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Abstract 

Optical pumping is to change the population number of atomic states by illumining of 
light beam to the system from ones in thermal equilibrium. The spin of the circularly 
polarized light is transferred to atoms, leading to the change of the angular momentum of 
atoms. This method was first proposed by Kastler in France in 1950. Although this 
method is very simple, one can make a surprisingly precise spectroscopy of atomic 
sublevels. This method makes it possible to do detailed studies for the interactions 
between atom and light. In 1966, Nobel prize was awarded to Kastler for his work on the 
method of optical pumping. The atomic operation by light is now the main topics of the 
atomic physics. We note that Cohen-Tannoudji got a Nobel prize in 1977 for the laser 
cooling. Cohen-Tannoudji was a student of Kasler.  

In our Advanced Laboratory course (Senior Laboratory for undergraduate students 
and Graduate Laboratory for graduate students), we have an apparatus of optical pumping 
of Rb, (TeachSpin). Some students have a difficulty in understanding the physics of 
optical pumping. In this lecture note, we discuss the physics based on the atomic physics 
and quantum mechanics. The splitting of the energy levels in 87Rb (nuclear spin 3/2) will 
be discussed in terms of the eigenvalue problems with Mathematica. The transition 
probability for the absorption and emission of light due to the interaction with electric 
dipole moments will be discussed in terms of Wigner-Eckart theorem and Clebsch-
Gordan coefficient. The physics of optical pumping in 85Rb (nuclear spin 5/2) will not be 
discussed here. 
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________________________________________________________________________ 
Alfred Kastler (May 3, 1902 – January 7, 1984) was a French physicist, and Nobel Prize 
laureate. Kastler was born in Guebwiller (Alsace) and later attended the Lycée Bartholdi 
in Colmar, Alsace, and École Normale Supérieure in Paris in 1921. After his studies, in 
1926 he began teaching physics at the Lycée of Mulhouse, and then taught at the 
University of Bordeaux, where he was a university professor until 1941. Georges Bruhat 
asked him to come back to the École Normale Supérieure, where he finally obtained a 
chair in 1952. Collaborating with Jean Brossel, he researched quantum mechanics, the 
interaction between light and atoms, and spectroscopy. Kastler, working on combination 
of optical resonance and magnetic resonance, developed the technique of "optical 



pumping". Those works led to the completion of the theory of lasers and masers. He won 
the Nobel Prize in Physics in 1966 "for the discovery and development of optical 
methods for studying Hertzian resonances in atoms". He was president of the board of the 
Institut d'optique théorique et appliquée. 
 

 
 
http://en.wikipedia.org/wiki/Alfred_Kastler 
 
_______________________________________________________________________ 
1. Introduction 

The process of optical pumping is an excellent example for the interaction between 
light and matter. In our Advanced laboratory, one can use circularly polarized light to 
pump a particular level in Rb vapor. Then, using DC magnetic field up to 10 Oe and 
radio-frequency excitations, one manipulate the population of the pumped state. One will 
determine the energy separation between the adjacent Zeeman levels in Rb in a strong 
magnetic field as well as a weak magnetic field. Although the experiment is relatively 
simple to perform, one will need to understand a fair amount of atomic physics and 
quantum mechanics.  
(i) Energy levels of 87Rb in the presence of spin-orbit interaction, hyperfine 

interaction, and magnetic field. 
(ii) Selection rule for the absorption of the circular polarized (+) photon of D1 line, 

due to the interaction of light with electric dipole moment. The total angular 
momentum conservation of atom and light. 

(iii) The increase in the population of the specific state using optical pumping.  
(iv) The spacing of the Zeeman levels in the limits of weak and strong magnetic fields. 
(v) Solving the eigenvalue problems. 
(vi) Wigner-Eckart theorem and the Clebsch-Gordan coefficients 
 
2. Overview on the optical pumping experiment 

Optical pumping is a process in which absorption of light produces a population of 
the energy levels different from one in thermal equilibrium. In the present experiment, Rb 
atoms (87Rb) in the presence of an external magnetic field are irradiated with circularly 
polarized photons in a narrow range of energies for the induction of 5 2S1/2 → 5 2P1/2 (D1 



line) electric dipole transitions. The absorption can occur only if the total angular 
momentum of the incident photon and atom is conserved in the process. If the incident 
photon have angular momentum of   the only allowed transition are those in which mf 
= 1. Thus every absorption produces an excited atom with one unit more of projected 
angular momentum just it had before the transition. On the other hand, the emission 
between the 5 2P1/2 and 5 2S1/2 level occur with only the restriction mf = -1, 0, and 1. The 
net result is a pumping of the atoms in the 5 S Zeeman levels toward the highest value of 
mf. 
 
