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The chemical potential is equivalent to a true potential energy: the difference in chemical 

potential between two systems is equal to the potential barrier that will bring the two systems 

into diffusive equilibrium. 

When external potential steps are present, we xan express the total chemical potential of a 

system as the sum of two parts; 

 

int  exttot  

 

where ext  is the potential energy per particle in the external potential, and int  is the internal 

chemical potential such as )ln(
Q

B
n

n
Tk . 

((Note)) 

The chemical potential is very useful in discussing the equilibrium distribution of particles in 

external electric, magnetic, or gravitational fields. Note that the temperatures of the different 

parts must be always equal in thermal equilibrium. 

For a perfect gas we have 
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__________________________________________________________________________ 

Here the concept of the chemical potential is discussed using several examples (mainly from 

Kittel, Thermal Physics, Chapter 5).  

 

C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 

1980). 

C. Kittel, Elementary Statistical Physics (Dover, 1986). 

 

 

1. Chemical potential due to the gravitational field 

Consider a system at temperature T , with N atoms of mass M in volume V . Let )0(  denote 

the value of the chemical potential at the surface of the Earth. Prove carefully and honestly that 

the value of the total chemical potential for the identical system when translated to altitude h is 

 

Mghh  )0()(   

 

where g is the acceleration of gravity. 

 

((Solution 1)) 

In a gravitational field, we have 
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which is the isothermal barometric pressure equation. 
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((Note-1)) 

The canonical partition function is 
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The Helmholtz free energy is 

 

NMghhF

ZTkhF CNB





)0(

ln)(
 

 

The chemical potential is obtained as 
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under the gravity field. 

 

((Note-2)) 

The grand canonical partition function is 
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The grand thermodynamic potential 

 

)()0(lnln MghNhZTkZTk GBGBG    



 

The Helmholtz free energy: 
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The chemical potential is obtained as 
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2. Example: Kittel, Thermal Physics Chapter 5 

Problem 5-1 Centrifuge 

A circular cylinder of radius R rotates about the long axis with angular velocity . The 

cylinder contains an ideal gas of atoms of mass M at temperature T. Find an expression for the 

dependence of the concentration )(rn  on the radial distance r from the axis, in terms of )0(n  on 

the axis. Take   as for an ideal gas. 

 

((Solution)) 

 

 
 

Fig. Centrifugal force on rating water container. 

https://www.youtube.com/watch?v=Zip9ft1PgV0 



 

The total chemical potential is given by 
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Here we note that the centrifugal force is related to the corresponding potential as 
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In equilibrium, this must be independent of the radial distance from the axis r. Thus  
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((Note-1)) Coriolis force and centrifugal force 

The centrifugal force is given by 

 

)( Rcf m rΩΩF   

 

is called the centrifugal force.  
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Fig. The centrifugal force in the (xR, yR, zR) space. 

 



 
 

Fig. The centrifugal force  eΩrΩF )sin(])[(
2

0 RRcf rmm  .  erΩ )sin( 0 RR r . 

The unit vector e  which points radially outward from the axis of the rotation. The unit 

vector e  which is directed tangentially along the circle with radius .  

 

((Note-2)) 

 



 
 

Fig. Parabolic surface of a spinning pail of water.  2m  is the centrifugal force. (from V. 

Barger and M. Olsson, Classical Mechanics, A Modern Perspective). 

 

We use r . 
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2. Example: Kittel, Thermal Physics Chapter 5 

Problem 5-2 Molecules in the Earth’s atmosphere. 

If n is the concentration of molecules at the surface of the Earth, M the mass of a molecule, 

and g the gravitational acceleration at the surface, show that at constant temperature the total 

number of molecules in the atmosphere is 
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where r measured from the center of the Earth: here ER  is the radius of the Earth. The integral 

diverges at the upper limit, so that N cannot be bounded and the atmosphere cannot be in 

equilibrium. Molecules, particularly light molecules, are always escaping from the atmosphere. 

 

((Solution)) 

The chemical potential: 
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Noting that 
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At constant temperature, the total number of molecules in the atmosphere is 
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3. Example: Kittel, Thermal Physics Chapter 5 

Problem 5-3 Potential energy of gas in gravitational field 

Consider a column of atoms each of mass M at temperature T in a uniform gravitational field 

g. Find the thermal average potential energy per atom. The thermal average kinetic energy 

density is independent of height. Find the total heat capacity per atom. The total heat capacity is 

the sum of contributions from the kinetic energy and from the potential energy. Take the zero of 

the gravitational energy at the bottom h = 0 of the column. Integrate from h = 0 to h = . 

 

 

((Solution)) 
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The total number of atoms is 
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The total potential energy is 
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The potential energy per atom is 
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The total heat capacity is 
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where Bk
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3
 is the heat capacity of free particle. 
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4. Example: Kittel, Thermal Physics Chapter 5 

Problem 5-4  Active transport 

The concentration of potassium K+ ions in the internal sap of sap of a plant cell (for example, 

a fresh water alga) may exceed by a factor of 104 the concentration of K+ ions in the pond water 

in which cell is growing. The chemical potential of the K+ ions is higher in the sap because their 

concentration n is higher there. Estimate the difference in chemical potential at 300 K and show 

that it is equivalent to a voltage of 0.24V across the cell wall. Take  as for an ideal gas. Because 

the values of the chemical potentials are different, the ions in the cell and in the pond are not in 

diffusive equilibrium. The plant cell membrane is highly impermeable to the passive leakage of 

ions through it. Important questions in cell physics include these: How is the high concentration 

of ions built up within the cell? How is metabolic energy applied to energize the active ion 

transport? 

 

((Solution)) 

We take  as for an ideal gas. 
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The difference of  is given by 
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For T = 300 K,  4

1

2 10
n
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. Then we have 

 

eV 238.0  

 

((Mathematica)) 
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5. Example: Kittel, Thermal Physics Chapter 5 

Problem 5-12  Ascent of sap in tree 

Find the maximum height to which water may rise in a tree under the assumption that the 

roots stand in a pool of water and the uppermost leaves are in air containing water vapor at a 

relative humidity 9.0r . The temperature is 25 C. If the relative humidity is r, the actual 

concentration of water vapor in the air at the uppermost leaves is 0rn , where 0n  is the 

concentration in the saturated air that stands immediately above the pool of water. 

 

((Solution)) 
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Clear "Global` " ;

rule1 kB 1.3806504 10
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, eV 1.602176487 10
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T 300;
kB T Log 104
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. rule1

0.238106



where rnn 0 . 
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From the thermal equilibrium condition, we have 
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where M is the mass of water and is given by 18 gram/NA. Using the Mathematica we have 

 

h = 1479.9 m. 

 

((Note)) 

In practice, trees rarely get over 100 m in height, 110 m is about the maximum. This is an 

over-estimate because the tree does not grow in water, and there is often a temperature gradient 

between the roots and top. Other mechanical limitations may come into play as trees grow taller. 

 

((Note)) Highest trees in the world 

The tallest trees in the world are redwoods (Sequoia sempervirens), which tower above the 

ground in California. These trees can easily reach heights of 300 feet (91 m). Among the 

redwoods, a tree named Hyperion dwarfs them all. The tree was discovered in 2006, and is 

379.7 feet (115.7 m) tall, Apr 15, 2013. 

 

((Mathematica)) 
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Clear "Global` " ;

rule1 kB 1.3806504 10
16
, NA 6.02214179 10
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eV 1.602176487 10
12
, g 980, m 100 ;

T 298; M 18 NA . rule1;

h
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. rule1

1479.89


