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1. Classification of ternary GICs 

1.1 Overview 

Magnetic ternary GICs offer an opportunity to synthesize exotic compounds and to 

explore their novel physical properties. In these compounds two distinct guest species are 

intercalated into the graphite galleries between the host graphite layers. These two 

species may be present in the same gallery or may be isolated from one and other in 

different galleries. Magnetic ternary GICs not only enhance the versatility of magnetic 

binary GICs by adding another degree of freedom to the design of these compounds, but 

also offer wide possibilities for new route of their syntheses. Of our particular interest 

among the magnetic ternary GICs are the random mixture graphite intercalation 

compounds (RMGICs) and magnetic graphite intercalation compounds (GBICs). 

 

1.2 Magnetic RMGICs 

The magnetic RMGICs provide fascinating topics in magnetic phase transitions of 2D 

*This review was originally written for the book published from Oxford University Press. [T. Enoki, M. 
Suzuki, and M. Endo, Graphite Intercalation Compounds and Applications (Oxford University Press, 
Oxford, 2003).] Because of the limited space, this part of review was removed from the book. Note that 
the progress after 2001 is not described in this review. The recent progress in the spin glass phase and 
the reentrant spin glass phase in CucCo1-cCl2-FeCl3 GBIC and stage-2 CucCo1-cCl2 GIC will be 
presented elsewhere. 
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random spin systems, including (i) spin glass phase and reentrant spin glass phase, (ii) 

cluster glass phase, (iii) random field effect, (iv) percolation behavior, and (v) an oblique 

phase arising from competing spin anisotropy between Ising and XY spin symmetry. The 

combination of spin frustration and randomness in RMGICs gives rise to a nonergodic 

many valley structure in free energy, leading to degenerate ground states. No single spin 

configuration is uniquely favored by all the interactions, suggesting that the magnetic 

ordered phase is intrinsically different from conventional forms of spin order. As far as 

we know, the magnetic properties of the following RMGICs have been reported so far: 

CocMg1-cCl2 GICs (2D percolation system with a percolation threshold cp = 0.50) 

(Nicholls, J.T., 1990b, Suzuki, I.S., 1993b, 1999a), CocMn1-cCl2 GICs (Suzuki, I.S., 

1991), NicMncCl2 GICs (Suzuki, I.S., 1992), and CucCo1-cCl2 GICs (Suzuki, I.S., 1994b, 

1999b) (2D spin glass with competing ferromagnetic and antiferromagnetic interactions), 

and CocNi1-cCl2 GICs (2D ferromagnetic random mixture with competing spin 

anisotropy) (Yeh, M. 1990, Suzuki, M., 1992). There are two methods for preparing 

RMGICs (CocMg1-cCl2 GIC as an example): (i) intercalation of bulk random system 

CocMg1-cCl2 into single crystals of kish graphite (SCKG) or HOPG in the presence of 

chlorine gas (740 Torr) (Suzuki, I.S., 1993b, 1999a), and (ii) intercalation of mixture of 

powdered CoCl2 and MgCl2 in the ratio of c: 1-c into SCKG and HOPG in a chlorine gas 

of three atmosphere (Nicholls, J.T., 1990b). 

 

1.3 Magnetic GBICs 

The magnetic GBICs offer possibilities for the formation of superlattices such as two 

different magnetic intercalate layers separated by a single graphite layer. A typical GBIC 

has a c-axis stacking sequence of -G-I1-G-I2-G-I1-G-I2-G-..., where two different 

intercalate layers (I1 and I2) alternate with a single graphite layer (G). This compound 

can be synthesized by a sequential intercalation. Stage-2 GICs are made with intercalant 

I1, and the second intercalant I2 is intercalated into the empty graphite galleries of stage-2 
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GICs. Because each layer is atomically flat with long range correlations in the c and a 

axis directions, and there is no interdiffusion between planes, GBICs form an ideal 

heterostructure. The magnetic properties of magnetic GBICs have attracted attention, 

partly because of the crossover behavior from two-dimensional (2D) to three-dimensional 

(3D). 

As far as we know, the first GBIC was synthesized by Niess and Stump (Niess, R., 

1978), who sequentially intercalated TlBr3 and TlCl3. In early 1980’s several kinds of 

magnetic GBICs have been synthesized. Suzuki et al. (Suzuki, M., 1984b) have prepared 

a CoCl2-FeCl3 GBIC by a sequential intercalation of FeCl3 into stage-2 CoCl2 GIC. 

Hérold et al. (Hérold, A., 1985) have prepared several kinds of GBICs by a sequential 

intercalation of AlCl3 and GaCl3 into stage-2 CoCl2 GIC and stage-2 FeCl3 GIC, and by 

the sequential intercalation of FeCl3 into a stage-2 InCl3 GIC. The magnetic GBICs 

which have been synthesized since then are NiCl2-FeCl3 GBIC, FeCl3-YCl3 GBIC, 

MnCl2-AlCl3 GBIC, CrCl3-MnCl2 GBIC, CrCl3-CdCl2 GBIC, and CrCl3-AlCl3 GBIC, 

CocNi1-cCl2-FeCl3 GBIC, CocMn1-cCl2-FeCl3 GBIC, and CucCo1-cCl2-FeCl3 GBIC. 

Among them, there have been several studies on the magnetic properties of magnetic 

GBICs: CoCl2-FeCl3 GBIC (Suzuki, M., 1984b, Hérold, A., 1985), CoCl2-GaCl3 GBIC 

(Rosenman, I., 1986), NiCl2-FeCl3 GBIC (Rancourt, D.G. 1988), CrCl3-NiCl2 GBIC 

(Rancourt, D.G., 1990), CrCl3-CoCl2 GBIC (Flandrois, S., 1994), CrCl3-CdCl2 GBIC 

(Chehab, S., 1991, 1992), CrCl3-MnCl2 GBIC (Chehab, S., 1991, 1992), CocNi1-cCl2-

FeCl3 GBICs (Suzuki, I.S., 1994a), CocMn1-cCl2-FeCl3 GBICs (Suzuki, I.S., 1995), and 

CucCo1-cCl2-FeCl3 GBICs (Suzuki, I.S., 1997, 2000).  

 

2. Stage-2 CocMg1-cCl2 GICs: Percolation systems 

2.1 Overview 

When one of the intercalants is magnetic and the other is nonmagnetic, RMGIC 

provides a model system for studying two-dimensional (2D) site-diluted random spin 
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systems. The interplanar exchange interactions between magnetic ions in different 

intercalate layers is much weaker than the intraplanar exchange interactions between 

magnetic ions in the same intercalate layer. Stage-2 CocMg1-cCl2 GICs are typical 

examples of 2D XY-like site-diluted random spin systems. In these compounds a part of 

Co2+ ions on the triangular lattice sites is replaced by nonmagnetic Mg2+ ions. It is 

theoretically predicted that the percolation threshold cp is equal to 0.5 for the 2D 

triangular lattice with nearest neighbor (N.N.) intraplanar exchange interaction. For c<cp 

there is no long range spin order at any temperature T. The point (T = 0 and c = cp) in the 

T-c plane is the multi-critical point where the thermally driven critical behavior (c = cp 

and T → 0) and the geometrically driven critical behavior (c → cp and T = 0) merge. 

