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Equilibrium in reactions
We may write the equation of a chemical reaction as

dvd =0

where A, denotes the chemical species, and the v, ’s are the coefficients of the species in the

reaction equation.
((Example))
H; +Cl2 = 2HCI

1.Ho+1 Clo =2 HCI

v, =1, A1 =Ho,
v, =1, Ar=Cl
v, =-2, Az =HCI

The discussion of the chemical equilibria is usually presented for reactions under conditions of
constant pressure and temperature. In equilibrium G is an extremum and dG must be zero.

dG =Y y1,dN - SdT +VdP
J

Since dP=dT =0,

dG=) ydN,.
J

The change in the Gibbs free energy in reaction depends on the chemical potentials of the
reactants. In equilibrium G is an extremum and dG must be zero



dG=Y pdN,=0

J

We may write dN; in the form
dN; =v,dN
where dN indicates how many times the reaction takes place

dG = (uv)dN =0
J

In equilibrium, dG =0, so that
dG=3 pyv,=0
J
2. Equilibrium for ideal gases

We obtain a simple and useful form of the general equilibrium condition
2V =0
j

When we assume that each of the constituents acts as an ideal gas. The single molecule energy of
the molecule consisting of gas splits into a term representing the translational motion of the
molecular center of mass (CM) and another portion that reflects the internal state; rotation,
vibration, and spin multiplicity;

Z,=Z,(CM)Z (int)

use the chemical potential of species j as

k Tln(n’}
M, =Kp -
J Cj

Note that

C, =ny[Z,(int)exp(—pE )]



where Z,(CM) contributes to the factor, n, exp(=pE,), E; is the energy of the ground state of

the translational motion and Z (int) is the internal partition function. For the spin multiplicity,

we have

Z (int) =28 +1.

where S is the spin. Then the equation Z u;v; =0 can be rearranged as
j

2.V, lnn; =3 v, InC,
7 7
or
Zlnn/’" = ZlnC/‘"
j j
or
Vi Vy vy vy Vi VIV Yy _
non, tny =C 'C,*C°C, =K(T)

where K (T) is called the equilibrium constant, and is a function of 7. Then

=[ny"ny, *nys ny, . JHZ, (int)]" Z, (int)]* [ Z, (int)]" Z, (int) ]
exp[-S(V,E, +V,E, +....)]

where
In[Z (int)]"” =v,In[Z,(int)] = - Bv F(int)
or

[Z,(n0)]” = exp[—v, F,(int)]



where

Fj(int) =—k,T ln[Z_/ (int)]
Then we have

K(T)=n"n"n"n" ...
= (ny, " ny, "nyy " ny, ) exp{=Blv F (int) + v, F (int) + .....]}
=(ny, " ny, " nyy " ny, ) exp[-BWVE, + v, E, +....)]
x exp{—p[v,F (int) + v, F,(int) +.....]}
=(ny, "Ny, "nyy "Ny, )exp[=BWVE, + VB, +...)]
xexp{[v,InZ (int) + v, InZ,(int) +.....]}
=(ny, " ny, " nyy " ny, . )exp[-BWVE, + v, E, +....)]

x[Z,(int)" Z, (int)"....]

or
K(T)=n"nn"n" ...
= (g, "Ny, gy Ny, ) exp[- SV E, +V,E, +.....)]
x exp{—p[v,F (int) + v, F,(int) +.....]}
((Example))

Chemical reaction:

A+B-C=0 (reaction)

o Lalz]

[c]

= D008 oy o[~ B(E, + E, — E)]x expi~BIF,(int) + F,(int) - F. int)]}
Noc

Suppose that

Z (int) =28 +1 with §= 0. In other words, we have

Fy(int) = —k,TInZ,(int) = —— k,TIn(1) = 0.



Then we have

AIB] _ ngungs

[
k= [C] Roc

exp(—pAH)

where

E,+E,—E.=AH

e _____AB
A+ B—C
é; Activation
< energy
L
E
=
z -
& A+ B
AH
C

Schematic coordinate

[A], [B], and [C] denote the concentration of A, B, and C. The energy A measures the energy
involved in the reaction and determine the equilibrium concentration ratio,

The activation energy is the height of the potential barrier to be negotiated before the reaction
can proceed, and it determines the rate at which the reaction takes place.