(a) Circularly polarized light 

On the optical rail immediately after the lamp there is a Plano-convex lenses which 
serves to minimize spherical aberration and provide a more coherent incident beam. The 
focused beam then passes through an interference filter to isolate the 795 nm emission. 
The photons that are allowed past this filter then pass through a linear polarizer and then 
a quarter wave plate. The quarter wave plate is necessary to achieve a circularly polarized 
emission. For optical pumping to be achieved, an atom must absorb radiation resonant to 
that atom. Circularly polarized 795 nm light is a simple way to satisfy this criterion. 
 
(b) Rb chamber 

At the heart of our optical rail lies our Rubidium chamber. In this chamber, we have 
Rb atoms and neon atoms. Neon is used specifically because it has no spin and as a noble 
gas it makes an excellent buffer. Due to the presence of this buffer gas, collisions 
between the rubidium atoms with each other or with the neon, occur frequently. If the 
buffer gas was removed, the rubidium atoms would frequently collide with the chamber 
walls and optical pumping would be unobtainable. Additionally, collisions between the 
neon and rubidium atoms increase the number of excited rubidium atoms. 
 
(c) DC magnetic field 

Our Rb-Ne chamber is centered between three Helmholtz coils. In place is a 
horizontal field which acts as a static vertical magnetic field adjustment, and two vertical 
coils which provide horizontal magnetic fields. One of these vertical coils is used to 
provide a variable “sweeping field” while the other is used to provide a static horizontal 
field. Helmholtz coils are used to provide homogenous magnetic fields so it is not 
surprising that both vertical coils are wound among a common core although they are 
insulated from each other. Since there are three Helmholtz coils, using a common core for 
the two vertical coils reduces any inhomogeneity that may result from having to align 
another separate vertical coil. On opposite sides of the chamber, parallel to the optical 
path, there are two coils that provide an adjustable RF magnetic field. Situated inside the 
chamber is an adjustable oven which was usually set to 50°C. 
 
(d) Detector 

The circularly polarized radiation then enters the rubidium chamber where it radiates 
in all directions. The photons which reach the inside of the chamber are absorbed by the 
atoms, while the remaining intensity is emitted through the end of the chamber opposite 
the incident beam. This is an important consideration because when optical pumping is 
achieved there will be maximum transmission and minimal absorption. When transitions 



between Zeeman levels occur, they are observable as the photon transmittance intensity 
decreases as absorption increases. Although the rubidium atoms emit photons as they 
decay to lower energy states, the photons are emitted in all directions so a negligible 
amount reaches the photo-detector. 

If optical pumping is achieved and a weak magnetic field is present, excited atoms 
will decay to their ground state and spontaneously emit photons. At the end of the optical 
rail opposite the incident beam, the photons emitted from within the chamber are focused 
into a coherent beam by a second Plano-convex lens.  

Before our beam passed through the interference filter, it is slightly pinkish in 
color. However, only 795nm radiation is allowed past the filter which means that our 
beam is no longer visible since 795nm is in the near-infrared region of the 
electromagnetic spectrum. The distance between the first Plano-convex lens and the 
rubidium lamp is adjusted until optimal coherence of the beam is achieved. This distance 
is measured and used to separate the detector from the second Plano-convex lens since 
visual adjustments are not possible as visible wavelengths are not present. Further 
precision can be achieved, however, by monitoring the detector for maximum output as 
the distance to the Plano-convex lens is adjusted. The heart of the detector is a simple 
photodiode which allows us to measures the relative magnitude of the radiation that is 
emitted by the excited atoms in the Rb chamber. Sensitivity settings are located on the 
detector’s housing. 
 

 
 



Fig.1 Schematic diagram of the apparatus for a ribidium optical pumping 
experiment. 

 
 

 
 
Fig.2 The basic setup for the optical pumping. The direction of a magnetic field 

is the same as that of the propagation of the circularly-polarized light (+) 
with D1 line. An AC magnetic field with radio frequency (rf), which is 
applied along a direction perpendicular to the propagation of the light, is 
applied to drive transition within Zeeman levels. 

 
___________________________________________________________________ 
3. Level splitting due to the spin-orbit interaction 

Alkali atoms possess an electron configuration that can be exploited to simplify them 
for angular momentum coupling and spectral analysis. Each of the alkali metals has an 
electronic configuration of a noble gas plus one valence electron. In the case of Rubidium, 
this is 
 

1s22s22p63s23p63d104s24p65s1 

 
or [Kr]5s1. 

 
87Rb 
 
(Z = 37, N = 50) 

Proton number = 37 
Atomic mass = 85.4678 
Nuclear spin I = 3/2 

 
The electron configuration of Rb is represented by 
 

1s22s22p63s23p63d104s24p65s1 

 
There is one electron outside the closed shell.  
For n=5, we have lmax = n - 1 = 5 – 1 = 4 
 

l = 4 (g), 3(f), 2(d), 1(p) and 0(s). 



