van 't Hoff equation
 Masatsugu Sei Suzuki
 Department of Physics, SUNY at Binghamton
 (Date: October 16, 2017)

The van 't Hoff equation relates the change in the equilibrium constant, $K_{\text {eq }}$, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, $\Delta H \ominus$, for the process. It was proposed by Dutch chemist Jacobus Henricus van 't Hoff in 1884 in his book "Études de Dynamique chimique" (Studies in dynamic chemistry).

The van 't Hoff equation has been widely utilized to explore the changes in state functions in a thermodynamic system. The van 't Hoff plot, which is derived from this equation, is especially effective in estimating the change in enthalpy, or total energy, and entropy, or amount of disorder, of a chemical reaction

The chemical potential is

$$
\mu(P)=k_{B} T \ln \left(\frac{1}{k_{B} T n_{Q}}\right)+k_{B} T \ln P
$$

At the standard pressure $P=P_{0}=1$ bar,

$$
\mu\left(P_{0}\right)=k_{B} T \ln \left(\frac{1}{k_{B} T n_{Q}}\right)+k_{B} T \ln P_{0}
$$

From these relations, we have

$$
\mu(P)=\mu\left(P_{0}\right)+k_{B} T \ln \frac{P}{P_{0}}
$$

For convenience, we multiply the Avogadro's number N_{A}. For 1 mole of the system, we have

$$
N_{A} \mu(P)=N_{A} \mu\left(P_{0}\right)+R T \ln \frac{P}{P_{0}} \quad \text { (for 1 mole) }
$$

The chemical reaction is given by

$$
\sum_{i} v_{i} \mu_{i}=0
$$

or

$$
\sum_{i} v_{i}\left[N_{A} \mu_{i}\left(P_{0}\right)+R T \ln \left(\frac{P_{i}}{P_{0}}\right)\right]=0
$$

or

$$
\begin{aligned}
\sum_{i} v_{i} \mu_{i}\left(P_{0}\right) & =-R T \sum_{i} v_{i} \ln \left(\frac{P_{i}}{P_{0}}\right) \\
& =-R T \sum_{i} \ln \left(\frac{P_{i}}{P_{0}}\right)^{v_{i}} \\
& =-R T \ln \left[\left(\frac{P_{1}}{P_{0}}\right)^{v_{1}}\left(\frac{P_{2}}{P_{0}}\right)^{v_{2}} \ldots .\right]
\end{aligned}
$$

The equilibrium constant is defined as

$$
K=\left(\frac{P_{1}}{P_{0}}\right)^{v_{1}}\left(\frac{P_{2}}{P_{0}}\right)^{v_{2}} \ldots
$$

and the Gibbs free energy $\Delta_{r} G_{0}$ is defined as

$$
\Delta_{r} G_{0}=N_{A} \sum_{i} v_{i} \mu_{i}\left(P_{0}\right) .
$$

Thus we have

$$
\Delta_{r} G_{0}+R T \ln K=0
$$

or

$$
\ln K=-\frac{1}{R} \frac{\Delta_{r} G_{0}}{T}
$$

Noting that the enthalpy H is expressed in terms of G as

$$
H=G+T S=G-T\left(\frac{\partial G}{\partial T}\right)_{P}=-T^{2}\left(\frac{\partial}{\partial T} \frac{G}{T}\right)_{P} . \quad \text { (Gibbs-Helmholtz) }
$$

we have

$$
\begin{aligned}
\frac{d}{d T} \ln K & =-\frac{1}{R} \frac{d}{d T} \frac{\Delta_{r} G_{0}}{T} \\
& =\frac{1}{R T^{2}} \Delta_{r} H_{0}
\end{aligned}
$$

where $\Delta_{r} G_{0}$ is the Gibbs free energy of the reaction at 1 bar.This can be rewritten as

$$
\frac{d}{d(1 / T)} \ln K=-\frac{1}{R} \Delta_{r} H_{0} \quad \text { (van 't Hoff equation) }
$$

(a) Endothermic reaction

(b) Exothermic reaction