3. Problem and Solution (1)
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980).

Problem 9-2



2. Thermal ionization of hydrogen. Consider the formation of atomic hy-
drogen in the reactione + H* = H, where ¢ is an electron, as the adsorption
of an electron on a proton H™. (a) Show that the equilibrium concentrations
of the reactants satisfy the relation

[e](H"]/[H] = ngexp(—1I/1) , (47)

where [ is the energy required to ionize atomic hydrogen, and ny, = (mt/2nh?)3/?
refers to the electron. Neglect the spins of the particles; this assumption does
not affect the final result. The result is known as the Saha equation. If all the
electrons and protons arise from the ionization of hydrogen atoms, then the
concentration of protons is equal to that of the electrons, and the electron
concentration is given by

[e] = [H]'2ny""? exp(— I/21). (48)

A similar problem arises in semiconductor physics in connection with the
thermal ionization of impurity atoms that are donors of electrons.
Notice that:

(1) The exponent involves 31 and not I, which shows that this is not a simple
“Boltzmann factor” problem. Here [ is the ionization energy.

(2) The electron concentration is proportional to the square root of the
hydrogen atom concentration.

(3) If we add excess electrons to the system, then the concentration of protons
will decrease.

(b) Let [H(exc)] denote the equilibrium concentration of H atoms in the
first excited electronic state, which is 2/ above the ground state. Compare
[H(exc)] with [e] for conditions at the surface of the Sun, with [H] ~ 10?*cm ™~
and T ~ SO000K.

((Solution))

(a)

Thermal ionization of hydrogen
e +H =H

The law of mass action:



[ LH "] _ nohgs’
[H]

exp[-f(E, + E,. —E,)]
oy

Here we define the ionization energy

[=E,+E, ~E,.

Note that

nQH = nQH*

[e ][H"]

W = I’lQ exp(—ﬂ[)
with

o mk,T 3/2
¢\ 27

If all the electrons and protons arise from the ionization from hydrogen atoms; [e"]=[H '], then

we get
[T =[Hny exp(~1)
or
(e 1=[H1 g exp(-£])
where

[H]=10®, 1=13.6¢V. T=5000 K.

3/2
ny :(’Z:_;{j =8.53721 x 10® cm?



I
k,T

=31.5643

[e]=1.29291 x 10" cm™

(b) [H (exc)] denotes the equilibrium concentration of H atoms in the first excited electronic
state

[H (exc)] = 4[H]exp[—/3%1] =4x5.23436 x 10'2 cm>=2.0937 x 10'3 cm™

The factor 4 is needed. Note that the first excited state is n = 2. Since / = 1 (3 states; d-orbitals)
and / = 0 (1 state; s-orbital). It is four-fold degenerate.

((Mathematica))



Clear["Global *"];

rulel = {kB - 1.3806504 x 10"'°, NA - 6.02214179 x 10*°,

c > 2.99792 x 10'°, A - 1.054571628 10?7, me » 9.10938215 10728,
ge - 4.8032068 x 1071%, eV - 1.602176487 x 10712,
I1-13.6eV, T1-5000, NH-107’};

me kB T1

3/2
A ) //. rulel
JT

e =

8.53721x 10%°

I1
— //. rulel

kB T1
31.5643
1/2 1/2 I1
Ne = NHY/2 nQ Exp[— ] //. rulel
2 kB T1
1.29291 x 10%°
311
4 NH Exp[— ] //. rulel
4 kB T1

2.09375x 1013

4. Problem and Solution (2)
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980).
Problem 9-3

3. Ionization of donor impurities in semiconductors. A pentavalent impurity
(called a donor) introduced in place of a tetravalent silicon atom in crystalline
silicon acts like a hydrogen atom in free space, but with e?/e playing the role of
e’ and an effective mass m* playing the role of the electron mass m in the
description of the ionization energy and radius of the ground state of the
impurity atom, and also for the free electron. For silicon the dielectric constant
€ = 11.7 and, approximately, m* = 0.3 m. If there are 10'” donors per cm?,
estimate the concentration of conduction electrons at 100 K.