There have been several publications on the magnetic phase transitions of stage-1 

CocMg1-cCl2 GICs and stage-2 CocMg1-cCl2 GICs. Nicholls and Dresselhaus (Nicholls, 

J.T., 1990b) have studied the effect of dilution with nonmagnetic ions on the magnetic 

phase transition in stage-1 CocMg1-cCl2 GICs. They have shown that the critical 

temperature Tc is extrapolated to zero at the critical concentration c = 0.65, which is 

larger than cp = 0.5. They have claimed that such a deviation of the critical concentration 

(c = 0.65) from cp = 0.5 is due to a possible 15% random distribution of voids inside the 

intercalate layers. Suzuki et al. (Suzuki, I.S., 1993b, 1994b) have studied the magnetic 

phase transitions of stage-2 CocMg1-cCl2 GICs. They have measured the temperature 

dependence of the dispersion χaa
'  only at f = 330 Hz: it exhibits a single peak at a 

temperature Tp . In spite of the fact that χaa
"  shows two peaks at critical temperatures Tcu  

and Tcl , the peak temperature Tp  was identified as a critical temperature (Tcl <Tp <Tcu ). 

They have found that the reduced critical temperature of stage-2 CocMg1-cCl2 GIC is 

almost the same as that of pristine CocMg1-cCl2 for c>0.7. The effect of the 

dimensionality on the dilution with Mg2+ ions becomes significant below c ≈ 0.7. The 

percolation threshold for stage-2 CocMg1-cCl2 GICs is close to that predicted for the 2D 

triangular lattice with N.N. exchange interaction (cp = 0.5). Suzuki and Suzuki (Suzuki, 
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I.S., 1999a) have studied the percolation and spin glass behavior of these compounds 

with 0.3≤c≤1 using SQUID AC magnetic susceptibility ( χaa
'  and χaa

" ) and SQUID DC 

magnetization. The critical temperature Tcl  decreases to zero at the percolation threshold 

cp = 0.5, while Tcu  above cp decreases with decreasing Co concentration and may be 

connected to a crossover temperature Tx below cp. A spin glass-like behavior is observed 

for c = 0.3 and 0.46.  

 

2.2  Scaling concept in percolation behavior 

Here we present a simple review on the phase transition of diluted ferromagnet with 

nearest-neighbor interactions on the regular lattice (Birgeneau, R.J., 1984, Stinchcombe, 

R.B., 1983). For simplicity we assume that the pure system (c = 1) undergoes an ordinary 

phase transition at Tc(c = 1). A part of the magnetic ions may be readily replaced by 

nonmagnetic ions. With increasing dilution the critical temperature Tc(c) decreases 

rapidly at c = cp (= 0.5), where cp is the site percolation concentration for the N.N. 

triangular lattice problem (Essam, J.W., 1972). For c<cp no phase transition can exist 

since the system breaks up into isolated finite clusters that cannot sustain long-range 

order. The mean size of the isolated finite clusters diverges as c approaches cp. For c just 

above cp in addition to the finite clusters analogous to the finite clusters below cp, there 

appears an infinite percolation cluster which provides linkage paths. The structure of this 

infinite percolation cluster becomes increasingly more ramified as c approaches cp 

(c>cp). Consequently, the 1D characteristics will become more and more pronounced. 

The existence of these 1D characteristics suggest that the thermal properties is similar to 

those of a 1D system. From this idea, a scaling theory has been developed for the 

percolation region which results in a correlation length ξ(c, T) given by 

 

1/ ξ(c,T ) = c − cp

ν p F(ξ1d c −cp

φ
) , (1) 
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where ξ1d is the correlation length of the 1D system at T. The system undergoes a lattice 

connectivity-driven percolation transition on approaching along the path T = 0 and c → 

cp, where the correlation length and the susceptibility are described by ξ(c,0) ≈ ξp ≈ |c - 

cp|-νp, and χ(c,0) ≈ |c - cp|-γp, respectively. The system also undergoes a thermal driven 

phase transition with critical exponents νT = νp/φ and γT = γp/φ on approaching along c = 

cp and T → 0. The exponent φ is a cross-over exponent (φ = νp/νT = γp/γT) and φ = 1 for 

the 2D Ising model and φ = 1.43 for the Heisenberg model. The function F(x) is a scaling 

function of x: F(x) ≈ x-νT in the limit x → 0 (c = cp), and constant in the limit x →∞ (T = 

0). Correspondingly the correlation length ξ can be expressed by ξ = ξT ≈ (ξ1d)νT, and ξ 

= ξp, respectively. The thermal correlation length is determined by the 1D correlation 

length ξ1d.  

In the region c<cp, the growth of the correlation length is limited by the size of the 

percolation cluster ξp. For the 1D XY system the correlation length ξ1d is proportional to 

1/T: more exactly we have ξ1d = 2/t, where t = kBT/[2|J|S(S + 1)] and J is the intrachain 

exchange constant. Therefore, the crossover line Tx(c) is described by Tx(c) ≈ |c - cp|φ for 

ξT ≈ ξp. For T<Tx(c), one has ξT>ξp, which implies that all the spins belonging to a 

characteristic cluster are essentially ferromagnetically ordered. For T>Tx(c), one has ξp > 

ξT, implying that the fractal structure of the percolation cluster dominates the 

thermodynamic behavior of the system. 

The critical temperature Tc(c) for c>cp can also be extracted from this scaling form. 

The correlation length diverges when F(x) becomes infinite at some point x0: x0 = ξ1d |c - 

cp|-φ. Since ξ1d is proportional to 1/T for 1D XY systems, the critical temperature Tc(c) is 

determined as Tc(c) ≈ |c - cp |φ, implying that Tc(c) for c>cp has the same c-dependence 

as Tx(c) for c<cp. 

 

2.3 SQUID DC magnetization 
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Figure 1 shows the temperature dependence of zero-field magnetization MZFC  and 

field-cooled magnetization MFC  for stage-2 CocMg1-cCl2 GICs with c = 0.88, 0.65, and 

0.3 in the presence of an external field H (= 1 Oe) along the c plane (Suzuki, I.S., 1999a). 

For c = 1 MZFC  exhibits a broad peak at Tp
ZFC = 8.2 K between Tcl  and Tcu , with 

increasing temperature. The deviation of MFC  from MZFC  occurs below a characteristic 

temperature Tf = 10.7 K. It drastically increases with further decreasing T. The 

temperature dependence of MZFC  and MFC  for c = 0.88 is similar to that for c = 1, where 

Tp
ZFC = 6.6 K and Tf = 9.7 K. For c = 0.65 MZFC  has a broad peak at Tp

ZFC = 3.3 K. It 

gradually decreases with increasing temperature and reduces to zero around Tf = 8.7 K. 

The magnetization MFC  deviates from MZFC  below Tf and gradually increases with 

decreasing temperature. The temperature dependence of MZFC  and MFC  for c = 0.61 and 

0.46 is similar to that for c = 0.65, where Tp
ZFC  = 2.5 K and Tf = 7.8 K for c = 0.61, and 

Tp
ZFC  = 3.6 K and Tf = 8.5 K for c = 0.46. We note that the values of Tp

ZFC  and Tf for c = 

0.46 are larger than those for c = 0.61, respectively. As shown in Fig.1, the temperature 

dependence of MZFC  for c = 0.3 is different from that for c≥0.46. The decrease of MZFC

Figure 1. T dependence of 

 

with increasing temperature occurs in two steps. It decreases with decreasing temperature 

MFC  
and MZFC . H ⊥ c and. H = 1 Oe. 
c = 0.88 ( , ), 0.65 (Δ, ) and 
0.3 ( , ). (Suzuki, I.S., 1999a) 
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below 4K. It becomes constant between 4.1 and 5.7 K, and decreases with further 

increasing temperature. The magnetization MFC  deviates from MZFC  below Tf (= 7.9 K) 

and increases with decreasing T. 

