Chemical Potential: problems and solutions (Blundell-Blundell))
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: October 15, 2018)

1. Blundell-Blundell: Thermal Physics

Problem 22.2

The fugacity z is defined as $z=e^{\beta \mu}$. Using

$$
\mu=k_{B} T \ln \left(n \lambda_{t h}^{3}\right)
$$

show that

$$
z=n \lambda_{t h}^{3}
$$

for an ideal gas, and comment on the limits $z \ll 1$ and $z \gg 1$.
((Solution))
The chemical potential is given by

$$
\mu=k_{B} T \ln \left(\frac{N \lambda_{T}^{3}}{V}\right)=k_{B} T \ln \left(n \lambda_{T}^{3}\right)
$$

The fugacity z is defined as

$$
z=e^{\beta \mu} .
$$

Then we have

$$
\ln z=\beta \mu=\ln \left(n \lambda_{T}^{3}\right),
$$

leading to the relation

$$
z=n \lambda_{T}^{3}=\frac{n}{n_{Q}},
$$

where the quantum concentration n_{Q} is defined by

$$
n_{Q}=\frac{1}{\lambda_{T}^{3}}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}
$$

For $z \gg 1$ (high density limit; $n \gg n_{Q}$): quantum effect (low temperatures)is dominant. For $z \ll 1$ (low density limit: $n \ll n_{Q}$), classical effect (high temperatures)is dominant.

2. Blundell-Blundell: Thermal Physics

Problem 21-4

An atom in a solid has two energy levels: a ground state of degeneracy g_{1} and an excited state of degeneracy g_{2} at an energy Δ above the ground state. Show that the partition function $Z_{\text {atom }}$ is

$$
Z_{\text {atom }}=g_{1}+g_{2} e^{-\beta \Delta}
$$

Show that the heat capacity of the atom is given by

$$
C=\frac{g_{1} g_{2} \Delta^{2} e^{-\beta \Delta}}{k_{B} T^{2}\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}}
$$

A monatomic gas of such atoms has a partition function given by

$$
Z_{N}=\frac{\left(Z_{1}\right)^{N}}{N!}
$$

where $\quad Z_{1}=Z_{\text {atom }} Z_{\text {translation }}$ and $Z_{\text {translation }}=\frac{V}{\lambda_{\text {th }}{ }^{3}}$ is the partition function due to the translational motion of the gas atom. Show that the heat capacity of such a gas is

$$
C=N\left[\frac{3}{2} k_{B}+\frac{g_{1} g_{2} \Delta^{2} e^{-\beta \Delta}}{k_{B} T^{2}\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}}\right]
$$

((Solution))
The particle partition function of atom is

$$
Z_{\text {atom }}=g_{1}+g_{2} e^{-\beta \Delta}
$$

The internal energy

$$
U_{\text {atom }}=-\frac{\partial}{\partial \beta} \ln Z_{\text {atom }}=\frac{\Delta g_{2} e^{-\beta \Delta}}{g_{1}+g_{2} e^{-\beta \Delta}}
$$

The heat capacity:

$$
\begin{aligned}
C_{\text {atom }} & =\frac{d U_{\text {atom }}}{d T} \\
& =-\frac{1}{k_{B} T^{2}} \frac{d U_{\text {atom }}}{d \beta} \\
& =\frac{g_{1} g_{2} \Delta^{2} e^{-\beta \Delta}}{k_{B} T^{2}\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}}
\end{aligned}
$$

The partition function of the system including the translational motion is

$$
Z_{\text {tot }}=\frac{\left(Z_{1}\right)^{N}}{N!}
$$

where

$$
Z_{1}=Z_{\text {atom }} Z_{\text {translation }}
$$

and

$$
Z_{\text {translation }}=\frac{V}{\lambda_{t h}^{3}}
$$

We note that

$$
\ln Z_{\text {tot }}=N \ln Z_{1}-\ln N!
$$

The internal energy:

$$
\begin{aligned}
U & =-\frac{\partial}{\partial \beta} \ln Z_{\text {tot }} \\
& =-N \frac{\partial}{\partial \beta}\left(\ln Z_{\text {atom }}+\ln \frac{V}{\lambda_{\text {th }}^{3}}\right) \\
& =-N \frac{\partial}{\partial \beta} \ln Z_{\text {atom }}+\frac{3}{2} N \frac{\partial}{\partial \beta} \ln \beta \\
& =-N \frac{\partial}{\partial \beta} \ln Z_{\text {atom }}+\frac{3}{2} N k_{B} T
\end{aligned}
$$

where

$$
\lambda_{t h}=\left(\frac{2 \pi \hbar^{2} \beta}{m}\right)^{1 / 2}, \quad \ln \lambda_{t h}=\frac{1}{2}\left[\ln \beta+\ln \left(\frac{2 \pi \hbar^{2}}{m}\right)\right]
$$