((Solution))
Energy separation between the donor level and the conduction band A is

A= l(’”—}3.56 eV
eE\m

For Si, —=0.3, e=11.7.

A=0.0297 eV.

The law of mass action:

®c

Conduction band

[D*1le"] _ no(D)ng

exp[-B(E,. +E, —Ep)]

[D] ny(D)
_ 1ny(D)ny B
=T (D) exp(=/fA)
Here we use the relation n,(D)=n,(D")

o _((2mmk, T\ _(mk, TV
¢ n’ 270’

We use

Donor level
b 8



[D'1=n,  [el=n,  [Dl=n,—n,.

e

T=300K, n,=10".

3/2
= (kaT) =2.41469 x 10'8 cm

n
¢ 222

We have the equation to determine the value of n, .

2

B = nyexp(-pA)=7.69216 x 10'°

n,—n

e

and get the value
n, =5.73066x10"° cm,

((Mathematica))



Clear["Global *"];

rulel = {kB - 1.3806504 x 10'°, NA - 6.02214179 x 16*°,

c - 2.99792 x 10'°, A - 1.054571628 10727, me - 9.10938215 10728,
ge - 4.8032068 x 1071%, eV - 1.602176487 x 10712,
I1->13.6eV, T1-100, A-0.0297 eV, nd - 10'};

me kB T1

3/2
3 ) //. rulel
2 h

nQ = (
2.41469 x 108

-A
kB T1

sl =nQ Exp[ ] //. rulel
7.69216 x 10*°

ne?

eql = ==s1//. rulel // Simplify

nd - ne

7.69216x10°% - 7.69216x10'° ne - 1. ne?
1.x10Y -1. ne

Solve[eql, ne] // Simplify[#, ne > 0] &

Solve: Solve was unable to solve the system with inexact coefficients. The answer was

obtained by solving a corresponding exact system and numericizing the result.

{{ne > -1.34228x10"}, {ne - 5.73066x10"°} |

5. Problem and Solution (3)
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980).
Problem 9-4

4. Biopolymer growth. Consider the chemical equilibrium of a solution
of linear polymers made up of identical units. The basic reaction step is
monomer + Nmer = (N + 1)mer. Let Ky denote the equilibrium constant for



this reaction. (a) Show from the law of mass action that the concentrations [ - -]
satisfy

[N + 1] = [1]"*'/K,K,Ky - Ky (49)

(b) Show from the theory of reactions that for ideal gas conditions (an ideal
solution):

_ "o(N)ng(l) _Fy —
N = nQ(N n ”Cxp[(F,\H, FN F])/'[] (50)

Here
ny(N) = (2nh*/Myt)™ %2 | (51)

where My, is the mass of the Nmer molecule, and Fy is the free energy of one
Nmer molecule. (c) Assume N > 1, so that ny(N) =~ ny(N + 1). Find the
concentration ratio [N + 1]/[N] at room temperature if there is zero free
energy change in the basic reaction step: thatis, ifAF = Fy,, — Fy — F, = 0.
Assume [1] = 10?°cm ™3, as for amino acid molecules in a bacterial cell. The
molecular weight of the monomer is 200. (d) Show that for the reaction to go in
the direction of long molecules we need AF < —0.4¢eV, approximately. This
condition is not satisfied in Nature, but an ingenious pathway is followed that
simulates the condition. An elementary discussion is given by C. Kittel, Am. J.
Phvs. 40.60 (1972).