 

2.4 SQUID AC magnetic susceptibility 

Figures 2 (a) - (d) show the temperature dependence of the absorption χaa
"  at various 
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Figure 2.T dependence of χaa
"  at various frequencies for stage-2 CocMg1-cCl2 GICs. H 

= 0 and h ⊥ c. h = 50 mOe. 0.01≤f≤1000 Hz. (a) c = 0.88, (b) 0.65, (c) 0.46, and (d) 
0.3. (Suzuki, I.S., 1999a) 
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frequency for stage-2 CocMg1-cCl2 GICs with c = 0.88, 0.65, 0.46, and 0.3 in the absence 

of magnetic field (Suziki, I.S., 1999a). For c = 1 the absorption χaa
"  shows two peaks at 

Tcu  and Tcl , and a small peak around 8.4 K coinciding with the peak temperature of χaa
' . 

The value of Tcu  (= 8.9 - 9.0 K) is almost independent of frequency, while the value of 

Tcl  slightly increases with increasing frequency (Tcl  = 6.78 K for f = 0.01 Hz and 7.20 K 

for f = 1 kHz), showing evidence for a cluster glass phase below Tcl .  

In Fig.2(a) χaa
"  for c = 0.88 exhibits a broad peak at Tcl  which shifts to the high 

temperature side with increasing f: Tcl  = 5.61 K at f = 0.01 Hz and 6.27 K at f = 1 kHz. It 

also has a shoulder at Tcu  which slightly decreases with increasing f: Tcu  = 7.97 K at f = 

0.01 Hz and 7.71 K at f = 1 kHz. The absorption χaa
"  for c = 0.74 exhibits a very broad 

peak at Tcu  which shifts to the high temperature side with increasing frequency: Tcu  = 

4.17 K at f = 0.1 Hz and 4.59 K at f = 1 kHz. 

In Fig.2(b) χaa
"  for c = 0.65 has a broad peak at Tcl  and a shoulder at Tcu  observable 

only for f≥0.1 Hz and 0.01≤f≤1Hz, respectively. The critical temperature Tcl  increases 

with increasing frequency (1.95 K for f = 0.1 Hz and 2.61 K for f = 1 kHz), while Tcu  is 

almost independent of frequency: Tcu  = 4.52 - 4.61 K. For c = 0.61 χaa
"  has a broad peak 

at Tcl  and a shoulder at Tcu  observable only for f≥1 Hz and 0.01≤f≤20 Hz, respectively. 

The critical temperature Tcl  increases with increasing frequency (1.96 K for f = 1 Hz and 

2.45 K for f = 1 kHz), while Tcu  is almost independent of frequency: Tcu  = 4.48 - 4.64 K.  

In Fig.2(c) χaa
"  for c = 0.46 has a very broad peak for 2.5≤T≤3 K. Note that this peak 

temperature exhibits a complicated frequency dependence. It decreases from 2.8 K at f = 

0.01 Hz with increasing frequency and becomes constant (= 2.5 K) between 0.2 and 5 Hz. 

It increases in turn with further increasing frequency and reaches 3.0 K at f = 1 kHz, 

suggesting spin glass-like behavior for 10≤ f≤1000 Hz. In Fig.2(d) χaa
"  for c = 0.3 has 

two peaks around 2.0 - 2.24 K and TSG (= 5.28 - 5.84 K). The peak at TSG shifts to the 

high temperature side with increasing frequency, suggesting the existence of spin glass 

behavior. 
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2.5 Magnetic phase diagram 

Figure 3 shows the critical temperatures as a function of Co concentration. For 

convenience the critical temperatures Tcu  and Tcl  (denoted by solid circles and solid 

triangles, respectively) for c>0.65 are defined as a temperature where χaa
"  at f = 0.01 Hz 

for c = 0.3, 0.46, 0.88, and 1, χaa
"  at f = 0.1 Hz for c = 0.65 and 0.74, and χaa

"  at f = 1 Hz 

for c = 0.61 exhibit either a cusp or a shoulder. Note that the values of Tcu  and Tcl  are 

weakly dependent on frequency. For c<0.5 χaa
"  at f = 0.01 Hz still has a broad peak at a 

characteristic temperature (denoted by solid square in Fig.3), which should be 

distinguished from Tcu  and Tcl . This temperature is not a true critical temperature because 

there is no long range spin order. In Fig.3 we also show the peak temperatures of χaa
'  at f 

= 0.1 Hz and MZFC  as a function of c. For 0.61≤c≤1 the peak temperatures of χaa
'  and 

MZFC  are almost the same and between Tcu  and Tcl . For c = 0.46 and 0.3 the peak 

temperatures of χaa
'  are almost the same as those of χaa

" .  

The features of Fig.3 are summarized as follows. The critical temperature Tcl  

decreases with decreasing Co concentration c for 0.61≤c≤1. The critical temperature Tcl  

Figure 3. Magnetic phase diagram of 
stage-2 CocMg1-cCl2 GICs. The 
critical temperatures [Tcu  ( ) and Tcl  
( )] are defined as a temperature 
where χaa

"  at f = 0.01 Hz for c = 0.88, 
and 1, χaa

"  at f = 0.1 Hz for c = 0.65 
and 0.74, and χaa

"  at f = 1 Hz for c = 
0.61 exhibit either a cusp or a 
shoulder. The peak temperatures of 
χaa

"  at f = 0.01 Hz for c = 0.46 and 0.3 
are denoted by solid square ( ). The 
peak temperatures of χaa

'  ( ) and 
MZFC  (Δ) for each concentration are 
also shown. (Suzuki, I.S., 1999a) 
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tends to reduce to zero around c = 0.5, corresponding to the percolation threshold for the 

2D random spins on the triangular lattice. The temperature Tcu  also decreases with 

decreasing Co concentration for 0.65 ≤c≤1. One cannot conclude from Fig.3 that Tcu  may 

tend to reduce to zero around c = 0.5. However, one may say that Tcu  for 0.65≤c≤1 is 

connected to the crossover temperature Tx(c) for 0.3≤c≤0.46, where ξT = ξp. The peak 

temperature of MZFC  decreases with decreasing Co concentration c, showing a local 

minimum around c = 0.5. It increases in turn with further decreasing Co concentration, 

suggesting the existence of Tx(c). 

The magnetic phase transition of stage-2 CocMg1-cCl2 GICs with 0.65≤c≤0.88 is 

similar to that of stage-2 CoCl2 GIC (Suzuki, M., 1998a). Between Tcl  and Tcu  the 2D 

ferromagnetic long rang order is established. The in-plane spin correlation length grows 

to the order of the island size at Tcl . Below Tcl  a 3D antiferromagnetic long range order 

develops through effective interplanar interactions including interisland interactions 

between islands in adjacent intercalate layers. The critical temperature Tcl  for c = 1, 0.88, 

and 0.65 slightly increases with increasing frequency, suggesting that the 3D 

antiferromagnetic phase has partly a characteristic of cluster glass phase, where each 

island plays the role of each spin in spin glass behavior. The spin directions of 

ferromagnetic islands are frozen because of frustrated inter-island interactions.  

