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1. Blundell-Blundell: Thermal Physics  

Problem 22.2 

The fugacity z is defined as z e . Using 
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show that 
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for an ideal gas, and comment on the limits 1z   and 1z  . 

 

((Solution)) 

The chemical potential is given by 
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The fugacity z is defined as 
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Then we have 
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leading to the relation 
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where the quantum concentration Qn  is defined by 
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For 1z  (high density limit; Qn n ): quantum effect (low temperatures)is dominant. 

For 1z  (low density limit: Qn n ), classical effect (high temperatures)is dominant. 
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2. Blundell-Blundell: Thermal Physics 

Problem 21-4 

An atom in a solid has two energy levels: a ground state of degeneracy 1g  and an excited state of 

degeneracy g2 at an energy   above the ground state. Show that the partition function atomZ  is 
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Show that the heat capacity of the atom is given by 
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A monatomic gas of such atoms has a partition function given by 
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where   1 atom translationZ Z Z  and 
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  is the partition function due to the 

translational motion of the gas atom. Show that the heat capacity of such a gas is 
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((Solution)) 

The particle partition function of atom is 
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The internal energy 
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The heat capacity: 
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The partition function of the system including the translational motion is 
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where 
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We note that 
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The internal energy: 

 



 

 

3

ln

(ln ln )

3
ln ln

2

3
ln

2

tot

atom

th

atom

atom B

U Z

V
N Z

N Z N

N Z Nk T



 


 




 




  



 
  

 


  



 

 

where 

 
1/2

22
th

m

 


 
  
 

ℏ
,  

21 2
ln [ln ln ]

2
th

m


 

 
   

 

ℏ
 

 

The heat capacity is obtained as 
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3. Blundell-Blundell: Thermal Physics 

Problem 21-6 

Show that the single-particle partition function 
1

Z  of a gas of hydrogen atoms is given 

approximately by 
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where R = 13.6 eV and the contribution due to excited states has been neglected. 

 

((Solution)) 

 

We assume that the energy of hydrogen atom is given by -R.  The partition function of atom is 

given by 
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The partition function of hydrogen atom including the translational motion is given by 
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where 
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4. Blundell and Blundell: Thermal Physics  

Problem 20-8 

The internal levels of an isolated hydrogen atom are given by 
2

R

n
 , where R = 13.6 eV. The 

degeneracy of each level is given by 22n . 

(a) Sketch the energy levels. 

(b) Show that 
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Note that when 0T  , this expression for 
atom

Z diverges. This is because of the large degeneracy 

of the hydrogen atom’s highly excited states. If the hydrogen atom were to be confined in a box of 

finite size, this would cut off the highly excited states and 
atom

Z would not then diverge. By 

approximating 
atom

Z  as follows: 
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i.e. by ignoring all but the n = 1 and n = 2 states estimate the mean energy of a hydrogen atom at 

300 K. 

 

((Solution)) 

 

n = 1,  l = 0 (s) degeneracy = 1 

total degeneracy = 2 x1 = 2 (factor 2; spin degeneracy) 

 



 

 

n = 2  l = 1 (p) degeneracy = 3 

  0l  (s) degeneracy = 1 

total degeneracy = 2 x 4 = 8 (factor 2; spin degeneracy) 

 

n =3  l = 2 (d) degeneracy = 5 

  1l  (p) degeneracy = 3 

  0l  (s) degeneracy = 1 

total degeneracy = 2 x 9 = 18 (factor 2; spin degeneracy) 
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where 6.13R  eV. When 0T , Z diverges. For 300 T K , we assume that 

 
2

2

2
1

2 exp( ) 2exp( ) 8exp( )
4

atom

n

R R
Z n R

n

 




    

 

The internal energy: 
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RU  =-13.6 eV. 

 

((Mathematica)) 
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5. Blundell-Blundell: Thermal Physics 

Problem 22-5  

If the partition function NZ  of a gas of N indistinguishable particles is given by 

 

1( )

!

N

N

Z
Z

N
  

 

where 1Z  is the single-particle partition function, show that the chemical potential is given by 
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((Solution)) 

The partition function is given by 
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We note that 
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The chemical potential: 
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6. Blundell-Blundell 

Problem 22-6 

(a) Consider the ionization of atomic hydrogen governed by the equation 

 

H p e    

 

where p  is a proton (equivalently a positively ionized hydrogen) and e  is an electron. Explain 

why 
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Using the partition function for hydrogen atoms from Eq.(21.50), and using Eq.(22.92) show that 
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where 1

xZ  and xN  are the single-particle partition function and number of particles for species x, 

and where R = 13.6 eV. Hence show that 
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    (Saha equation) 

 

where x
x

N
n

N
  is the number density of species x, stating any approximations you make. 

Equation (22.96 is known as the Saha equation. 

 

(b) Explain why charge neutrality implies that e Pn n  and conservation of nucleus implies 

H Pn n n  , where n is the total number density of hydrogen (neutral and ionized). Writing 

/Py n n  as the degree of ionization, show that 
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Find the degree of ionization at 10000 K and density 1020 m-3. 

 

((Solution)) 

Chemical reaction: 
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Thus we have 
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We assume that n is the number density of nucleus. 
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Then we have 
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where  6.13R  eV.  1410n cm-3. 
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When ( 1) 3.37886f x   , we have y =0.807174. 

 

We make a ContourPlot of y vs x;  
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Fig. /Pn n y  vs 4( ) /10x T K . 
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The fraction y increases with increasing temperature T. 

 

((Mathematica)) 
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