 
(a) Spin-orbit coupling 
n = 5 
 
l = 1 and s = 1/2 
 

D1 x D1/2 = D3/2 +D1/2,  

 
leading to j = 3/2 and j = 1/2. 
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Fig.3 Level diagram of 87Rb with the nuclear spin I = 3/2. The splittings are not 

to scale. D1 line: (5 2S1/2 → 5 2P1/2).  = 794.978851156(23) nm. D2 line: 
(5 2S1/2 → 5 2P3/2).  = 780.241209686(13) nm. D1: 377.107463380 THz 
(794.978851156 nm). 

 
4 Energy level splitting due to the hyperfine interaction  
 
Nuclear spin 3/2 for 87Rb 
 
(1) j = 3/2 (5 2/3

2P ) and I=3/2 

 
D3/2 x D3/2 = D3 +D2 + D1 + D0 

 
leading to the magnetic substates 
 

F = 3 (mf = -3, -2, -1, 0, 1, 2, 3), F = 2 (mf = -2, -1, 0, 1, 2) 
 

F = 1 (mf = -1, 0, 1), `  F = 0 (mf = 0). 
 
(2) j = 1/2. (5 2/1

2P ) and I=3/2 

 
D3/2 x D1/2 = D2 +D1 

 
leading to the magnetic substates 



 
F = 2 (mf = 2, 1, 0, -1, -2),  F = 1 (mf =1, 0, -1). 

 
(3) j = 1/2 (5 2/1

2S ) and I=3/2. 

 
D3/2 x D1/2 = D2 +D1 

 
leading to the magnetic substates 
 

F = 2 (mf = 2, 1, 0, -1, -2),  F = 1 (mf =1, 0, -1). 
 
The energy level diagrams of 87Rb is schematically shown below. 
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Fig.4 Schematic energy level diagram of 87Rb in the presence of spin-orbit 

interaction, hyperfine interaction, and magnetic fied (Zeeman splitting). 
Note that the Landé g-factor for F =1 is negative, implying that the highest 
energy level is mf = -1 for F = 1. D1 line ( = 794.978851156 nm). 
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Fig.5 Splitting of energy level 5 2S1/2 due to the hyperfine interaction. 1 = 

4.271677 GHz, 2 = 2.563006 GHz, and  = 6.834682610904324 GHz. 
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Fig.6 Splitting of energy level 5 2P1/2 due to the hyperfine interaction.  1 = 

0.50905 GHz, 2 = 0.30543 GHz, and  = 0.8145 GHz. 
 
5. Absorption and emission of light due to the interaction with electric-dipole 

moment 
We now consider the transition probability for the absorption and emission of the 

light due to the interaction with electric dipole moments. As will be shown in the 
Appendix (classical and quantum theory of radiation), the absorption cross section is 
obtained as 
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where Ei and Ef are the enegy levels of the system in the initial state and the final state, 
respectively.  is the polarization vector, and p̂  is the quantum mechanical momentum. 
Here we assume that 
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where )2/(  . This approximation is valid for  » ratom (atomic dimension). Then 
we have 
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For simplicity we assume that 
 

xeε    ( zen  ; the propagating direction).  

 
We need to calculate 
 

ixf p  ˆ . 
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With the electric dipole approximation, we have 
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In atomic physics, we define oscillator strength ffi  
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Thomas-Reiche-Kuhn sum rule 
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The Einstein's A and B coefficient:  
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Fig.7 The Einstein's A and B coefficients for the absorption, stimulated emission, 

and spontaneous emission. 
 
6. Selection rule for the absorption and emission 

We now calculate the matrix element 
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is a vector. Then we have 
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Spherical tensor of rank 1 is defined as 
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From Wigner-Eckart theorem 
 

FqF mFTmF ,ˆ',' )1( ≠ 0 

 
for qmm FF '  and for 1,,1'  FFFF , where q = -1, 0, 1.  
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Fig.8 Linearly polalized light and circularly polarized lights. 
 
The linearly polarized wave (-polarization) is expressed by 
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The circularly polarized (counter clockwise, +-polarization) in the x-y plane, is 
expressed by 
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We use the expression of )(t

E  as 

 
ti

yx ei
E

t 


 )(
22

)( 0 eeE  

 
The circularly polarized (clockwise, - polarization) in the x-y plane  
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Then the interaction between the electric field and atom is 
 

titi ez
yix

e
yixE

e

eH





 







 

]ˆ
2

)ˆˆ(

2

)ˆˆ(
[

2
)(

)ˆˆˆ(

0

int ErErEr

 

 
The matrix elements are given by 
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corresponding to the contributions from the + polarization, -polarization, and -
polarization, respectively. 
 