((Solution))

Monomer:
N=1




Monomer + Nmer =(N+1)mer

P LILY
[N +1]

Similarly we have

_ [V -1]
N
_ [y -2]
N-2 [N —1]
_ B3]
4]
x, <2
[3]
K, =M
[2]

From these equations, we get

KKK, Ky Ky K = (L0 2] (1031 [IINV = 2] (1IN - 1] [][V]
[2] [3] [4] [N-1] [N] [N+1]
3 [1]N+1

[N +1]

Thus we obtain



[N +1]=

We consider

[1[N]

YUIN +1)
From the definition, we have

_ g (Dny(N)
Y ny(N+1)
_ ny(Dg(N)
ny(N +1)

exp[B(Fy,, —Fy — F)]

exp(SAF)

with

AF =Fy .~ Fy- K

MNkBTJS/Z

ny(N) :( >

M, is the mass of N, molecules and F) . is the free energy of one N NV, . molecule.

(©) Assume N >>1
ny(N+1)~n,(N)
Then
Ky =ny(exp[-S(Fy + F, = Fy))]

The concentration ratio



[V +1] _ [T

[N] K,

_ _
= nQ(l) exp[B(Fy + F - Fy,))]

_ (1] _
= o (D) exp(—pAF)

If AF=F, —F,—F =0

[N+1]  [1] _[1][MkBTj3/2
[N]  ny,() O\ 27

Here we have
[1]1=10% cm™. T=300K.

Molecular weight of the monomer 200 g per mol

ny(1)=2.76203x10” cm’

[N +1]

=3.62058x10°*

(d)

[V+1]_ [
[N~ np()

exp(—pAF)

For the reaction to go in the direction of long molecules

[N +1]
[N]

>1

or



IHL]I) > SAF

or

kT s AF
(1)

AF <-0.44295 eV

6. Problem and Solution (4)
C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980).
Problem 9-5

5. Particle-antiparticle equilibrium. (a) Find a quantitative expression for the
thermal equilibrium concentration n = n* = n~ in the particle-antiparticlc
reaction A* + A~ = 0. The reactants may be electrons and positrons; protons
and antiprotons; or electrons and holes in a semiconductor. Let the mass of
either particle be M; neglect the spins of the particles. The minimum energy
release when A* combines with A~ is A. Take the zero of the energy scale as the
energy with no particles present. (b) Estimate n in cm ™2 for an electron (or a
hole) in a semiconductor T = 300K with a A such that A/r = 20. The hole 1s
viewed as the antiparticle to the electron. Assume that the electron concentration
is equal to the hole concentration; assume also that the particles are in the
classical regime. (c) Correct the result of (a) to let each particle have a spin of 2
Particles that have antiparticles are usually fermions with spins of 3.

((Solution))
(a)
A"+A4 =0
n'n” =nyn, exp[-p(E, +E —-0)

When



3/2
E +E =A, nQ+:nQ:(A;[:£Zj

Then we get

. (Mk,TY" BA
e =n =[Gt ) oot

(b) In the semiconductor

M =m (mass of electron and hole)

o mk,T 3/2
¢\ 22h?

When fA =20, T=300K

n,=1.25471 x 10" ¢cm?

n=5.69637 x 10" cm™.

When Z,, = (28 +1),

n'n” =n,,n, exp(-PfA)Z (int)Z,(int)
= (28 +1)’ny,n,_exp(-pA)

For n=n,=n_, Ny =ny, =n,_, S=—

n® =(28 +1)n," exp(-BA)

or



n=(28+Dn, exp(—%)

=2n, exp(—%)

((Mathematica))

Clear["Global ="];

rulel = {kB - 1.3806504 x 10"'°, NA - 6.02214179 x 10*°,

c - 2.99792 x 10'°, A - 1.054571628 10727, me - 9.10938215 10 28,
ge - 4.8032068 x 10719, eV -» 1.602176487 x 10712,
I1-13.6€eV, T1-300, BA-20};

me kB T1

3/2
3 ) //. rulel
2 h

e = |

1.25471 x 10*°

BA

nl= nQ Exp[——] //. rulel
2

5.69637 x 10**

7. Electron positron pair (R. Baierlein, Thermal Physics (Cambridge, 2001).
In the extremely hot interior of stars, gamma rays can form an electron-positron pair,

e +e Sy+y

and the pair can mutually annihilate to form two gamma rays. Moreover, this process occurred in
the early evolution of our universe. In thermal equilibrium, we have

ﬂ€+ +’Llc7 = 0
since the chemical potential of photon is zero. Then we have

[e*lle 1=4n,.n_exp(-2fmc*) = 4[”’2#) exp(=2 fmc?)



where mc® is the rest energy of the electron and positron and the factor 4 comes from the spin
factor (25 +1) =2 for electron and positron (both spin 1/2).