 

2.6 Spin glass behavior below cp 

We discuss the frequency dependence of the peak temperature in χaa
" (ω) for c = 0.3 

and 0.46 below cp. The peak temperature TSG for c = 0.3 increases with increasing 

frequency. In contrast, the frequency dependence of the peak temperature in χaa
" (ω) for c 

= 0.46 is rather different from that for c = 0.3. The peak temperature decreases from 2.8 

K to 2.5 K with increasing frequency for 0.01 ≤f≤0.2 Hz. It becomes constant for 0.2 

≤f≤5 Hz, and in turn increases with further increasing frequency for 0.5 ≤f≤1000 Hz.  
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How can we explain the increase of the peak temperature with increasing f? There 

may be two possibilities: (i) superpamagnet and (ii) spin glass phase. The 

superparamagnet is formed of finite clusters of spins which do not interact with each 

other (Mydosh, J.A., 1993). When the relevant anisotropy is uniaxial, there are two 

equivalent states of opposite magnetization for each cluster. At finite temperatures 

thermal fluctuations give some probability of overcoming the energy barrier Ea. The 

relaxation time between two states of equal energy is given by thermal activation 

(Arrehenius law) τ = τ0 exp(Ea/kBT), where τ0 is a microscopic limiting relaxation time 

usually ≈ 10-9 sec. The least squares fit of the data (the peak temperature vs f) for c = 0.3 

to an Arrhenius law described by f = f0 exp(-Ta/T) yields the completely unphysical 

values of f0 (= 5.57 x 1058) and Ta (= 741 K). Therefore the frequency dependence of the 

peak temperature cannot be described by an Arrhenius law. 

e 

usually ≈ 10-9 sec. The least squares fit of the data (the peak temperature vs f) for c = 0.3 

to an Arrhenius law described by f = f0 exp(-Ta/T) yields the completely unphysical 

values of f0 (= 5.57 x 1058) and Ta (= 741 K). Therefore the frequency dependence of the 

peak temperature cannot be described by an Arrhenius law. 

Next we consider the possibility of spin glass behavior for c = 0.3. Figure 4 shows the 

average relaxation time τ for c = 0.3 as a function of temperature, where τ is determined 

using the relation that the peak of 

Next we consider the possibility of spin glass behavior for c = 0.3. Figure 4 shows the 

average relaxation time τ for c = 0.3 as a function of temperature, where τ is determined 

using the relation that the peak of χaa
"  vs T appears when ωτ = 1 is satisfied. The average 

relaxation time τ divergingly increases with decreasing temperature. The most likely 
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source for such a dramatic divergence of τ is a critical slowing down. The relaxation time 

τ can be described by a power law form 

 

τ = τ 0(T / T * −1)− x , (2) 

 

where x is a critical exponent and T* is a finite critical temperature. No attempt on the 

least squares fit of the data for 5.28≤T≤5.82 K to eqn (2) has been successful so far. We 

note that the solid line in Fig.4 is described by eqn (2) with T* = 3.86 K and y = 38.6. 

The value of y is unphysical. 

In the inset of Fig.4 we show the field dependence of TSG(H) for c = 0.3. The peak 

temperature TSG(H) is related to magnitude of H through a power law form described by  
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where a is an exponent. The least squares fit of the data of TSG vs H in the field range 

0≤H≤10 Oe yields a = 1.88 ± 0.17 and H0 = 104 ± 5 Oe, where TSG(H = 0) = 5.5 K. The 

exponent a is a little larger than that predicted by Almeida and Thouless (Almeida, 

J.R.L., 1978) for the H dependence of freezing temperature at the transition between the 

paramagnetic phase and spin glass phase. These two observations suggest the occurrence 

of spin-glass like behavior for c = 0.3. The competition between ferromagnetic 

intraplanar interactions and effective antiferromagnetic interplanar exchange interactions, 

which may be too weak to cause a 3D antiferromagnetic phase, gives rise to a spin 

frustration effect.  

 

2.7 Crossover temperature 
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We discuss how the existence of small islands in the intercalate layers affects the 

percolation behavior. The intercalate layers of stage-2 CocMg1-cCl2 GIC are formed of 

small islands with size L. The magnetic behavior of this system is expected to be strongly 

dependent on the magnitudes of ξp and L which are independent of temperature. The size 

L depends on the amount of charge transfer from graphite layers to intercalate layers 

during intercalation, while ξp is a geometrical size depending only on c. Here we 

consider the following two cases: (i) c ≈ cp and c>cp and (ii) c ≈ cp and c<cp where ξp> 

L. In case (i), a 2D ferromagnetic long range spin order may exist inside infinite clusters. 

The spin ordering process is essentially the same as that in pure stage-2 CoCl2 GIC. 

When the in-plane spin correlation length ξ is on the same order as L, the interisland 

interactions becomes significant as well as the intraisland interactions. Although the 

growth of ξ is partly limited by the existence of small islands, ξ continues to grow and 

becomes larger than L. The 2D ferromagnetic spin order is established below Tcu  where 

ξ>>L. The 3D antiferromagnetic spin order occurs below Tcl  where the effective 

antiferromagnetic interplanar exchange interaction given by J’eff = J’S2(ξ/a)2. becomes 

comparable to J. 

In case (ii), there are only isolated finite clusters having the size ξp, which is larger 

than L. When ξ is comparable to L, the interisland interactions becomes significant as 

well as the intraisland interactions. Since the growth of ξ is limited by ξp in the finite 

clusters, no true 2D ferromagnetic long range spin order occurs. For ξ ≈ ξp the effective 

antiferromagnetic interplanar interaction J’eff [≈ J’S2(ξp/a)2] may be relatively weaker 

than J. Nevertheless the competition between these interactions may lead to a short-range 

spin-glass behavior below TSG. The temperature TSG may correspond to the crossover 

temperature Tx(c) ≈ |c-cp|φ which is obtained from the condition that ξT ≈ ξp. Note that 

the Co concentration dependence of Tx is similar to that of Tcu  for c >cp.  

 

3. Stage-2 CucCo1-cCl2 GICs 
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3.1 Magnetic phase diagram 

Stage-2 CucCo1-cCl2 GICs magnetically behave like a 2D XY random spin system 

with competing ferromagnetic and antiferromagnetic short-ranged exchange interactions. 

In each intercalate layer Cu2+ and Co2+ spins are randomly distributed on the triangular 

lattice, forming 2D random spin systems. The interaction between Co2+ spins is 

ferromagnetic, while the interaction between Cu2+ spins is antiferromagnetic: J(Co-Co) = 

7.75 K and J(Cu-Cu) = -33.63 K (Suzuki, M., 1994b). The interaction between Cu2+ and 

Co2+ spins is ferromagnetic. The sign of Θ changes around c = 0.8, indicating that the 

competition between intraplanar ferromagnetic and antiferromagnetic exchange 

interactions occurs. 

Figure 5 shows the magnetic phase diagram of stage-2 CucCo1-cCl2 GICs which is 

determined from SQUID AC magnetic susceptibility (Suzuki, I.S., 1998b, 1999b, Suzuki, 

M., 2000). For 0≤c≤0.3 the system undergoes two phase transitions at Tcu  and Tcl  

(Tcu >Tcl ). Below Tcu  a 2D ferromagnetic order is established in each intercalate layer. 

Below Tcl  there appears a 3D antiferromagnetic phase with the 2D ferromagnetic layers 

being antiferromagnetically coupled along the c axis. For 0.4≤c≤0.9 the system 

undergoes a phase transition at Tcl  and a reentrant spin glass (RSG) transition at TRSG 

(<Tcl ). The value of TRSG is almost independent of Cu concentration. For 0.9<c≤0.93 the 
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system undergoes a spin glass (SG) transition at TSG. For c ≈ 1 no phase transition is 

observed at least above 0.3 K, partly because of the frustrated nature of the 2D 

antiferromagnet on the triangular lattice. The value of Tcl  increases with increasing Cu 

concentration and reaches a maximum around c = 0.5, where the probability P(Cu-Co) of 

finding Cu-Co bonds becomes a maximum. Such an enhancement of Tcl  suggests that 

ferromagnetic interaction J(Cu-Co), which is comparable to or larger than J(Co-Co) 

above c = 0.5, plays an important role for the ferromagnetic long range order in each 

intercalate layer. 