7 Wigner-Eckart theorem 

The electric dipole moment of the hyperfine structure between the initial state 

ii mF , and the final state ff mF ,  is represented by 

 

ii
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qff mFTmFe ,, )( , 

 
where the polarization state of the light is expressed by qk ,1 , where the angular 

momentum is   and q = -1, 0, and 1. According to the Wigner-Eckart theorem,  
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is proportional to the Clebsch-Gordan coefficient.  
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where a and a, represent any additional quantum numbers required to specify the state. 

i
k FTF ,ˆ,' )(   is called the reduced matrix element which is independent of q, mf, and 

mi. The numerical value of the Clebsch-Gordan coefficient is zero unless the triangular 
condition 
 

F = Fi + k, Fi+ k-1, ..., |Fi-k|,  
 
is satisfied. Note that  
 

kFkFkFkF iiii
DDDDD   ....1 . 

 
The Clebsch-Gordan coefficient  is also zero unless the condition  
 

qmm if  , 

 
is satisfied. These two conditions ensure essentially the conservation of the total angular 
momentum of the system and of the component of this angular momentum on the axis of 
quantization. The transition probability is proportional to the square of the magnitude of 
the matrix element of the electric dipole moment, or is proportional to the absolute value 
of the Clebsch-Gordan coefficients. 
 
8 Intrinsic angular momentum of photon (+-polarization) 

The emission of radiation 5 2P1/2 → 5 2S1/2 the angular momentum of the atom 
decreases by one unit. The principle of conservation of angular momentum therefore 
requires that the emitted photon shall have an intrinsic angular momentum of the angular 
momentum The emitted photon shall have an intrinsic angular momentum of  . 
Similarly in the decay of the  

Whether m changes by +1, -1, or 0 depends on the nature of the photon. If the applied 
magnetic field is parallel to the direction of propagation of the photon, then a right-
circularly polarized photon will always induce transition that have m = 1. Left-
circularly-polarized light produces m = -1. The same thing is true for emission. An 
electron can fall from the 5 2P1/2 level to 2S1/2 level and emit a photon with right or left 
circular polarization, depending on whether m is +1 or -1. 
 

The electric-dipole selection for circularly polarized light require either  



 
mf = mi + 1, or mf = mi - 1. 

 
where mf and mi are the final and initial angular momentum-projection numbers along 
the direction of propagation of the light. The Hamiltonian for the circularly-polarized 
light as a spherical tensor operator. We use the Wigner-Eckart theorem to decide which 
transition probabilities are zero and which are not. Whether mf changes by +1, -1, or 0 
depends on the nature of the photon. If the applied magnetic field is parallel to the 
direction of propagation of the photon, then a right-circularly polarized photon will 
always induce transition that have mf = 1.  
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Fig.9 Transition between the energy levels of 87Rb resulting from the effects of 

spin-orbit interaction, hyperfine interaction, and Zeeman effect (in the 
presence of magnetic field), caused by the circularly +-polarization (D1 
lines). The transition processes are illustrated schematically in the figure, 
which depicts the histories of several atoms which are initially in various 
magnetic substates of a lower electronic state. Under irradiation by 
circulary polarized light, they make upward transitions to magnetic 
substates of an upper electronic state subject to the restriction mf = 1. 

 
9 Fi = 1 and k = 1 (+-polarization) 



 
D1D1 = D2 + D1 + D0 
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Fig.10 F = 2, mf = -2, -1, 0, 1 and 2. Fi = 1 (mi = -1, 0, 1) 
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________________________________________________________________ 
(ii) F = 1   (Fi = 1) 
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Fig.11 F = 1, mf = -1, 0, and 1. Fi = 1 (mi = -1, 0, and 2) 
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________________________________________________________________________ 
(iii) F = 0   (Fi = 1) 
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Fig.12 F = 0, mf = 0. Fi = 1 (mi = -1, 0, 1) 
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10. Fi = 2 and k = 1 (+-polarization) 
 

D2D1 = D3 + D2 + D1 

 
(i) F = 3  (Fi = 2) 
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2,-1>1,-1>0,-1>-1,-1>-2,-1>

 
Fig.13 F = 3, mf = -3, -2, -1, 0, 1, 2, and 3. Fi = 2 (mi = -2, -1, 0, 1, 2) 
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(ii) F = 2 (Fi = 2) 
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Fig.14 F = 2, mf = -2, -1, 0, 1, and 2. Fi = 2 (mi = -2, -1, 0, 1, 2) 
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(vi) F = 1   (Fi = 2) 
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Fig.15 F = 1, mf = -1, 0, and 1. Fi = 2 (mi = -2, -1, 0, 1, 2) 
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11. Clebsch-Gordan coefficients 
The Clebsh-Gordan coefficients are shown in the following figures. The transition 

prbability for each process is proportional to the square of the Clebsch-Gordan coefficient. 
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Fig.16 Clebsch-Gordon coefficients for the transition between F = 2 and Fi = 1. 

The square of the Clebsch-Gordan coefficient corresponds to the 
probability. 
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Fig.17 Clebsch-Gordon coefficients for the transition between F = 1 and Fi = 1. 

The square of the Clebsch-Gordan coefficient corresponds to the 
probability. 
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Fig.18 Clebsch-Gordon coefficients for the transition between F = 2 and Fi = 2. 