The core of a hot, massive star (of mass equal to 12 solar masses, say) may have a
temperature of 7 =10° K. The right side has the value 1.64877 x 10°°> cm™, a reasonable value
for such a star. If [e']=3x10" cm™, we have [e']=5.4959x10” cm™. That is, there is one
positron for every 54.586~ 55 electrons.

If [e"]=[e ], we have

[e"]=[e ]=4.06 x 10% cm™.

((Mathematica))



Clear["Global *"];

rulel = {kB -» 1.3806504 x 107'°, NA - 6.02214179 x 10*>,

c->2.99792x10%, h»>2xha, h > 1.054571628 1077,
me - 9.10938215 10°2%, mp - 1.672621637 x 1024,

mn - 1.674927211 x 10™%*, ge - 4.8032068 x 10729,

eV - 1.602176487 x 10™'%};

2tme kBT
h2

3/2
nQ = ( ) //. rulel

2.41469 x 10> T3/2

-2 me c?

F1[T1 ] := 4nQ? Exp[
KB T

]/.T—>T1 //. rulel

ki = f1[10°]

1.64877 x 10°3

gl=3x10"";g2=k1/g1
5.49591 x 10%°

gl/g2
54.586

((Note))

At extremely high temperatures, comparable with the rest energy mc’ of the electron,
collisions of particles in matter may be accompanied by the formation of electron-positron pairs.
The number of particles itself then causes to be a given quantity, and depends on the conditions
of thermal equilibrium. Pair production (and the reverse process, annihilation) can be regarded
thermodynamically as a chemical reaction

+

e +te =y



where the symbols ¢” and e~ denote a positron and an electron, and y denotes one or more

photons. The chemical potential of the photon gas is zero. The condition of equilibrium for pair
production is therefore

ptpu =0

where 4 and g are the chemical potentials of the electron and positron gases. It should be

noted that m here denotes the relativistic expression for the chemical potential, including the rest
energy of the particles, which plays an important part in pair production.
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APPENDIX
Saha equation (Fermi)

In Na vapor at very high temperatures, Na atoms become ionized. They lose one of their
electrons, and thus changed into ions.

Na (atom) <> Na“(ion) + ¢~ (electron) .

It is found that, at any given temperature, this ionization reaction reaches a state of thermal
equilibrium which is quite analogous to the chemical equilibrium for ordinary chemical reactions.

[Na] = ny(Na) B B N -
Nale] no(Na' ), (e,)eXp{ BIE(Na)—E(Na™) - E(e)]
h3

= (27””)3/2 ﬁ eXp(/BAE)

where we use
n,(Na")=n,(Na)

Let x be the degree of ionization, that is, the fraction of atoms that are ionized;



L [Na']
[Na*]+[Na]

and let n =[Na"]+[Na] be the total concentration of the sodium (atoms and ions). Then we

have
[Na"]=nx, [Na]=n(1-x)

Since there is obviously one electron present for each sodium ion, we have
[e"]=[Na"]=nx

and we finally obtain

1(1?) "B exp(BAE)

n\ x - (2m)*"?

or

2 2 4 3/2 ﬁ E
n(l J _{ h3B) T exp(———)
s (Saha equation)

=2.41469x10°7°"* exp(—ﬂ)
k,T

B
where 7 is the total concentration of the sodium (atoms and ions).

((Note)) Saha equation

The Saha ionization equation, also known as the Saha—Langmuir equation, is an expression
that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure.
The equation is a result of combining ideas of quantum mechanics and statistical mechanics and
is used to explain the spectral classification of stars. The expression was developed by the Indian
astrophysicist Meghnad Saha in 1920, and later (1923) by Irving Langmuir.

https://en.wikipedia.org/wiki/Saha_ionization_equation