 

3.2 Reentrant spin glass phase 

Figure 6 shows the temperature dependence of χaa
"  for c = 0.8 at various frequency  

(Suzuki, I.S., 1999b). The absorption χaa
"  has two peaks at TRSG (= 3 - 6 K) and Tcl  (= 

9.20 - 9.30 K). The peak at TRSG shifts to the high temperature side with increasing 

frequency. The magnetization MZFC  has a shoulder around 3.5 K and a peak at T0 = 9.0 

K. The deviation of MZFC  from MFC  appears below Tf = 12.5 K, implying the irreversible 

effect of magnetization occurring below this temperature. The magnetization MFC  

drastically increases with decreasing temperature below ≈ 10 K, suggesting that the 2D 

ferromagnetic order is established in the intercalate layers.  

0

0.5

1

1.5

2

2 4 6 8 10 12

stage-2 Cu
0.8

Co
0.2

Cl
2
 GIC

0.007 Hz
0.01 
0.03 
0.1 
0.3 
1 
3 
10 
30 

100 
330 
1000 

χ'
' aa

 (e
m

u/
av

 m
ol

)

h = 50 mOe

T(K)

Figure 6. χaa
"  vs T for various 

frequencies. c = 0.8. H = 0. h = 50 
mOe. h ⊥ c. (Suzuki, I.S., 1999b) 

 16



0

0.1

0.2

0.3

0.4

0.5

0.6

10-2 10-1 100 101 102 103

stage-2 Cu
0.8

Co
0.2

Cl
2 
GIC

χ'
' (

em
u/

av
 m

ol
)

f (Hz)

2.5 K

3 K

3.3 K 3.9 K 4.5 K4.2 K

1.9 K

2.7 K

3.6 K

Figure 7. χaa
"  vs f for various 

temperatures. c = 0.8. (Suzuki, 
I.S., 1999b 

 17

Figure 7 shows the frequency dependence of χaa
"  for c = 0.8 at various 

temperatures in the frequency range 0.007≤f≤1000 Hz (Suzuki, I.S., 1999b). 

The absorption χaa
"  decreases with increasing frequency below 3.3 K. It has a 

local maximum, shifting to the higher frequency side with increasing temperature 

(0.07 Hz at 3.4 K and 330 Hz at 4.9 K), and a local minimum (0.03 Hz at 4.8 K and 

360 Hz at 6.4 K). This shift of local maximum indicates that the lowest 
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temperature phase is a RSG phase. The broad spectral width of up to 5.7 decades in 

frequency FWHM (full width at half maximum) (compared to a single time Debye fixed 

width of 1.14 decades) reflects an extremely broad distribution of relaxation times. 

The maximum of  vs f provides a method for determining an average relaxation 

time τ for each temperature: ωτ = 1. The inset of Fig.8 shows the average relaxation 

time τ as a function of temperature (Suzuki, I.S., 1998b, 1999b, Suzuki, M., 2000). It 

divergingly increases with decreasing temperature. The most likely source for such a 

dramatic divergence of τ is a critical slowing down. We assume that 

"
aaχ

χaa
" (ω,T) is 

described by a scaling relation 

 

χ "
aa = Aω yG(ωτ ) , (4) 

 

where A is a constant, y is an exponent, and G(ωτ) is a scaling function of ωτ having a 

peak at ωτ = 1. The relaxation time τ can be described by eqn (2), where x = zν, z is the 

dynamic critical exponent, ν is the exponent of the spin correlation length, and T* is a 

finite critical temperature. The least squares fit of the data of τ vs temperature over the 

temperature range of 3.2 - 5.1 K yields the parameters x = 13.8±1.4, T* = 1.83±0.21 K, 

and τ0 = 0.587±1.89 sec. It is predicted from eqn (1) that χaa
"  can be described by a 

power-law ( χaa
"  ≈ ωy) for ωτ = 1. The least squares fit of the data (peak value of χaa

"  vs f) 

yields the exponent y = 0.0089 ± 0.0003. In Fig.8 we show the scaling plot of χaa
"  /ωy as 

a function of ωτ. We find that almost all the data fall on a scaling function defined by  
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and p = 0.75 ± 0.05 for 0.01≤ωτ≤100, where A in eqn (4) is chosen as 

A=1.146cos(πp/2)/[1+sin(πp/2)] so that χaa
" /ωy takes 0.573 at ωτ = 1. The value of p = 0 

corresponds to the Debye equation for relaxation with a single time constant. The high 

value of p indicates that an extremely broad distribution of relaxation times persists 

throughout the whole temperature range studied. 

The peak of χaa
"  around 3 - 4 K for c = 0.5, 0.7, and 0.88 also shifts to the low 

temperature side with decreasing frequency. This peak is also assumed to appear when 

the condition ωτ = 1 is satisfied. The temperature dependence of τ is well fitted to eqn (2) 

for the critical slowing down, in spite of the limited data, where T* = 1.78 ± 0. 79 K and 

x = 12.70 ± 5.80 for c = 0.5, T* = 1.28 ± 0.12 K and x = 12.44 ± 0.73 for c = 0.7, and T* 

= 1.90 ± 0. 19 K and x = 8.51 ± 1.20 for c = 0.88. Monte Carlo simulation on a short 

range 3D Ising SG system has predicted x = 7.9 ± 1.0 (Ogielski, A.T., 1985). The value 

of x for c = 0.88 is close to this predicted value. The value of T* is weakly dependent on 

Cu concentration: T* is between 1.78 K and 1.90 K except for c = 0.7. These results 

suggest that the reentrant spin glass transition belongs to the universality class of the 

short range 3D Ising SG. The RSG phase may be related to a chiral SG characterized by 

the existence of frozen-in vortices.  

 

3.3 Spin glass phase at c = 0.93 

Figure 9 shows the temperature dependence of χaa
"  for c = 0.93. A singe peak at TSG 

shifts to the higher temperature side with increasing frequency. Figure 10 shows the 

frequency dependence of χaa
"  for c = 0.93. This frequency dependence is rather different 

from that for c = 0.8. The absorption χaa
"  decreases with increasing frequency below 5.9 

K. Above 6.3 K it shows a peak, shifting to the higher frequency side with increasing 
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temperature. The peak of χaa
" , TSG, shifts to the low temperature side with increasing 

magnetic field along the c plane. The least squares fit of the data of TSG vs H to the form 

given by eqn (3) yields the exponent a = 3.56 ± 0.38. This exponent a is much larger than 

that (= 1.5) predicted by Almeida-Thouless (Almeida, J.R.L., 1978) for the field 

dependence of freezing temperature at the transition between the paramagnetic phase and 

the SG phase. Note that a = 1.26 ± 0.02 for c = 0.8. The dramatic increase of τ with 

decreasing temperature around TSG cannot be explained by a conventional critical 
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slowing down. These results suggests that the nature of SG phase below TSG is 

essentially different from that of RSG phase below TRSG. 

 

3.4 Chiral spin glass phase 

It is known that XY (n = 2) spin glasses posses a twofold Ising-like degeneracy, 

called “chirality,” in addition to a continuous degeneracy associated with the original 

spin-rotation symmetries (Kawamura, H., 1985, 1986, 1987, 1991, 1995). The 

appearance of such twofold (Z2) chiral degeneracy is a consequence of the noncollinear 

or noncoplanar spin structures induced by spin frustration. Chirality physically represents 

the sense or the handedness of these noncollinear (or noncopolanar) spin structures. In its 

ordered symmetry-broken state, such noncollinear (noncoplanar) spin ordering break the 

full symmetry of the Hamiltonian, O(n=2) = Z2 x SO(n). 