The square of the Clebsch-Gordan coefficient corresponds to the 
probability. 
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Fig.19 Clebsch-Gordon coefficients for the transition between F = 1 and Fi = 2. 

The square of the Clebsch-Gordan coefficient corresponds to the 
probability. 

 
12 Optical pumping: transition from F = 2 to F = 1 through absorption 

of light D1 with + polarization 
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Fig.20 Selection rule for the transition between the Zeeman levels for F = 2 of 5 
2S1/2 and the Zeeman levels for F = 2 of 5 2P1/2. mf = 1 for the + 

circularly polarization light. The population of the state 2,2  fmF  of 

5 2P1/2 becomes maximum. 
 
 
13 Optical pumping: transition from F = 1 to F = 1 through absorption 

of light D1 with + polarization 
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Fig.21 Selection rule for the transition between the Zeeman levels for F = 1 of 5 

2S1/2 and the Zeeman levels for F = 1 of 5 2P1/2. mf = 1 for the + 

circularly polarization light. The population of the state 1,1  fmF  of 

5 2P1/2 becomes maximum. 
 
________________________________________________________________________ 
14. The transition of F = 1 and F = 1. 
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Fig.22 Transition between F = 1 and F = 1. Population of the state mf = 1 is 
increased by the optical pumping. 
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Fig.23 Transition between F = 2 and F = 2. 
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Fig.24 Transition between F = 2 and F = 1. 
 



15. Pumping process (simple model) 
Before pumping, the atoms are divided evenly between the energy levels A and B. 

 
 

 
 
Fig.25 (a) 
 
Suppose we irradiate a sample of these atoms with alight beam which the spectral line 
BC has been filtered. The beam contains photons that can excite atoms in the level A but 
not in level B. Atoms excited out of A absorb energy and rise to C. They will remain 
there for a short time (as little as a ten millionth of a second) and then emit energy, 
dropping back either to the A or B state. After absorbing photons from a beam of light 
(circularly polarized) and being raised to energy level C, atoms drop back in equal 
numbers to energy levels A and B. 
 
 



 
 
Fig.25 (b) and (c) 



 
 
Fig.25 (d) and (e) 



 
 
Fig.25 (f) and (g) 
 
As the process continues all atoms are in the level B. The is no atom in the level A. In 
other words, given enough time, every atom must end up in the B state and the material is 
then completely pumped. 
When an rf magnetic field is applied, electron precesses and acts as partially open shutter. 
If some atoms are suddenly returned to the A state, light will again be absorbed, and the 
brightness of the transmitted beam will drop sharply. Population of the state mf = 2 is 
increased by the optical pumping. 
 

 
 
Fig.25 (h) 
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16. Linear Zeeman effect in a weak magnetic field 

In a weak magnetic field limit, the spacing of the Zeeman splitting between the m 
levels of a given F state. In this case, the Hamiltonian (spin-orbit, hyperfine interaction, 



Zeeman (magnetic field)) is diagonal in the fmF ,  basis. However, in the strong 

magnetic field limit, the spacing between the levels is not equal. Here we show the 
simple model for the Zeeman splitting in the weak magnetic field limit. 
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Fig.26 Schematic energy levels of 87Rb (I = 3/2) in the presence of spin-orbit 

interaction, hyperfine interaction, and the magnetic field. 
 
 
If the magnetic field is relatively weak, the Zeeman energy is given by a simply 
expression 
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in the state fmF ,  with mf = F, F-1, ...,  and -F. The spacing between the Zeeman levels 

in the presence of a magnetic field along the z axis,  is independent of mf,  
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When gF = 1/2 
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= 0.69981 (MHz/Oe). 

 
The linear relationship between energy levels and magnetic field only holds for small 
magnetic fields. When the Zeeman splitting grows relative to the hyperfine energy 
difference one has to take into account the quantum mixing of the states. 
 
(a) Landé g-factor gJ 
 

...321  LLLL , ...321  SSSS . 

 
The total angular momentum J is defined by 
 

SLJ  , 
 
where L is the orbital angular momentum L and S is the spin angular momentum. The 
total magnetic moment  is given by 
 

)2( SLμ  B , 
 
where B is the Bohr magneton. The Landé g-factor is defined by 
 

Jμ BJJ g  , 

 
Suppose that 
 

 LJL a  and  SJS b 
 
where a and b are constants, and the vectors S  and L  are perpendicular to J. 