The heat capacity is obtained as

$$
C=N\left[\frac{3}{2} k_{B}+\frac{g_{1} g_{2} \Delta^{2} e^{-\beta \Delta}}{k_{B} T^{2}\left(g_{1}+g_{2} e^{-\beta \Delta}\right)^{2}}\right]
$$

3. Blundell-Blundell: Thermal Physics

Problem 21-6

Show that the single-particle partition function Z_{1} of a gas of hydrogen atoms is given approximately by

$$
Z_{1}=Z_{\text {transataion }} Z_{\text {atom }}=\frac{V}{\lambda_{t h}{ }^{3}} e^{\beta R}
$$

where $R=13.6 \mathrm{eV}$ and the contribution due to excited states has been neglected.

((Solution))

We assume that the energy of hydrogen atom is given by $-R$. The partition function of atom is given by

$$
Z_{\text {atom }}=e^{\beta R}
$$

The partition function of hydrogen atom including the translational motion is given by

$$
\begin{aligned}
Z_{1} & =Z_{\text {atom }} Z_{\text {translation }} \\
& =e^{\beta R} \frac{V}{\lambda_{\text {th }}^{3}}
\end{aligned}
$$

where

$$
Z_{\text {translation }}=\frac{V}{\lambda_{t h}^{3}}
$$

4. Blundell and Blundell: Thermal Physics

Problem 20-8

The internal levels of an isolated hydrogen atom are given by $-\frac{R}{n^{2}}$, where $R=13.6 \mathrm{eV}$. The degeneracy of each level is given by $2 n^{2}$.
(a) Sketch the energy levels.
(b) Show that

$$
Z_{\text {atom }}=\sum_{n=1}^{\infty} 2 n^{2} \exp \left(\frac{\beta R}{n^{2}}\right)
$$

Note that when $T \neq 0$, this expression for $Z_{\text {atom }}$ diverges. This is because of the large degeneracy of the hydrogen atom's highly excited states. If the hydrogen atom were to be confined in a box of finite size, this would cut off the highly excited states and $Z_{\text {atom }}$ would not then diverge. By approximating $Z_{\text {atom }}$ as follows:

$$
Z_{\text {atom }}=\sum_{n=1}^{2} 2 n^{2} \exp \left(\frac{\beta R}{n^{2}}\right)
$$

i.e. by ignoring all but the $n=1$ and $n=2$ states estimate the mean energy of a hydrogen atom at 300 K .
((Solution))
$n=1, \quad l=0(\mathrm{~s}) \quad$ degeneracy $=1$ total degeneracy $=2 \times 1=2$ (factor 2 ; spin degeneracy)

$$
\begin{aligned}
& n=2 \quad l=1(\mathrm{p}) \quad \text { degeneracy }=3 \\
& l=0(\mathrm{~s}) \quad \text { degeneracy }=1 \\
& \text { total degeneracy }=2 \times 4=8 \text { (factor 2; spin degeneracy) } \\
& n=3 \quad l=2(\mathrm{~d}) \quad \text { degeneracy }=5 \\
& l=1(\mathrm{p}) \quad \text { degeneracy }=3 \\
& l=0 \text { (s) degeneracy }=1 \\
& \text { total degeneracy }=2 \times 9=18 \text { (factor } 2 \text {; spin degeneracy) } \\
& Z_{\text {atom }}=\sum_{n=1}^{\infty} 2 n^{2} \exp \left(\frac{\beta R}{n^{2}}\right)
\end{aligned}
$$

where $R=13.6 \mathrm{eV}$. When $T=0, Z$ diverges. For $T=300 K$, we assume that

$$
Z_{\text {atom }}=\sum_{n=1}^{2} 2 n^{2} \exp \left(\frac{\beta R}{n^{2}}\right)=2 \exp (\beta R)+8 \exp \left(\frac{\beta R}{4}\right)
$$

The internal energy:

$$
U=-\frac{\partial \ln Z_{\text {atom }}}{\partial \beta}=-R\left(\frac{\exp (\beta R)+\exp \left(\frac{\beta R}{4}\right)}{\exp (\beta R)+4 \exp \left(\frac{\beta R}{4}\right)}\right)
$$

$$
\beta R=526.071
$$

$$
U=-R=-13.6 \mathrm{eV}
$$

((Mathematica))