Numerical study of the chiral ordering in vector spin glasses has been initiated for the 

case of the 2D XY spin glass, the simplest spin-glass model which can sustain a 

nontrivial chiral degree of freedom. Kawamura and Tanemura (Kawamura, 1985, 1986) 

have shown that the ordering tendency of the chirality seems to be much enhanced as 

compared with that of the XY spin. Although both the spin and chirality order only at 0 

K, the chiral-glass susceptibility behaves like the spin-glass susceptibility of a pure Ising 

spin glass. For 3D XY spin glasses the chiral spin glass order occurs at a finite 

temperature without the conventional spin glass order. The chiral-glass transition belongs 

to the universality class of the 3D Ising spin glass.  

Through a Monte Carlo study on the spin ordering process of the 2D ± J plane rotator 

(XY) model on the square lattice, Kawamura and Tanemura have obtained the following 

magnetic phase diagram, where c is the concentration of AF bonds and 1-c is the 

concentration of F bonds. For c ≈ 0 the system undergoes a Kosterlitz-Thouless (KT)-like 

transition at T ≈ J. For c = 0.5 the system shows a novel type of SG transition into a chiral 

SG at T ≈ 0.3 J, which is characterized with the existence of frozen-in vortices. The 
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nature of chiral SG is not sensitive to the concentration c. For c< c0 (<0.25) the 

reentrance phenomena are observed with the high temperature KT phase and the low 

temperature chiral SG phase. In a strict sense this discussion seems to be inconsistent 

with the prediction that the chiral SG does not occurs at any finite temperature for the 2D 

XY spin glass. In spite of that, it may be reasonable to assume that the same magnetic 

phase diagram still holds valid for a quasi 2D XY spin glass system such stage-2 CucCo1-

cCl2 GICs having very weak interplanar exchange interaction: the chiral SG phase 

appears at a finite temperature. 

The Cu concentration in the system does not coincide with the concentration of 

antiferromagnetic bonds in the theory, because J(Cu-Co) is ferromagnetic. The lattice 

form of the system is different from that used in the theory. The effect of interplanar 

interaction on the phase transition is not also taken into account in the theory. In spite of 

such differences, the magnetic phase diagram is qualitatively in good agreement with the 

prediction from the theory: (i) TRSG is almost independent of Cu concentration, and (ii) 

the magnetic phase diagram consists of the ferromagnetic phase for c≤0.3, the high 

temperature ferromagnetic phase and low temperature RSG phase for 0.4≤c≤0.9, and a 

SG phase for 0.9<c≤0.93. 

 

4 CucCo1-cCl2-FeCl3 GBICs (0≤c≤1) 

4.1 Overview 

CucCo1-cCl2-FeCl3 GBICs have a c-axis stacking sequence of -G-I1-G-I2-G-I1-G-I2-

G- (G = graphite layer, I1 = CucCo1-cCl2 layer, and I2 = FeCl3 layer ). In these 

compounds the CucCo1-cCl2 layer is formed of two different magnetic ions which are 

randomly distributed on the triangular lattice. The character of the average intraplanar 

exchange interaction in CucCo1-cCl2 layers changes from ferromagnetic to 

antiferromagnetic with increasing the Cu concentration c, while the intraplanar exchange 

interaction in FeCl3 layers is antiferromagnetic. The magnetic properties of CucCo1-cCl2-
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FeCl3 GBICs are not simply a superposition of those of stage-2 CucCo1-cCl2 GIC and 

stage-2 FeCl3 GIC. The long range spin order in the CucCo1-cCl2 layers is coupled with 

that in the FeCl3 layers through an interplanar exchange interaction, leading to the helical 

spin order. 

Suzuki et al. (Suzuki, M., 1999b, Suzuki, I.S., 1997, 2000) have studied the magnetic 

phase transition of these compounds using SQUID DC magnetization and SQUID AC 

magnetic susceptibility. They have shown that these compounds undergo magnetic phase 

transitions at Th, Tcu , Tcl , TSG, and TRSG (Th>Tcl >TRSG ≈ TSG) depending on the Cu 

concentration. The phase transition at Th is related to a helical spin order. The phase 

transitions at Tcu  and Tcl  are associated with a spin order of CucCo1-cCl2 layers. The 

reentrant spin glass (RSG) phase below TRSG for c≤0.4 and the spin glass (SG) phase 

below TSG for c≥0.5 are due to the spin frustration effect occurring in FeCl3 layers.  

 

4.2 SQUID AC magnetic susceptibility 

Figures 11(a) and (b) show the temperature dependence of χaa
"  of GBIC with c = 0, 
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where h = 50 mOe for (a) and h = 0.5 Oe for (b) (Suzuki, M., 1999b). This compound 

undergoes four magnetic phase transitions at Th (= 16.3 K), Tcu  (= 8.5 - 8.6 K), Tcl  (= 7.3 

- 7.4 K), and TSG (= 4.7 - 5.9 K). The absorption χaa
"  has a shoulder at TSG which 

increases with increasing frequency (5 K at f = 0.01 Hz and 5.8 K at f = 1 kHz). Note that 

the frequency dependence of TSG is almost the same as that of TSG(h) for stage-2 FeCl3 

GIC (Suzuki, M., 1998c). The peak at TSG shifts to the low temperature side with 

increasing magnetic field along the c plane. The peak temperature is related to the field H 

through a power law form given by eqn (3), where TSG(H=0) = 5.90 K, H0 = 0.34 kOe, a 

= 1.224 ± 0.116 (H = 0 - 70 Oe) for CoCl2-FeCl3 GBIC and TSG(h)(H=0) = 5.69 K, H0 = 

2.15 kOe, a = 1.423 ± 0.142 (H = 0 - 500 Oe) for stage-2 FeCl3 GIC. The value of a 

obtained is a little smaller than that (a = 1.50) predicted by Almeida and Thouless 

(Almeida, J.R.L., 1978). 

The absorption χaa
"  of GBIC with c = 0 has also two peaks at Tcl  and Tcu . The value 

of Tcl  slightly increases with increasing frequency (7.3 K at f = 0.01 Hz and 7.4 K at f = 1 

kHz), while the value of Tcu  seems to decrease slightly with increasing frequency (8.6 K 

at f = 0.01 Hz and 8.5 K at f = 1 kHz. In stage-2 CoCl2 GIC  has two peaks at (Co) 

and (Co) (Suzuki, M., 1998a). The value of (Co) slightly increases with increasing 

frequency (6.9 K at f = 0.1 Hz to 7.1 K at f = 1 kHz), while the value of (Co) (= 8.9 

K) is independent of frequency. Note that the value of 

"
aaχ clT

cuT clT

cuT

Tcl  is a little higher than that of 

Tcl (Co) and that the value of Tcu  is a little lower than Tcu (Co). 

The absorption χaa
"  of GBIC with c = 0 has a peak at Th, which coincides with the 

peak temperature of χaa
' . The peak slightly shifts to the high temperature side with 

increasing frequency (16.4 K at f = 0.01 Hz and 16.6 K at f = 1 kHz), while the peak 

height dramatically decreases with increasing frequency. This peak shifts to the low 

temperature side with increasing magnetic field (15.8 K at H = 1 Oe) along the c plane, 

while the peak height dramatically decreases with increasing field and completely 

disappears above 2 - 3 Oe. The peak temperature Th is related to the field H through a 
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power law similar to eqn (3), where a = 1.4 ± 0.2, Th(H=0) = 16.4 K, and H0 = 79 ± 5 

Oe. This result suggests that the resultant interplanar interaction has an antiferromagnetic 

character. 