Here we have the relation 1 ba , and 0  SL . The values of a and b are 
determined as follows. 
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using the average in quantum mechanics. The total magnetic moment  is 
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(b) Landé g-factor gF 

The total angular momentum F is defined by 
 

IJF  . 
 where I is the nuclear spin. The total magnetic moment  is given by 
 

)( IJIJμ
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N
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where INIg   is the nuclear magnetic moment. Note that gJ>0 and gI>0. The direction of 

the nuclear magnetic moment is anti-parallel to that of the electron magnetic moments. 
Suppose that 
 

 JFJ a  and  IFI b 
 
where a and b are constants, and the vectors J  and I  are perpendicular to F. Here we 

have the relation 1 ba , and 0  IJ . The values of a and b are determined as 
follows. 
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Here we neglect the contribution from the magnetic moment from the nuclear spin. Thus 
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17 Quadratic Zeeman effect 
 
17.1 Clebsch-GFordan coefficients 
(a) spin-orbit interaction (j = 1/2, l = 0, s = 1/2) 
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(b) spin-orbit + hyperfine interaction 
 
F = 2 (j = 1/2, l = 0, s = 1/2; I = 3/2) 
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Fig.27 
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_______________________________________________________________ 
F = 1 (j = 1/2, l = 0, s = 1/2; I = 3/2) 
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Fig.28 
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18. Hamiltonian 

We need to calculate the matrix elements of the Hamiltonian defined by 
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hfE = 6.834682610 GHz for 87Rb 
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18 Calculation of matrix elements for the Hamiltonian 
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19 The matrix of Hamiltonian under the basis of 2, fmF  
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Then we get 
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Here we note that 
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The final form of the eigenvalue problem is as follows. 
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20. Eigenvalue problem 

E=A11 is the eigenvalue of Hamiltonian with the eigenvalue; eigenstate: 

2,2  fmF . 
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E=A58 is the eigenvalue of Hamiltonian with the eigenvalue; eigenstate: 2,2  fmF . 
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The basis of {  1,2 FmF  and  1,1 fmF }; 
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The basis of {  0,2 fmF  and  0,1 fmF }; 

 

























22

22
75747574

35343534

2 AAAA

AAAA

Hsubset . 

 
The eigenvalues are 
 

4
22

222
21

)(
8

)(

4

5

)4)(2(
4

1

BO
A

Bgg
A

ABggA

NIBJ

NIBJ











 

 
and 
 

4
22

222
22

)(
8

)(

4

3

)4)(2(
4

1

BO
A

Bgg
A

ABggA

NIBJ

NIBJ
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The eigenvalues are obtained as 
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Fig.29 In the presence of a strong magnetic field, there occur mixed states. (i) 

Mixed states of 1,2  fmF  and 1,1  fmF . (ii) Mixed states of 



0,2  fmF and 0,1  fmF . (iii) Mixed state of 1,2  fmF  

and 1,1  fmF . 

 
21. Simulation for the quadratic Zeeman effect 

The nuclear magneton N is 
 

241005078324.5 N  emu (erg/Oe). 

 
The Bohr magneton B is 
 

211027400915.9 B  emu. 
 
The mass of proton is 
 

mp = 1.6726231 x 10-27 kg 
 
The mass of electron is 
 

me = 9.1093897 x 10-31 kg 
 
The nucleus has a magnetic moment I that is related to the nuclear spin I by 
 

Iμ NII g   

 
We assume that gI = 1. 
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Fig.30 The magnetic field dependence of the separation of the Zeeman levels, f 

[MHz]. (i) 2,2  fmF  and 1,2  fmF . (ii) 1,2  fmF  and 

0,2  fmF . (iii) 0,2  fmF  and 1,2  fmF . (iv) 

1,2  fmF  and 2,2  fmF . (v) 1,1  fmF  and 

0,1  fmF  (blue dashed line). (vi) 0,1  fmF  and 1,1  fmF  

(red dashed line). gI = 1 (assumed). 
 

5.02 5.04 5.06 5.08 5.10
B Oe

3.52

3.54

3.56

f MHz

 
 
Fig.31 The separation of the Zeeman levels, f [MHz] as a function of B around B 

= 5.0 Oe. gI = 1 (assumed). 
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Fig.32 The separation of the Zeeman levels, f [MHz] as a function of B around B 
= 6.0 Oe. gI = 1 (assumed). 
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Fig.33 The separation of the Zeeman levels [MHz] as a function of B around B = 

7.5 Oe. gI = 1 (assumed). 
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Fig.34 The separation of the Zeeman levels, f [MHz] as a function of B around B 

= 10.0 Oe. gI = 1 (assumed). 
 
22. Energy levels of 87Rb (simulation) 

We calculate the Zeeman splitting in 87Rb from the theory. 
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Fig.35 Energy levels of 87Rb. gI = 1 (assumed). B = 0 - 1.0 T. 
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Fig.36 Energy levels of 87Rb. gI = 1 (assumed). B = 0 - 100 T. Paschen-Back 

effect. 
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Fig.37 Energy levels of 87Rb around 5 2P1/2.  gI = 1 (assumed). B = 0 - 10 Oe.  
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Fig.38 Energy levels of 87Rb around 5 2S1/2. gI = 1 (assumed). B = 0 - 10 Oe.  
 
