where

4

translation ~ 2’ 3

4. Blundell and Blundell: Thermal Physics
Problem 20-8

The internal levels of an isolated hydrogen atom are given by —ﬁz , where R =13.6 eV. The
n

degeneracy of each level is given by 2n”.
(a) Sketch the energy levels.
(b) Show that

o0

atom Z n eXp(_)

n=1

Note that when T # 0, this expression for Z  diverges. This is because of the large degeneracy

of the hydrogen atom’s highly excited states. If the hydrogen atom were to be confined in a box of
finite size, this would cut off the highly excited states and Z

atom

would not then diverge. By

approximating Z _ as follows:

atom

2
Z o = .210° exp(—)
n=1

i.e. by ignoring all but the » = 1 and n = 2 states estimate the mean energy of a hydrogen atom at
300 K.

((Solution))

n=1, [=0(s) degeneracy = 1
total degeneracy = 2 x1 = 2 (factor 2; spin degeneracy)



n=>2 [=1(p) degeneracy = 3
[=0 (s) degeneracy = 1
total degeneracy = 2 x 4 = 8 (factor 2; spin degeneracy)

n=3 [=2(d) degeneracy = 5
[=1(p) degeneracy = 3

[=0 (s) degeneracy = 1
total degeneracy =2 x 9 = 18 (factor 2; spin degeneracy)

atom i 2n exp(_)
n=1

where R=13.6 eV. When T =0, Z diverges. For 7' =300 K , we assume that

Zom 22: 2n? exp(—) 2exp(fR)+8 exp('g—

The internal energy:

T K exp(2)
op exp(BR)+4 exp('bf)
SR =526.071

U=-R=-13.6¢V.

((Mathematica))



Clear["Global *"];

rulel = {eV > 1.602176487x 107", kB » 1.3806504x 107>,

h- 6.62606896 x10>*, 7 > 1.05457162853x10"3,
T > 300, R>13.6eV};

R
hl = —— . lel
kBT// rule

526.071

Exp[hl] + Exp[hl / 4]

Exp[hl] + dExp[nl/a] | ' /- Tuiel

U11=—(

-1.

5. Blundell-Blundell: Thermal Physics
Problem 22-5

If the partition function Z,, of a gas of N indistinguishable particles is given by

_@)"

Ly N!

where Z, is the single-particle partition function, show that the chemical potential is given by

zZ
u=—k,Tln (le

((Solution))
The partition function is given by



F=—k,TInZ,,

N
=—k,T'In Za
N

=—k;,T(NInZ,, —InN!)
=-k,T[NInZ.,,—NInN + N)

We note that
F=U-ST

dF =dU — SdT - TdS
= TdS — pidN — SdT — TdS
= —udN — SdT

The chemical potential:

oF Z

U= (5)T =—k,7(InZ., -InN)= —kBTlnﬁ

where
vV

ZCI = W = VI’lQ
and

R W .

A, ¢ \ 2zt ) "\ mk,T

6. Blundell-Blundell
Problem 22-6
(a) Consider the ionization of atomic hydrogen governed by the equation

H=p +e

where p” is a proton (equivalently a positively ionized hydrogen) and e~ is an electron. Explain

why



My = M, + 1,

Using the partition function for hydrogen atoms from Eq.(21.50), and using Eq.(22.92) show that

P e H
—k,T'In 2 —k;Tn Zi =—k,TIn Z—‘eﬂR
N, N, N,

where Z and N_ are the single-particle partition function and number of particles for species x,
and where R = 13.6 eV. Hence show that

nn 2wm k,T .
== e—2—)"? exp(—BR) (Saha equation)
n, h
where n_=—= is the number density of species x, stating any approximations you make.

Equation (22.96 is known as the Saha equation.

(b) Explain why charge neutrality implies that n, = n, and conservation of nucleus implies
n =n, +n,, where n is the total number density of hydrogen (neutral and ionized). Writing

¥y =n, / n as the degree of ionization, show that

2

y
-y

= l n, exp(—fR)
n

Find the degree of ionization at 10000 K and density 10?° m=.

((Solution))
Chemical reaction:

H-op'+e
Hy =Hp T U,

or



H P e
—k,T'In Z—‘eﬂR =—k,T'In 2 —kBTln[Z1 ]
N, N, N

e

where
zH z!
My =—kT ln[N—lHeﬂR] ) Hp =—kyT ln[N_lP]
Ze
U, = _kBTln[Nle]
Thus we have
NN, s ZFz¢ . mi, T\
N, ¢ Tz AT e
H 1 T
or
3/2
Mple _ o PR :(MkBT ] e PR
ny © 27k’
since Z" = Z[", where n, =&, n, = b, > My =&, and
|4 |4 |4

; _L_(kaTjNZ
¢ 1} \2xn’

We assume that 7 is the number density of nucleus.
n=n,+n,, n,=n,=ny
ny=n—n,=n(l-y)

Then we have



2.2
ny

=n,exp(—LFR
e p(=fBR)
2
YL exp(-)
-y n k,T
1 27xmk,T 5, R
n( 2 )" exp( kBT)
where R=13.6 eV. n=10"cm?.
)C:T(K).
10*

When f(x=1)=3.37886, we have y =0.807174.

We make a ContourPlot of y vs x;

2
Yy
= f(x)
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Fig. n,/n=y vs x=T(K)/10".




The fraction y increases with increasing temperature 7.

((Mathematica))
Clear["Global *"];

rulel = {kB—- 1.3806504 x107*°, NA » 6.02214179x 10%,
c->2.99792x10", 1 >1.054571628 10%’, h>2nh,
me -» 9.10938215 10°%®, mp > 1.672621637x107%,
mn - 1.674927211x107%*, ge » 4.8032068 x 10719,
eV > 1.602176487x 107, nl-10"};

f1[T1 ] :=

1 (271'mekBT)3/2Ex [ 13.6 eV
nl ) Pl kBT
rulel

| 7. {z-10* 71} /7.

f1[1]

3.37886

2
1-y
{yv, 0, 1}, ContourStyle » {Red, Thick},
PlotPoints—>300]

eql = ContourPlot[ = f1[x], {x, 0, 2},



