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Equilibrium in reactions 

We may write the equation of a chemical reaction as 

 

0 jjA  

 

where jA  denotes the chemical species, and the j ’s are the coefficients of the species in the 

reaction equation. 

 

((Example)) 

 

H2 +Cl2 = 2HCl 

 

1.H2+1 Cl2 = 2 HCl 

 

11  ,  A1 = H2, 

12  ,  A2 = Cl2 

23  , A3 = HCl 

 

The discussion of the chemical equilibria is usually presented for reactions under conditions of 

constant pressure and temperature. In equilibrium G is an extremum and dG must be zero. 
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Since 0 dTdP , 
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The change in the Gibbs free energy in reaction depends on the chemical potentials of the 

reactants. In equilibrium G is an extremum and dG must be zero 
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We may write jdN  in the form 

 

NddN jj
ˆ  

 

where Nd ˆ  indicates how many times the reaction takes place 
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In equilibrium,  0dG , so that 
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2. Equilibrium for ideal gases 

We obtain a simple and useful form of the general equilibrium condition 

 

0
j
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When we assume that each of the constituents acts as an ideal gas. The single molecule energy of 

the molecule consisting of gas splits into a term representing the translational motion of the 

molecular center of mass (CM) and another portion that reflects the internal state; rotation, 

vibration, and spin multiplicity; 
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use the chemical potential of species j as 
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Note that 
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where )(CMZ j  contributes to the factor, )exp( jQj En  , jE  is the energy of the ground state of 

the translational motion and (int)jZ  is the internal partition function. For the spin multiplicity, 

we have 

 

12(int)  SZ j . 

 

where S is the spin. Then the equation 0
j

jj  can be rearranged as 
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or 
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where )(TK  is called the equilibrium constant, and is a function of T. Then  
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where 

 

(int)(int)]ln[(int)]ln[ jjjjj FZZ j    

 

or 

 

(int)]exp[(int)][ jjj FZ j    

 



where 
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Then we have 
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or 
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((Example)) 

Chemical reaction: 

 

0 CBA   (reaction) 

 

  
 

int)]}(int)(int)[exp{)](exp[ CBACBA

QC

QBQA
FFFEEE

n

nn

C

BA
K






 

 

Suppose that 

 

12(int)  SZ j  with S = 0.  In other words, we have 

 

0)1ln((int)ln(int)  TkZTkF BjBj . 



 

Then we have 
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where 

 

HEEE CBA   

 

 
 

[A], [B], and [C] denote the concentration of A, B, and C. The energy   measures the energy 

involved in the reaction and determine the equilibrium concentration ratio, 

 

  
 C
BA

. 

 

The activation energy is the height of the potential barrier to be negotiated before the reaction 

can proceed, and it determines the rate at which the reaction takes place. 

 

3. Problem and Solution (1) 

C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). 

Problem 9-2 



 

 
 

((Solution)) 

 

(a) 

Thermal ionization of hydrogen 

 

HHe    

 

The law of mass action: 
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Here we define the ionization energy 

 

HHe EEEI   . 

 

Note that 
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with 
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If all the electrons and protons arise from the ionization from hydrogen atoms; ][][   He , then 

we get 

 

)exp(][][ 2 InHe Q 
 

 

or 
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where 

 
2310][ H , 6.13I  eV.  T = 5000 K. 
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29291.1][ e  x 1015 cm-3 

 

(b) )]([ excH  denotes the equilibrium concentration of H atoms in the first excited electronic 

state  

 

]
4

3
exp[][4)]([

I
HexcH  =4x5.23436 x 1012 cm-3=2.0937 x 1013 cm-3 

 

The factor 4 is needed. Note that the first  excited state is n = 2. Since l = 1 (3 states; d-orbitals) 

and l = 0 (1 state; s-orbital). It is four-fold degenerate.  

 

 

((Mathematica)) 

 



 
 

______________________________________________________________________________ 

4. Problem and Solution (2) 

C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). 