 
23. Frequency vs Earth magnetic field (at Binghamton): B = 0.3 Oe. 

The frequencies (MHz) of the six separations between adjacent Zeeman levels for B ≈ 
0.3 Oe at Binghamton, NY. 
 
Table 1 
 
B (Oe) 



0.3 0.209753 0.209766 0.209779 0.209792 0.210236 0.210223
0.31 0.216744 0.216758 0.216771 0.216785 0.217244 0.21723
0.32 0.223735 0.22375 0.223764 0.223779 0.224252 0.224237
0.33 0.230726 0.230742 0.230757 0.230773 0.23126 0.231245
0.34 0.237717 0.237734 0.23775 0.237767 0.238268 0.238252
0.35 0.244708 0.244725 0.244743 0.244761 0.245277 0.245259
0.36 0.251699 0.251717 0.251736 0.251754 0.252285 0.252266
0.37 0.25869 0.258709 0.258729 0.258748 0.259293 0.259273
0.38 0.26568 0.265701 0.265722 0.265742 0.266301 0.26628
0.39 0.272671 0.272693 0.272715 0.272737 0.273309 0.273287
0.4 0.279662 0.279685 0.279708 0.279731 0.280318 0.280295
0.41 0.286652 0.286677 0.286701 0.286725 0.287326 0.287302
0.42 0.293643 0.293668 0.293694 0.293719 0.294334 0.294309
0.43 0.300634 0.30066 0.300687 0.300713 0.301342 0.301316
0.44 0.307624 0.307652 0.30768 0.307708 0.308351 0.308323
0.45 0.314615 0.314644 0.314673 0.314702 0.315359 0.31533
0.46 0.321605 0.321636 0.321666 0.321696 0.322367 0.322337
0.47 0.328596 0.328627 0.328659 0.328691 0.329375 0.329344
0.48 0.335586 0.335619 0.335652 0.335685 0.336384 0.336351
0.49 0.342576 0.342611 0.342645 0.34268 0.343392 0.343358
0.5 0.349567 0.349602 0.349638 0.349674 0.3504 0.350365 
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APPENDIX 
A1. Experimental Results obtained by David Boyle (Senior Lab, 

Binghamton University, 2006) 
 
(a) Low field Zeeman effect 

To determine the gF-factors of each Rubidium isotope, it was necessary to acquire 
resonance transition data. Using the geometry of the coils, the value of the Bohr 
magneton and the measured frequency, a plot of magnetic field as a function of current 
could be used to determine the gF-factors. The RF coils were activated at 10 kHz 
intervals between 100 kHz and 200 kHz. At each of these frequencies, the sweep field 
was manually adjusted to center on one resonance peak for each isotope and the current 
generating the field was recorded.  Figure 9 depicts the zero field peak along with the 
resonance peaks for the two Rubidium isotopes.   
 

 
 

Fig. A-1 – Zero field and resonance transitions for Rb87 and Rb85 at 120 ± 5 kHz 
 
(c) Quadratic Zeeman effect 

The perturbation applied was larger than the linear Zeeman effect, and the splitting of 
the 2F + 1 magnetic levels was no longer linear in the magnetic field (hence the spacing 
between the levels was no longer equal). 2F resonances (with ΔF = 0, Δmf = ±1) could 
now be observed for each atom, which translated to six for 87Rb and ten for 85Rb. To 
observe the resonances, the intensity of transmitted light and magnetic field current were 
again monitored on an oscilloscope. 87Rb resonances were investigated in the frequency 
range of 4.70 ± 0.01 MHz to 5.30 ± 0.02 MHz in 0.1 MHz increments.  To find the 
grouping of resonances at each frequency, the sweep field was first used to center the 
magnetic field intensity at the zero field peak (which is independent of RF frequency). 
The main field was then increased until the first resonance peak was observed, then the 
sweep field would be slowly increased to trace out the changing transmittance on the 
oscilloscope. A resonance plot for 87Rb is shown in Fig. A-2. The transitions can be 
represented in Dirac notation as  
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Fig.A-2 Resonance transitions for 87Rb under the quadratic Zeeman effect. 
 
85Rb resonances were investigated in the frequency range of 3.30 ± 0.02 MHz to 3.70 ± 
0.02 MHz in 0.1 MHz increments (Fig. A-3). The same procedure was followed as for 
87Rb and the resulting trace can be seen in Fig. The small peaks between the resonance 
peaks for both isotopes correspond to double quantum transitions. 
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Fig.A-3 Resonance transitions for 85Rb under the quadratic Zeeman effect. 
 
