Spin Hamiltonian of Fe?* and Co?* spin in the trigonal crystal field
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The magnetic properties of M Cly'™* and M. TaS2C® with M = Fe and Co is mainly determined by
magnetic behaviors of magnetic M ions in a crystal field such that the anion octahedra surrounding
the M ions are trigonally elongated along the c-axis. The crystal field splitting of the d levels is
usually stronger than the spin-orbit coupling, but weaker than the exchange interaction between
M atoms. Here we present a simple review on the spin Hamiltonian of Fe?* and Co?" under the
trigonal crystal field. The program of the Mathematica 5.0 is also attached to the Appendix. This

note is used as supplement for Ref. 4.

PACS numbers:

I. SPIN HAMILTONIAN OF Fe®" IN THE
TRIGONAL CRYSTAL FIELD

The free-ion 3d% 5D state of the Fe?T is split by the
cubic crystal field into the orbital doublet (E) and orbital
triplet (13), the latter being the lowest one.l'? We con-
sider the splitting of the orbital triplet by the perturbing
Hamiltonian given by

Hy=-XN1-S —6§(1? - 2/3), (1)

where N = kX (k = 1 but less than unity) and S is the
spin angular momentum of the magnitude 2. A fictitious
angular momentum [ of the magnitude 1 represents the
triplet state (I is antiparallel to the real orbital angular
momentum L (= —kl). Since I, + S, is a constant of
the motion, its eigenvalue m can be used to classify the
various states, where m =1, + S, IL|IL) = IL|IL) (I, =1,
0, -1), and S,|S.) = S.|S.) (S, =2, 1, 0, -1, -2). Figure
1(a) shows the splitting of the ground orbital triplet by
the spin-orbit coupling A (< 0) and the trigonal field &
(> 0), where each energy level E normalized by |\ is
plotted as a function of z (= §/N'). The energy levels

are denoted by B3 (m = +3), B (m = +2), EY (i =
1, 2, 3) (m = +£1), éo) and Eéi) (m = 0). The ground
level is either E(()Jr) or E%l), depending on the sign of x.

All the energy states except for E§1) and E(()Jr) might be
neglected, since these lowest levels lie 100 cm™! below
the others. Thus we may use a fictitious spin s = 1 for
the lowest three states denoted by the eigenkets |¢g) for
the singlet and |¢+1) for the doublet:

1| £1,0) + ¢2]0, £1) + c3| F 1,42) (E = EWY),
1|1, —1) 4 as]0,0) + as| — 1,1) (E = E{).

[Y+1) =
lv0) =

The parameters ¢y, c2, c3, a1, a2, and as are defined by
O‘(_\/g/(l + 51))762 =, 03 = O‘\/i/(l - 51)7
az = —V3/(6+&5)"/*, az = &/ (6 + &3)"/?,

where @ = [3/(1 4+ &1)? + 1+ 2/(1 — &)?]7!, and the
parameters & and &; are related to the energy E%l) and

c1 =

ay =

Eé+) through
EV /N = —2/3+1+&,ESV /N = —2/3+1+ &.

The g-factors can be evaluates as g. = ggo) + Ag and
Ja = g,(lo) + Ag, where Ag is due to the effect of spin-
orbit coupling in admixing the upper orbital levels into

the ground three orbitals, and g£°> and g((lo)

90 = Wi|Vlgrer) = —kef + 265 + (k + 4)c3,
98 = V2to|Valpzr)

= —k(Clag + 02a3) + 2\/§(01a1 + 02(12) + 2\/503@3,
(2)

where V, = —klz+2S, and V, = —kl,+2S5,. For a given

k, the two ggo) and g((lo) values are functions of the single

parameter x and so they bear a functional relationship

are given by

to each other. In Fig. 1(b) we show the g§°> and g,(lo) as

a function of x with k as a parameter: géo) > g((lo) for

r < 0 and ggo) < ggo) for x > 0. Note that © = —1.27 for
FeCl,. If we take the z axis parallel to the ¢ axis, and =z,
y axes perpendicular to it, we have S; = ¢s;, Sy = ¢sy,
and S, = ps,, where

p = (Y| £ S:|011) = 3 + 23,
q = (PolSz FiSylv£1)V2
\/g(clal —|— CQCLQ) —|— \/563&3. (3)

In Fig. 1(c) we show the parameters p and ¢ as a function
of x: p<qfor z >0 and p > q for x < 0. The resultant
spin Hamiltonian for Fe?T is given by