Clear["Global`*"];
rule1 $=\left\{\mathrm{eV} \rightarrow 1.602176487 \times 10^{-19}, \mathrm{kB} \rightarrow 1.3806504 \times 10^{-23}\right.$, $h \rightarrow 6.62606896 \times 10^{-34}$, $\hbar \rightarrow 1.05457162853 \times 10^{-34}$, $T \rightarrow 300, R \rightarrow 13.6 \mathrm{eV}\}$;
$\mathrm{h} 1=\frac{\mathrm{R}}{\mathrm{kBT}} / /$. rule1
526.071
$\mathrm{U} 11=-\left(\frac{\operatorname{Exp}[\mathrm{h} 1]+\operatorname{Exp}[\mathrm{h} 1 / 4]}{\operatorname{Exp}[\mathrm{h} 1]+4 \operatorname{Exp}[\mathrm{~h} 1 / 4]}\right) / / . \operatorname{rule} 1$
-1 .
5. Blundell-Blundell: Thermal Physics

Problem 22-5
If the partition function Z_{N} of a gas of N indistinguishable particles is given by

$$
Z_{N}=\frac{\left(Z_{1}\right)^{N}}{N!}
$$

where Z_{1} is the single-particle partition function, show that the chemical potential is given by

$$
\mu=-k_{B} T \ln \left(\frac{Z_{1}}{N}\right)
$$

((Solution))
The partition function is given by

$$
Z_{C N}=\frac{Z_{C 1}{ }^{N}}{N!}
$$

$$
\begin{aligned}
F & =-k_{B} T \ln Z_{C N} \\
& =-k_{B} T \ln \frac{Z_{C 1}{ }^{N}}{N!} \\
& =-k_{B} T\left(N \ln Z_{C 1}-\ln N!\right) \\
& =-k_{B} T\left[N \ln Z_{C 1}-N \ln N+N\right)
\end{aligned}
$$

We note that

$$
\begin{aligned}
F & =U-S T \\
d F & =d U-S d T-T d S \\
& =T d S-\mu d N-S d T-T d S \\
& =-\mu d N-S d T
\end{aligned}
$$

The chemical potential:

$$
\mu=\left(\frac{\partial F}{\partial N}\right)_{T}=-k_{B} T\left(\ln Z_{C 1}-\ln N\right)=-k_{B} T \ln \frac{Z_{C 1}}{N}
$$

where

$$
Z_{C 1}=\frac{V}{\lambda_{t h}^{3}}=V n_{Q}
$$

and

$$
\frac{1}{\lambda_{t h}{ }^{3}}=n_{Q}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}, \quad \lambda_{t h}=\left(\frac{2 \pi \hbar^{2}}{m k_{B} T}\right)^{1 / 2} .
$$

6. Blundell-Blundell

Problem 22-6

(a) Consider the ionization of atomic hydrogen governed by the equation

$$
H=p^{+}+e^{-}
$$

where p^{+}is a proton (equivalently a positively ionized hydrogen) and e^{-}is an electron. Explain why

$$
\mu_{H}=\mu_{p}+\mu_{e}
$$

Using the partition function for hydrogen atoms from Eq.(21.50), and using Eq.(22.92) show that

$$
-k_{B} T \ln \left(\frac{Z_{1}^{p}}{N_{p}}\right)-k_{B} T \ln \left(\frac{Z_{1}^{e}}{N_{e}}\right)=-k_{B} T \ln \left(\frac{Z_{1}^{H}}{N_{H}} e^{\beta R}\right)
$$

where Z_{1}^{x} and N_{x} are the single-particle partition function and number of particles for species x, and where $R=13.6 \mathrm{eV}$. Hence show that

$$
\frac{n_{e} n_{p}}{n_{H}}=\left(\frac{2 \pi m_{e} k_{B} T}{h^{2}}\right)^{3 / 2} \exp (-\beta R)
$$

(Saha equation)

where $n_{x}=\frac{N_{x}}{N}$ is the number density of species x, stating any approximations you make. Equation (22.96 is known as the Saha equation.
(b) Explain why charge neutrality implies that $n_{e}=n_{P}$ and conservation of nucleus implies $n=n_{H}+n_{P}$, where n is the total number density of hydrogen (neutral and ionized). Writing $y=n_{P} / n$ as the degree of ionization, show that

$$
\frac{y^{2}}{1-y}=\frac{1}{n} n_{Q} \exp (-\beta R)
$$

Find the degree of ionization at 10000 K and density $10^{20} \mathrm{~m}^{-3}$.
((Solution))
Chemical reaction:

$$
\begin{aligned}
& H \rightarrow p^{+}+e^{-} \\
& \mu_{H}=\mu_{P}+\mu_{e}
\end{aligned}
$$