______________________________________________________________________ 
A2  Interaction with radiation field 
A2.1. Hamiltonian 

The classical radiation field ( ˆ p : operator of the system, quantum mechanical 
operator) 
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where e is the charge of electron e = e|. We note that 
 

   

 

 

 ArrA

ArArrA

rArA

rArArAppA









)()(
2

)()()(

)()(

)()()(ˆˆ









ii

ii

ii

ii









 

 
Thus 
 

 







 ApAAp

ic

e

c

e

c

e

m
H


ˆ

2
ˆ

2

1ˆ 2
2

2
2  

 
Here we use the Coulomb gauge A  0. Then 
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A2.2.  Classical radiation field 

Maxwell's equation 
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where A is a vector potential and  is a scalar potential. 
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Coulomb gauge 

We start any pair of A and . Using the Gauge transformation 
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we have a pair of A'and ', where  
 

A'  0 
 
or 
 

 (A   )  0  
 



or 
 

2  A  
 
This is a Poisson equation with known value of  A . The solution of  is uniquely 
determined. Therefore we can always choose the Coulomb gauge with A'  0. Here 
we assume that  
 

A  0 (Coulomb gauge) 
 
In the vacuum, we have 
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From the first equation, we have  = 0 
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The solution is 
 

A  2A0 cos k r  t ' 
 
where 
 

2  k2c2  or   ck  (Dispersion relation) 
 
Since 
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we have 
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Fig.A3 n: unit vector of the propagating wavevector and  is the polarization 

vector.  
 
A must lie in a plane perpendicular to the direction of the propagation vector. 
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where ˆ n  is the unit vector defined by kkn / . The electromagnetic energy is 
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The time average of  over a period T (= 2/) is 
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The Poynting vector S is defined by 



 

 

 

  tn
c

tn
cc

c






22cos1
2

1
ˆ4

sin)ˆˆ(2ˆ2

4

2

2
2

0

2
00







 



rkA

rkAA

BES

 

 
The time average of S over a period T (= 2/) is 
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Fig.A4  Poynting vector. 
 
In summary we have 
 
Energy density u; 
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The intensity s; the energy flow per unit area per unit time. 
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The flux of photons (the number of photons per unit area per unit time) 
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A2.3 Application  interaction with the classical radiation field 
 
Classical radiation field 



 
 electric or magnetic field derivable from a classical radiation field as opposed to 

quantized field 
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(e > 0)  We use q=-|e| (|e| > 0), which is justified if 
 

A  0. 
 
We work with a monochromatic field of the plane wave 
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Fig.A5 The direction of the vector potential A0 which is the same as that of the 

polarization vector ε . 
 
Then A can be rewritten as 
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A2.4  Stimulated emission and absorption 

Using the matrix element given by 
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we have the Fermi's golden rule, 
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Fig.A6 Absorption from the ground state (Ei) to the excited state (Ef) in a system 

with two-levels. 
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Fig.A7 Stimulated emission from the excited state to the ground state in a system 

with two-levels. 
____________________________________________________________________ 
A.3 Clebsch-Gordan coefficients using Mathematica 

The Clebsch-Gordan coefficients can be easily evaluated using the Mathematica 
program. We show the example for the case of j1=1 and j2 = 1. Since D1 x D1 = D2 + D1 + 
D0, we have the three cases; j = 2 (m = -2, -1, 0, 1, and 2), j = 1 (m = -1, 0, and 1), and j = 
0 (m = 0).  



ü

 j1=1 and j2=1

Clear"Global`";

CGj_, m_, j1_, j2_ :

SumClebschGordanj1, m1, j2, m  m1, j, m aj1 , m1
bj2, m  m1, m1, j1, j1

CG2, 2, 1, 1
ClebschGordan::phy : ThreeJSymbol1, -1, 1, 3, 2, -2 is not physical. à

ClebschGordan::phy : ThreeJSymbol1, 0, 1, 2, 2, -2 is not physical. à

a1, 1 b1, 1

CG2, 1, 1, 1
ClebschGordan::phy : ThreeJSymbol1, -1, 1, 2, 2, -1 is not physical. à

a1, 1 b1, 0
2


a1, 0 b1, 1

2

CG2, 0, 1, 1
a1, 1 b1, 1

6


2

3
a1, 0 b1, 0  a1, 1 b1, 1

6

CG2, 1, 1, 1
ClebschGordan::phy : ThreeJSymbol1, 1, 1, -2, 2, 1 is not physical. à

a1, 0 b1, 1
2


a1, 1 b1, 0

2

CG2, 2, 1, 1
ClebschGordan::phy : ThreeJSymbol1, 0, 1, -2, 2, 2 is not physical. à

ClebschGordan::phy : ThreeJSymbol1, 1, 1, -3, 2, 2 is not physical. à

a1, 1 b1, 1

CG1, 1, 1, 1
ClebschGordan::phy : ThreeJSymbol1, -1, 1, 2, 1, -1 is not physical. à

a1, 1 b1, 0
2


a1, 0 b1, 1

2

CG1, 1, 1, 1
ClebschGordan::phy : ThreeJSymbol1, 1, 1, -2, 1, 1 is not physical. à

a1, 0 b1, 1
2


a1, 1 b1, 0

2

CG0, 0, 1, 1
a1, 1 b1, 1

3


a1, 0 b1, 0
3


a1, 1 b1, 1
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