Problem 9-3 

 

Clear "Global` " ;

rule1 kB 1.3806504 10 16, NA 6.02214179 1023,

c 2.99792 10
10
, 1.054571628 10

27
, me 9.10938215 10

28
,

qe 4.8032068 10 10, eV 1.602176487 10 12,

I1 13.6 eV, T1 5000, NH 1023 ;

nQ
me kB T1

2 2

3 2

. rule1

8.53721 10
20

I1

kB T1
. rule1

31.5643

Ne NH1 2 nQ1 2 Exp
I1

2 kB T1
. rule1

1.29291 10
15

4 NH Exp
3 I1

4 kB T1
. rule1

2.09375 10
13



 

((Solution)) 

Energy separation between the donor level and the conduction band   is 

 

56.13
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For  Si, 3.0
*


m

m
,  7.11 . 

 

0297.0  eV. 

 

The law of mass action: 
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Here we use the relation  )()(  DnDn QQ  
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We use 
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T = 300 K, 1710dn . 
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We have the equation to determine the value of en . 
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and get the value  

 
161073066.5 en  cm-3. 

 

((Mathematica)) 
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5. Problem and Solution (3) 

C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). 

Problem 9-4 

 

 

Clear "Global` " ;

rule1 kB 1.3806504 10
16
, NA 6.02214179 10

23
,

c 2.99792 10
10
, 1.054571628 10

27
, me 9.10938215 10

28
,

qe 4.8032068 10
10
, eV 1.602176487 10

12
,

I1 13.6 eV, T1 100, 0.0297 eV, nd 10
17

;

nQ
me kB T1

2 2

3 2

. rule1

2.41469 10
18

s1 nQ Exp
kB T1

. rule1

7.69216 10
16

eq1
ne2

nd ne
s1 . rule1 Simplify

7.69216 1033 7.69216 1016 ne 1. ne2

1. 10
17

1. ne
0

Solve eq1, ne Simplify , ne 0 &

Solve: Solve was unable to solve the system with inexact coefficients. The answer was

obtained by solving a corresponding exact system and numericizing the result.

ne 1.34228 10
17

, ne 5.73066 10
16



 

 
 

((Solution)) 

 

Monomer: 

N = 1 

 
 

N = 2 

 

 
 

N = 3 

 



 
 

……………………………………………………………………………………………… 

 

Monomer + Nmer =(N+1)mer  
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From these equations, we get 

 

]1[

]1[

]1[

]][1[

][

]1][1[

]1[

]2][1[
.......

]4[

]3][1[

]3[

]2][1[

]2[

]1][1[
.....

1

12321
















N

N

N

N

N

N

N
KKKKKK

N

NNN

 

 

Thus we obtain 
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We consider 
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From the definition, we have 
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with 
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NM  is the mass of merN  molecules and NF . is the free energy of one N merN  molecule. 

 

(c) Assume 1N  
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Then 
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The concentration ratio 
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Here we have 

 
2010]1[   cm-3. T = 300 K. 

 

Molecular weight of the monomer 200 g per mol 
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For the reaction to go in the direction of long molecules 
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6. Problem and Solution (4) 

C. Kittel and H. Kroemer, Thermal Physics, second edition (W.H. Freeman and Company, 1980). 

Problem 9-5 

 

 
 

((Solution)) 

 

(a) 

 

0  AA  
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Then we get 
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(b) In the semiconductor  

 

mM   (mass of electron and hole) 
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When 20 , T = 300 K 

 

Qn =1.25471 x 1019 cm-3 

 

n 5.69637 x 1014 cm-3. 