H=-D> (s, —2/3) = 2] si-8; —2Ja Y siz5jz,
i (i.4) (i)
(4)

where J = ¢ K and K is the isotropic exchange energy
with the form of —2K'S; - S; between the real spins S;
and S;, D ~ 6/10 (> 0) is the single ion anisotropy, and
Ja (= J(p*>—q?)/q?) (see Fig. 1(d)) is the anisotropic ex-
change interaction. The second term is the isotropic ex-
change interaction, and third term is the anisotropic ex-
change interaction. The spin anisotropy parameter D,y
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FIG. 1: Derivation from Fe?" spin Hamiltonian: (a) the en-
ergy levels, (b) g-factors gEO) and géo) with & (= 0.9 and 1),
(c) spin anisotropy parameters p, ¢ and (d) p?/¢®> — 1, as a
function of = (= §/X"). * = —1.27 for Feg.33Ta2S2C. Deriva-
tion from Co?" spin Hamiltonian: (e) the energy levels, (f)
g-factors gﬁo) and g,(lo) with k& (= 0.9 and 1), (g) spin anisotropy
parameters p, ¢ and (h) p?>/¢* —1, as a function of z (= §/\).
x = 1.68 for Cop.33Ta252C (from Ref. 5).

is defined as D.rs (= D(s — 1/2) + 2zsJ4) is negative.
The XY symmetry appears when Dy < 0.

II. SPIN HAMILTONIAN OF Co?t IN THE
TRIGONAL CRYSTAL FIELD

In a cubic crystal field the free-ion 3d” *F state is split
into two orbital triplets and one orbital singlet with a
triplet the lowest."3* We consider the splitting of the
ground state orbital triplet 4T; into six Kramers dou-
blets. The perturbing Hamiltonian consists of the spin-
orbit coupling and trigonal distortion of the crystal field,

Hy = —(3/2)kA1-S — 61 — 2/3), (5)

where N = k), ) is the spin-orbit coupling constant and
may be different from its free-ion value of -180 cm™!,

and k is the orbital reduction factor due to admixture
of 4P into 4Ty and is less than but of order unity, §

is the trigonal field strength, and S is the spin angular
momentum of the magnitude 3/2. A fictitious angular
momentum [ of the magnitude 1 represents the triplet
state (I is antiparallel to the real orbital angular momen-
tum L = —3k1/2). Since I, + S, is a constant of the
motion, its eigenvalue m can be used to classify the var-
ious states, where m =1 + S., I|IL) = IL|I}) (IL =1, 0,
-1), and S,|S.) = SL|SL) (S, =3/2,1/2,-1/2,-3/2). In
Fig. 1(e) we show the energy level E of the six Kramers
doublets normalized by ||, as a function of x (= 6/)\):

one E; (m = £5/2), E,gi) (m = +3/2), and E® EW,
and B (m = £1/2). For all values of z, EY is the low-

est energy. The wave functions [t11), [¢+3), and [¢44)
for m = £+1/2 are given by

[Wi1) = e1] T1,43/2) 4 ¢2)0,+1/2)
+es| £1,F1/2) (B = EO),
[Y+3) = cal F1,£3/2) +¢5|0,4£1/2)
+egl +£1,71/2) (Bxs = EY),
[aes) = e7] T1,£3/2) + 8]0, £1/2)
+eo| £1,F1/2) (BEiy = ED?),

where the parameters ¢; (i = 1 - 9) are defined by

1 = BoV6/Co,ca = —Po,c3 = BoV8/(Co +2)),
BiV6/Ciyes = —Bi,c6 = B1V8/ (Gl +2)),
BoV6/Coycs = — P2, c9 = B2V/8/(Ca + 2)),

with 3; = [6/¢? + 1+ 8/(¢; +2)%]/% (j = 0, 1, 2) The
parameter ¢; (j = 0, 1, 2) is related to Egj)/)\' as

Cq

C7

ED /N = —x/3+3(¢ +3)/4,
and

w=0/N =3(¢ +3)/4-9/(2¢;) — 6/(¢; +2).

The wave functions [¢)+2) and [¢15) for m = £3/2 are
given by
[a2) = d1]0,43/2) +do| + 1,%1/2) (Fan = E{),
[ss) = dsf0,%3/2) + da| £ 1,£1/2) (Ess = E),

where the parameter d; (i = 1- 4) is defined by

di = 7M9/(2v6),dy = 7P (22/3 + ESH /X)),
ds = +79/(2v6),ds =~ (22/3 + EST /N,

with v(5) = [(9/(2V6))? + (22/3 + ES*) /X)2]1/2. Since
there are only two states in this lowest Kramers doublet,
the true spin S (= 3/2) can be replaced by a fictitious
spin s within the ground state. The g-factors can be
evaluates as g. = ggo) + Ag and g, = g((lo) + Ag, where
Ag is due to the effect of spin-orbit coupling in admixing



the upper orbital levels into the ground orbital triplet.