Figures 12(a) and (b) show the temperature dependence of χaa
"  for GBIC with c = 0.2 

(Suzuki, I.S., 1997, 2000). The absorption χaa
"  shows a small peak at Th (=16.2 K), a 

100

101

102

103

5 10 15 20

3 Oe
5
10

20
30
50
70
100
200

M
FC

 (e
m

u/
av

 m
ol

)

T(K)

Cu
0.2

Co
0.8

Cl
2
-FeCl

3
 GBIC

0

20

40

60

80

100

0 5 10 15 20

M
 (e

m
u/

av
 m

ol
)

T(K)

FC

ZFC

H = 1 Oe

Figure 13. (a)Field dependence of 
FCM  for GBIC with c = 0.2 at 

various temperatures. H⊥c. The 
temperature dependence of FCM  and 
MZFC  for c = 0.2 is shown in the 
inset. H = 1 Oe. (Suzuki, I.S., 2000) 

0

0.05

0.1

0.15

0.2

0.25

14 15 16 17 18 19
T(K)

(b)

χ"
aa

 (e
m

u/
av

 m
ol

)

0

0.5

1

1.5

2

2 4 6 8 10 12

Cu
0.2

Co
0.8

Cl
2
-FeCl

3
 GBIC

0.01 Hz
0.1 
1 
10 
30 
100 
330 
1000 

χ"
aa

 (e
m

u/
av

 m
ol

)

T(K)

(a)

h = 50 mOe

h = 0.5 Oe

Figure 12.  vs T for GBIC with c = 0.2 at various frequencies. H = 0. h⊥c. (a) 
1.9≤T≤10 K and h = 50 mOe. (b) 14≤T≤19 K and h = 0.5 Oe. (Suzuki, I.S., 2000) 

"
aaχ

 25



very broad peak at Tcu  (≈ 7.9 K), a small peak at Tcl  (≈ 6.2 - 6.4 K), and a sharp peak at 

TRSG. The peak at TRSG shifts to the high temperature side with increasing frequency. 

The peak temperature Th shifts to the low temperature side with increasing field along the 

c plane, while the peak height drastically decreases and disappears above 7 Oe. This 

result suggests that the resultant interplanar exchange interaction is antiferromagnetic and 

weak. 

Figure 13 shows the temperature dependence of MFC  for c = 0.2 in the presence of H 

(≥2 Oe) along the c plane (Suzuki, I.S., 2000). The increase of MFC  with decreasing 

temperature is made in two steps: it starts to increase at Th and drastically increases 

below 10 K, and reaches a saturated value below Tcl . The inset of Fig.13 shows the 

temperature dependence of MZFC  and MFC  for c = 0.2, where H (= 1 Oe) is applied along 

the c plane. MZFC  has a small peak at Th = 16.0 K, a large peak at Tcu  = 8.1 K, and a 

shoulder around TRSG = 3.7 - 4.5 K. The deviation of MZFC  from MFC  occurs below 21.3 

K, indicating a irreversible effect of magnetization.  

Figures 14(a) and (b) show the temperature dependence of χaa
"  for GBICs with c = 

0.4 and c = 0.5, respectively (Suzuki, I.S., 2000). For c = 0.4 χaa
"  has a very broad peak at 
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Tcu  (= 6.9 K) and a sharp peak at TRSG. The peak at TRSG shifts to the high temperature 

side with increasing frequency. No anomaly in χaa
"  is observed around 16 K. For c = 0.5 

χaa
"  has a single peak at a temperature defined as TSG, shifting to the high temperature 

side with increasing frequency. 

 

4.3 Magnetic phase diagram 

Figure 15 shows the magnetic phase diagram for GBICs. The critical temperatures Th, 

Tcu , Tcl , and TRSG, and TSG are defined as temperatures at which χaa
"  at f = 0.1 Hz has 

peaks. The result is summarized as follows: (i) Th (≈ 16 K) and Tcl  are observed only for 

0≤c≤0.2, (ii) Tcu  and Tcl  decrease with increasing Cu concentration and tend to reduce to 

zero around c = 0.5, (iii) TRSG for c≤0.4 and TSG for c≥0.5 are almost independent of Cu 

concentration. A helical spin order occurs below Th. Below Tcu  two-dimensional (2D) 

ferromagnetic long range order appears in each CucCo1-cCl2 layer. Below Tcl  these 2D 

ferromagnetic CucCo1-cCl2 layers are antiferromagnetically stacked along the c axis, 

forming a 3D antiferromagnetic phase. The spin glass phase occurs below TRSG or TSG in 

each FeCl3 layer. 

In the inset of Fig.15 we show the frequency dependence of TRSG for GBICs with c = 
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Figure 15. Magnetic phase 
diagram of GBICs. Th, Tcu , Tcl , 
TRSG, and TSG correspond to the 
peak temperatures in χaa

"  vs T at f 
= 0.1 Hz. The inset shows the 
frequency dependence of TSG and 
TRSG for GBICs with c = 0.2 ( ), 
0.4 ( ), 0.5 ( ), and 1 ( ), stage-
2 CucCo1-cCl2 GIC with c = 0.8 
( ), and stage-2 FeCl3 GIC (Δ). 
(Suzuki, I.S., 2000) 
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0.2 and 0.4, TSG for GBICs with c = 0.5 and 1, TRSG for stage-2 CucCo1-cCl2 GIC with c 

= 0.8 and TSG for stage-2 FeCl3 GIC. The frequency dependence of TSG for GBICs with 

c = 0.5 and 1 is almost the same as that of TSG for stage-2 FeCl3 GIC. This result 

suggests that for GBICs for 0.5≤c≤1 the SG behavior occurs in the FeCl3 layer. Note that 

the value of TRSG for GBICs with c = 0.2 and 0.4 is lower than that of stage-2 FeCl3 GIC 

at the same frequency, but is rather close to that of TRSG for stage-2 CucCo1-cCl2 GIC 

with c = 0.8. In GBICs with c = 0.2 and 0.4 the RSG behavior occurring inside the FeCl3 

layers may be modified by the random field effect arising from adjacent CucCo1-cCl2 

layers. Because of the ferromagnetic spin order in CucCo1-cCl2 layers, the uniform 

interplanar exchange field may generate a random staggered magnetic field in each Fe3+ 

(Fe2+) spin of the FeCl3 layers. The absorption χaa
"  for GBICs with c = 0.2 and 0.4 

shows a plateau-like form between Tcu  and Tcl , indicating that the phase transitions at Tcu  

and Tcl  are partially destroyed by random field effects arising from the adjacent FeCl3 

layers through competing interplanar exchange interactions. 

 

4.4 Helical spin order at Th 

The phase transition at Th is observed only in the system (0≤c≤0.2) where Tcu  or Tcl  

are also observed. This result indicates that the helical spin order at Th arises from 

competing interplanar exchange interactions. Because of weak interactions the phase 

transition at Th is destroyed by a very weak magnetic field Ht (≈ 3 Oe for c = 0.2) along 

the c plane. In spite of the complicated intraplanar and interplanar exchange interactions, 

for simplicity we consider the model of CoCl2-FeCl3 GBIC which is regarded as a 1D 

spin system: Co2+ and Fe3+ spins are alternatively arranged at equal distances along the c 

axis.  