 

When )12(int  SZ , 
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((Mathematica)) 

 

 
 

7. Electron positron pair (R. Baierlein, Thermal Physics (Cambridge, 2001). 

In the extremely hot interior of stars, gamma rays can form an electron-positron pair, 

 

   ee  

 

and the pair can mutually annihilate to form two gamma rays. Moreover, this process occurred in 

the early evolution of our universe. In thermal equilibrium, we have 

 

0  ee
  

 

since the chemical potential of photon is zero. Then we have 
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Clear "Global` " ;

rule1 kB 1.3806504 10
16
, NA 6.02214179 10

23
,

c 2.99792 10
10
, 1.054571628 10

27
, me 9.10938215 10

28
,

qe 4.8032068 10
10
, eV 1.602176487 10

12
,

I1 13.6 eV, T1 300, 20 ;

nQ
me kB T1

2 2

3 2

. rule1

1.25471 10
19

n1 nQ Exp
2

. rule1

5.69637 10
14



 

where 2mc  is the rest energy of the electron and positron and the factor 4 comes from the spin 

factor 2)12( S  for electron and positron (both spin 1/2). 

The core of a hot, massive star (of mass equal to 12 solar masses, say) may have a 

temperature of 910T K. The right side has the value 1.64877 x 1053 cm-6, a reasonable value 

for such a star. If 27103][ e cm-3, we have 25104959.5][ e  cm-3. That is, there is one 

positron for every 54.586≈ 55 electrons. 

If ][][   ee , we have 

 

06.4][][   ee  x 1026 cm-3. 

 

((Mathematica)) 



 
 

((Note)) 

At extremely high temperatures, comparable with the rest energy 2mc  of the electron, 

collisions of particles in matter may be accompanied by the formation of electron-positron pairs. 

The number of particles itself then causes to be a given quantity, and depends on the conditions 

of thermal equilibrium. Pair production (and the reverse process, annihilation) can be regarded 

thermodynamically as a chemical reaction 

 

  ee  

Clear "Global` " ;

rule1 kB 1.3806504 10
16
, NA 6.02214179 10

23
,

c 2.99792 1010, h 2 , 1.054571628 10 27,

me 9.10938215 10 28, mp 1.672621637 10 24,

mn 1.674927211 10 24, qe 4.8032068 10 10,

eV 1.602176487 10 12 ;

nQ
2 me kB T

h2

3 2

. rule1

2.41469 10
15

T
3 2

f1 T1 : 4 nQ2 Exp
2 me c2

kB T
. T T1 . rule1

k1 f1 109

1.64877 10
53

g1 3 1027; g2 k1 g1

5.49591 10
25

g1 g2

54.586



 

where the symbols e  and e  denote a positron and an electron, and   denotes one or more 

photons. The chemical potential of the photon gas is zero. The condition of equilibrium for pair 

production is therefore 

 

0    

 

where   and   are the chemical potentials of the electron and positron gases. It should be 

noted that m here denotes the relativistic expression for the chemical potential, including the rest 

energy of the particles, which plays an important part in pair production. 
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_____________________________________________________________________________ 

APPENDIX 

Saha equation (Fermi) 

In Na vapor at very high temperatures, Na atoms become ionized. They lose one of their 

electrons, and thus changed into ions. 

 

)electron()ion(Na(atom) Na   e . 

 

It is found that, at any given temperature, this ionization reaction reaches a state of thermal 

equilibrium which is quite analogous to the chemical equilibrium for ordinary chemical reactions.  
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where we use 
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Let x be the degree of ionization, that is, the fraction of atoms that are ionized; 
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and let ]Na[]Na[  n  be the total concentration of the sodium (atoms and ions). Then we 

have 

 

nx ]Na[ ,  )1(]Na[ xn   

 

Since there is obviously one electron present for each sodium ion, we have 
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and we finally obtain  
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  (Saha equation) 

 

where n is the total concentration of the sodium (atoms and ions). 

 

((Note)) Saha equation 

The Saha ionization equation, also known as the Saha–Langmuir equation, is an expression 

that relates the ionization state of a gas in thermal equilibrium to the temperature and pressure. 

The equation is a result of combining ideas of quantum mechanics and statistical mechanics and 

is used to explain the spectral classification of stars. The expression was developed by the Indian 

astrophysicist Meghnad Saha in 1920, and later (1923) by Irving Langmuir. 

 

https://en.wikipedia.org/wiki/Saha_ionization_equation 

 


