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The chemical potential of photon gas is zero. Here I collected several proofs from references. I 

like #1 (thermodynamics) and #8 (by Robertson). I understand that so many people try to explain 

using a variety of methods why the chemical potential of photon gas is zero. 

 

1. Chemical potential of photon (thermodynamics) 

We show that the chemical potential of photon is zero; 
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where 4TU   and  is constant. 
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The entropy S is 
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So we get 
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The Helmholtz free energy is 
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The substitution of S to the expression of G is 
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The chemical potential is zero. 

 

2. Discussion by  Kubo 

The equilibrium value of the total number of photons can be determined by the condition of 

minimizing the Helmholtz free energy ),,( NVTF , if one uses a method which allows an 

approximate calculation of the canonical partition function by its maximum term, 
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This is merely the relation 0 . 

 

3. Method of Lagrange multiplier (Kubo) 

The number of photons in a container is not a constant but only its average value is 

determined as a function of container volume V and the temperature T. This is because the 

photons (light) are emitted and absorbed by the matter inside or by the surface of the walls of the 

container. Hence one should omit the condition that the total number N = constant in the 

procedure for the derivation of the Bose-Einstein distribution (Lagrange undetermined multiplier 

method) . Accordingly, the chemical potential which is to be introduced as a Lagrange multiplier 

drops out from the Bose-Einstein distribution. This is equivalent to putting 0 . 

 

4. Planck’s distribution function 

We consider a system consists of f harmonic oscillators (with the same  ) 

 

For each oscillator, the energy is quantized as 
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where n  is the eigenstate of the Hamiltonian with the energy eigenvalue n n  ℏ . n is the 

integer; n = 0, 1, 2, ….  

 

Suppose that mi is the number of oscillators with the energy i . 

The total number of simple harmonic oscillators is 

 



...210  mmmf , 

 

State 0  with energy 0  level m0 oscillators 

State 1  with energy 1  level m1 oscillators 

………………………………….. 

 

 
 

The total energy for this configuration is 
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The way to choose mi oscillators in the same state i  is evaluated as 
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where these oscillators are distinguishable. Then the partition function for the simple harmonics 

can be obtained as 
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where 
TkB

1
 . fmmm  ,...210   means the condition of total oscillator number being kept 

constant. We note that )(1 CZ  is the partition function for the one-oscillator system. 

 









ℏ

ℏℏ

ℏ






















e

ee

e

eZ

n

n

n

C
n

1

1

...)1(

)(

2

1

 

 

or 

 

1
)(1 
 




ℏ

ℏ

e

e
ZC  

 

and 

 
f

C
e

e
Z 












1
)( 




ℏ

ℏ

 

 

The internal energy is 
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which is the distribution function for an ideal gas with 0 . 

 

5. Discussion by Schroeder 

We consider the Helmholtz free energy F, which must attain the minimum possible value at 

equilibrium with T and V held fixed. In a system of photons, the number N of photons is not 

constrained, but rather takes whatever value will minimize F. If N then changes infinitesimally, 

F should be unchanged: 
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This partial derivative is precisely equal to the chemical potential. 

A second argument makes use of the condition for chemical equilibrium. Consider a typical 

reaction in which a photon ( ) is created or absorbed by an electron; 

 

 ee   (reaction) 

 

The equilibrium condition for such a reaction is the same as the reaction equation, with the name 

of each species replaced by its chemical potential. In this case 

 

  ee   (equilibrium) 

 

In other words, the chemical potential for photons is zero.  

By either argument, the chemical potential for a gas of photon inside a box at fixed 

temperature is zero, so the Bose-Einstein distribution reduces to the Planck’s distribution, as 

required. 

 

6. Discussion by Landau and Lifshitz 

It should be mentioned that at least a small amount of matter must be present if thermal 

equilibrium is to be reached in the radiation, since the interaction between the photons 

themselves may be regarded as completely absent. The mechanics by which equilibrium can be 

established consists in absorption and emission of photons by matter. This result in an important 

specific property of the photon gas: the number of photons N in it is variable, and not a given 

constant as in an ordinary gas. Thus N itself must be determined from the conditions of thermal 

equilibrium. From the condition that the free energy of the gas should be minimum (for given T 

and V), we obtain as one of the necessary conditions, 
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This gives 0 , i.e. the chemical of the photon gas is zero. 

The distribution of photons among the various quantum states with definite values of the 

momentum kℏ  and energy 
k

 ℏ (and definite polarization) is therefore given by the formula 

with 0  
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6. Discussion by Baierlein 

The key insight is that photons are not subject to a conservation law for number. The atoms 

in a container wall readily absorb and emit photons. Even if one invoked energy conservation, an 

atom could absorp one photon of high energy and emit two photons, each of lower energy. In the 

calculation of photon gas, we consider all conceivable numbers of photons in each possible mode 

and weighted the corresponding states by the probability of occurrence according to the 

canonical probability distribution. The calculation presumes that we know the volume V of the 

container and the temperature T, a temperature common to both walls and photon gas. At thermal 

equilibrium, everything about a photon gas is determined by T and V. Given this information, we 

can readily compute the chemic al potential for a photon gas. In general, for a gas consisting of a 

single species of particle, the Helmholtz free energy is a function of the set {T, V, N}. Because 

everything about a photon gas is determined by T and V, its Helmholtz free energy must be a 

function of T and V only.  
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The chemical potential now follows from 
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because gas photonF  does not depend on N. 

 

8. Discussion by Robertson 

In general, even without good input data for N , it is possible to use the grand canonical 

formalism as if N  were a valid number. But after the formal results, the required step is the 

minimization of the Helmholtz free energy at constant volume and constant temperature, in order 

to find the equilibrium value of z or , since, in the absence of a valid input constraint for N , 

the correct equilibrium state is the one that minimizes F. 

In the Grand canonical ensemble, we have 
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The Helmholtz free energy is 
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From this expression, the derivative gives 
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where VT , . We note that 
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The requirement for minimum F at constant T and V,  
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As a consequence, the choice 1z  or 0 , is necessary in order to minimize the Helmholtz 

free energy at constant V and constant T, in the absence of a valid physical constraint on N . 

When this choice is made, the Helmholtz free energy and the grand potential becomes equal, as 

do the canonical and grand partition functions. 

 

9. Discussion by Sturge 

We cannot use the usual expression 
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for  , since one cannot increase N (that is, add photons to the system) at constant volume V and 

at the same time keep the temperature T constant; 
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Instead, we use the free Gibbs free energy. Hence  
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Thus, photons in equilibrium have zero chemical potential, even though their free energy F is 

nonzero. This result can be obtained in a more intuitively appealing way by considering what 

happens if the volume of the cavity increases by dV , the temperature and hence the pressure 

remaining constant. This expansion increases the number of photons by an amount proportional 

to dV . For a change at constant pressure, G takes a minimum in equilibrium, so that 0dG . 

hence we have 
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((Note)) 
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