(0)

The values of ggo) and gq ', are given by

9 = 21|V |psr) = (3k + 6)ci + ¢ — (3k + 2)c3,
91(10) — 2<¢i1|VLE|¢:F1> = 4\/§clc3 + 40% — (3\/§k)0203,
(6)

with V, = —(3k/2)lz + 25, and V, = —(3k/2)l, + 25,.
In Fig. 1(f) we show the values of g,(lo) Vs ggo) with & as
a parameter (k = 0.9, 0.95, and 1.0): ggo)>g,(10) for x <0
and ggo) < g((lo) for z > 0.

If we take the z axis parallel to the ¢ axis, and x, y
axes perpendicular to it, we have S, = ¢s., Sy = ¢5y,
and S, = ps;;

p = 2(ha1| £ S.|[ve) = 3ci + ¢35 — c3,
q = (V41]Ss £iSy|vF1) = 2¢2 +2V3eics. (7)

In Fig. 1(g) we show the parameters p and ¢ as a function
of z: p < g for x >0 and p > ¢ for x < 0. The spin
Hamiltonian of Co?* may be written as

H = —QJZSZ"S]‘ _2JAZSiz3jza (8)
(1,9) (1,3)

where J; = ¢?K and K is the isotropic exchange energy
with the form of —2K'S;-S; between the real spins S; and
S;, and J4 = (p? — ¢?)/q°J is the anisotropic exchange
interaction. The first term of the spin Hamiltonian is
an Heisenberg-type exchange interaction and the second
term is anisotropic exchange interaction. Since s = 1/2,
there is no single ion anisotropy. The ratio Ju/J (=
(p? — ¢*)/q?) (see Fig. 1(h)) provides a measure for the
spin symmetry of the system.

III. VAN VLECK SUSCEPTIBILITY OF Co’"

Acording to Lines,® the Van Vleck susceptibility for
Co?t is expressed as

2NapE (P |Veltpis)?
25 +1 E+3 — E+1

(11| Valtga) |2
Eys—Ep

9)

Xy =

a  2Nap [ |Va|io)]?
Xv

n (1 |[Valy—3)]?

2s + 1 E+2 — E+1 E,3 — E+1
Vo lw_4)|? Ve 2
+ |11 | Ve |1p—a)| [(11| Ve |9s)] 7 (10)
E_,—-E4 Eis—FEpn

with s = 1/2, where the matrix elements are given by

<’lﬁ+1|‘/tz|’t/1+3> = (3]€/2 + 3)0104 + cocs — (3k/2 + 1)0306,

(3k/2 4+ 3)cicr + cacg — (3k/2 + 1)cscy,
—(3V2k/4)(drc1 + dacz)
+\/§ng1 + 263d2,

(V| Valbga) =
(V1| Va|—2)

10\\\
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FIG. 2: Plot of Van Vleck susceptibility xi and x37 as a
function of z, where k (= 0.9 and 1.0) is changed.

\/§0304 + 2coc5 + \/§clcg
—(3V/2k/4) (e3¢5 + cac),
(Y_1|Valtbya) = V3eser + 2caes + V3eico
—(3V/2k/4)(cscs + caco),
2c3dy + V/3cads

—(3V2k/4)(c1ds + cady),

(W1 |Valt1s)

(V1| Va|t—s)

and

(=il Vald—s)| = |5l Valbi) = [{lValis)].

In Fig. 2 we show the plot of x{/Nau%/|A| and
X$&/Nap%/|\ as a function of z with k as a parameter (k
=0.9,0.95, 1.0). For x = 1.68 and k = 0.9 for Co?* spin
for CoCls, the Van Vleck susceptibility can be calculated
as Xy = 4.19 Nap%/(JA]) and x§ = 7.29 Nap%/(|N):
x§, = 6.1 x 1073 (emu/Co mole) and x§, = 10.6 x 1073
(emu/Co mole) when A = —180 cm~! = -259 K.

APPENDIX: MATHEMATICA 5.0 PROGRAMS

Program-1
Spin Hamiltonian for Fe?* spins in the trigonal field
Program-2
Spin Hamiltonian for Co?* spins in the trigonal field
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