The c axis repeat distance of this system is d (=18.77 ± 0.46 Å) and distance between 

Co2+ and Fe3+ is d/2. The ground-state energy UG of this system is described by 
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U = −AG J (Q )c , (7) 

 

where A is a positive constant, Qc is the component of wavevector Q along the c axis, and 

J(Qc) is given by 

 
J(Qc ) = Jij

<i ,j >
∑ exp(iQc Rij

z ) . (8) 

 

We assume that J’Co-Fe is the N.N. interplanar interaction between CoCl2 and FeCl3 

layers, J’Co-Co is the N.N. interplanar interactions between adjacent CoCl2 layers, and 

J’Fe-Fe is the N.N. interplanar interactions between adjacent FeCl3 layers. Then J(Qc) is 

described as  

 

J(Qc ) = 2 ˜ J Co− Fe
' cos(θ ) + ( ˜ J Co− Co

' + ˜ J Fe−Fe
' )cos(2θ) + const. , (9) 

 

where , ˜ J Co− Fe
' = JCo−Fe

' SCo
⊥ SFe

⊥ ˜ J Co−Co
' = JCo−Co

' SCo
⊥ SCo

⊥ , and , S  and S˜ J Fe−Fe
' = JFe−Fe

' SFe
⊥ SFe

⊥
Co
⊥

Fe
⊥  

are the XY-components of spin vectors at the lattice sites of Co2+ and Fe3+ ions, 

respectively, and θ = Qcd/2 is the rotation angle between spins in the adjacent layers. The 

ground state energy becomes minimum when J(θ) has a maximum for θ = θ0: dJ(θ)/dθ = 

0 and d2J(θ)/dθ2<0. From the condition dJ(θ)/dθ = 0 we obtain the following three cases: 

(i) θ = 0, (ii) θ = π, or (iii) cosθ = -J1’/2J2’, where J1’ and J2’ are effective interplanar 

exchange interactions defined as  and , respectively. The 

case (i) corresponding to a ferromagnetic spin configuration is realized under the 

conditions J1’ + 2J2’>0 and J1’>0. The case (ii) corresponding to an antiferromagnetic 

spin configuration is realized under the conditions -J1’ + 2J2’>0 and J1’<0. The case (iii) 

corresponding to a helical spin configuration is realized under the conditions J2’<0 and 

2|J2’|>|J1’|. 

J1
' = ˜ J Co−Fe

' J2
' = ˜ J Co −Fe

' + ˜ J Fe−Fe
'
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In order to check which condition is satisfied, we estimate the magnitude of J’Co-Fe, 

J’Co-Co, and J’Co-Fe as follows. We know that the magnetic phase transition at Th(GBIC) 

is destroyed by a very weak magnetic field (Ht ≈ 3 Oe) along the c plane. This magnetic 

field Ht at 0 K may be described by  

 

Ht ≈ −
< z' > (2J1

' + J2
' )

μB[ga (Co)SCo
⊥ + ga (Fe)SFe

⊥ ]
, (10) 

 

in terms of the above 1D chain model, where <z’> is an average number of the nearest 

neighbor atoms. The minus sign of eqn (10) comes from the fact that the average 

interplanar exchange interaction is antiferromagnetic. When it is assumed that <z’> = 6, 

the interplanar interaction (2J1’ + J2’) is roughly estimated as - 0.93 x 10-4 Ht [K]: (2J1’ 

+ J2’ ) = - 2.8 x 10-4 K for Ht = 3 Oe. The value of J2’ may be roughly estimated as 

follows. According to Yeh et al. (Yeh, N.C., 1989) the dominant interplanar exchange 

interaction in stage-1 CoCl2 GIC is the superexchange interaction, while both the dipole-

dipole interaction and superexchange interaction are equally important in stage-2 CoCl2 

GIC. For higher stage CoCl2 GICs, the dipole-dipole interaction dominates because of 

the rapid decrease of the superexchange interaction with increasing stage number. 

Because of the large separation distance the interplanar exchange interaction J’Co-Co and 

J’Fe-Fe in CoCl2-FeCl3 GBIC may be described by the dipole-dipole interaction between 

Si and Sm, 

 

⎥
⎦

⎤
⎢
⎣

⎡ ⋅⋅
−

⋅
=− 53

2 ))((3
)(

im

immimi

im

mi
Badd RR

gH
RSRSSS

μ . (11) 

 

Since the direction of spin Si is perpendicular to Rim, the Hamiltonian Hd-d can be 

approximated as a form of -2Jd-d (Si.Sm) where Jd-d = (gaμB)2/ 2(Rim)3 is positive and 

favors the antiferromagnetic interplanar exchange interaction. Then the values of J’Co-Co 
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and J’Fe-Fe can be estimated as J’Co-Co = - 1.9 x 10-3 and J’Fe-Fe = - 1.9 x 10-4 K, 

respectively, where ga(Co) = 6.40, ga(Fe) = 2.03, and Rim ≈ 18.77 Å. Then we have J1’ = 

7.0 x 10-4 K and J2’ = -1.66 x 10-3 K using the relation 2J1’ + J2’ = - 2.8 x 10-4 K. This 

rough estimate may satisfy the condition for the occurrence of helical spin structure: 

J2’<0 and |2J2’|/J1’| >1. Using these values of J1’ and J2’ the rotation angle θ is 

calculated as 78°, which is close to an angle (72°) of helical spin structure with 

periodicity 5d (= 10 magnetic layers). This period is smaller than ξc (≈ 20 magnetic 

layers ) in stage-1 CoCl2 GIC (Ikeda, H., 1985). 

 

4.5 Random field effect near Tcu  and Tcl  

Next we consider a possibility that the spin glass phase transition of FeCl3 layers at 

TSG is affected by random field effects in CoCl2-FeCl3 GBIC. We assume that the FeCl3 

layers in CoCl2-FeCl3 GBIC can also be regarded as 2D XY random spin systems with a 

mixture of Fe3+ and Fe2+ spins. Because of the ferromagnetic spin order in CoCl2 layers, 

the interplanar exchange field is uniform and equivalent for each Fe3+ (Fe2+) spin. Thus 

the FeCl3 layers of CoCl2-FeCl3 GBIC magnetically behave like an XY-like 

antiferromagnetic random spin system in the presence of a uniform interplanar exchange 

field along the c plane. This uniform magnetic field is expected to generate a random 

staggered magnetic field, giving rise to the random field effect (Fishman, S., 1979) The 

absorption χaa
"  of stage-2 FeCl3 GIC has a sharp peak at TSG(h)(Fe) (see Fig.7.32(a)), 

while χaa
"  of CoCl2-FeCl3 GBIC has a shoulder around TSG. These results clearly 

indicate that the spin glass phase below TSG is partially destroyed by the random field 

along the c plane. 

Since short range spin order with antiferromagnetic character develops in the FeCl3 

layers at temperatures well above TSG, the interplanar exchange field H’E may have a 

random field character whose magnitude and direction are different depending on the 

Co2+ lattice sites [<H’E> = 0 and <(H’E)2> ≠ 0)]. It is predicted from a random field 
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theory that the ferromagnetic long range spin order of Co2+ is destroyed by this random 

field since the dimension of this system is 2D (Imry, Y., 1975). The dispersion χaa
'  of 

stage-2 CoCl2 GIC has a rather sharp peak at the peak temperature Tp  between Tcu  and 

Tcl , while χaa
'  of CoCl2-FeCl3 GBIC has a very broad peak. Such a plateau-like form 

between Tcu  and Tcl  indicates that a 2D long range spin order in CoCl2 layers is partially 

destroyed by a random field arising from the adjacent FeCl3 layers. 
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