or

$$
-k_{B} T \ln \left(\frac{Z_{1}^{H}}{N_{H}} e^{\beta R}\right)=-k_{B} T \ln \left(\frac{Z_{1}^{P}}{N_{P}}\right)-k_{B} T \ln \left[\frac{Z_{1}^{e}}{N_{e}}\right]
$$

where

$$
\begin{aligned}
& \mu_{H}=-k_{B} T \ln \left[\frac{Z_{1}^{H}}{N_{H}} e^{\beta R}\right], \quad \mu_{P}=-k_{B} T \ln \left[\frac{Z_{1}^{P}}{N_{P}}\right] \\
& \mu_{e}=-k_{B} T \ln \left[\frac{Z_{1}^{e}}{N_{e}}\right]
\end{aligned}
$$

Thus we have

$$
\frac{N_{P} N_{e}}{N_{H}} e^{\beta R}=\frac{Z_{1}^{P} Z_{1}^{e}}{Z_{1}^{H}}=Z_{1}^{e}=V\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}
$$

or

$$
\frac{n_{P} n_{e}}{n_{H}}=n_{Q} e^{-\beta R}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2} e^{-\beta R}
$$

since $Z_{1}^{P}=Z_{1}^{H}$, where $n_{P}=\frac{N_{P}}{V}, n_{e}=\frac{N_{e}}{V}, n_{H}=\frac{N_{H}}{V}$, and

$$
n_{Q}=\frac{1}{\lambda_{t h}{ }^{3}}=\left(\frac{m k_{B} T}{2 \pi \hbar^{2}}\right)^{3 / 2}
$$

We assume that n is the number density of nucleus.

$$
\begin{aligned}
& n=n_{H}+n_{P}, \quad n_{P}=n_{e}=n y \\
& n_{H}=n-n_{p}=n(1-y)
\end{aligned}
$$

Then we have

$$
\begin{aligned}
& \frac{n^{2} y^{2}}{n(1-y)}=n_{Q} \exp (-\beta R) \\
& \begin{aligned}
\frac{y^{2}}{1-y} & =\frac{1}{n} n_{Q} \exp \left(-\frac{R}{k_{B} T}\right) \\
& =\frac{1}{n}\left(\frac{2 \pi m k_{B} T}{h^{2}}\right)^{3 / 2} \exp \left(-\frac{R}{k_{B} T}\right)
\end{aligned}
\end{aligned}
$$

where

$$
R=13.6 \mathrm{eV} . \quad n=10^{14} \mathrm{~cm}^{-3} .
$$

$$
x=\frac{T(\mathrm{~K})}{10^{4}} .
$$

When $f(x=1)=3.37886$, we have $y=0.807174$.

We make a ContourPlot of y vs x;

$$
\frac{y^{2}}{1-y}=f(x)
$$

Fig. $\quad n_{P} / n=y$ vs $x=T(K) / 10^{4}$.

The fraction y increases with increasing temperature T.
((Mathematica))
Clear["Global`*"];

$$
\begin{aligned}
& \text { rule1 }=\left\{\mathrm{kB} \rightarrow 1.3806504 \times 10^{-16}, \mathrm{NA} \rightarrow 6.02214179 \times 10^{23},\right. \\
& \mathrm{c} \rightarrow 2.99792 \times 10^{10}, \hbar \rightarrow 1.05457162810^{-27}, \mathrm{~h} \rightarrow 2 \pi \mathrm{~h}, \\
& \mathrm{me} \rightarrow 9.1093821510^{-28}, \mathrm{mp} \rightarrow 1.672621637 \times 10^{-24}, \\
& \mathrm{mn} \rightarrow 1.674927211 \times 10^{-24}, \text { qe } \rightarrow 4.8032068 \times 10^{-10}, \\
& \mathrm{eV}\left.\rightarrow 1.602176487 \times 10^{-12}, \mathrm{n} 1 \rightarrow 10^{14}\right\}
\end{aligned}
$$

f1[T1_] :=

$$
\frac{1}{\mathrm{n} 1}\left(\frac{2 \pi \mathrm{me} \mathrm{kB} \mathrm{~T}}{\mathrm{~h}^{2}}\right)^{3 / 2} \operatorname{Exp}\left[-\frac{13.6 \mathrm{eV}}{\mathrm{kB} \mathrm{~T}}\right] / .\left\{T \rightarrow 10^{4} T 1\right\} / /
$$

rule1
f1[1]
3.37886
eq1 $=$ ContourPlot $\left[\frac{y^{2}}{1-y}=f 1[x],\{x, 0,2\}\right.$,
$\{y, 0,1\}$, ContourStyle \rightarrow \{Red, Thick ,
PlotPoints $\rightarrow 300$]

