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The magnetic properties of MCl2
1–4 and McTa2S2C

5 with M = Fe and Co is mainly determined by
magnetic behaviors of magnetic M ions in a crystal field such that the anion octahedra surrounding
the M ions are trigonally elongated along the c-axis. The crystal field splitting of the d levels is
usually stronger than the spin-orbit coupling, but weaker than the exchange interaction between
M atoms. Here we present a simple review on the spin Hamiltonian of Fe2+ and Co2+ under the
trigonal crystal field. The program of the Mathematica 5.0 is also attached to the Appendix. This
note is used as supplement for Ref. 4.

PACS numbers:

I. SPIN HAMILTONIAN OF Fe2+ IN THE
TRIGONAL CRYSTAL FIELD

The free-ion 3d6 5D state of the Fe2+ is split by the
cubic crystal field into the orbital doublet (E) and orbital
triplet (T2), the latter being the lowest one.1,2 We con-
sider the splitting of the orbital triplet by the perturbing
Hamiltonian given by

H0 = −λ′l · S − δ(l2z − 2/3), (1)

where λ′ = kλ (k ≈ 1 but less than unity) and S is the
spin angular momentum of the magnitude 2. A fictitious
angular momentum l of the magnitude 1 represents the
triplet state (l is antiparallel to the real orbital angular
momentum L (= −kl). Since lz + Sz is a constant of
the motion, its eigenvalue m can be used to classify the
various states, where m = l′z + S′

z, lz|l′z〉 = l′z|l′z〉 (l′z = 1,
0, -1), and Sz|S′

z〉 = S′
z|S′

z〉 (S′
z =2, 1, 0, -1, -2). Figure

1(a) shows the splitting of the ground orbital triplet by
the spin-orbit coupling λ′ (< 0) and the trigonal field δ
(> 0), where each energy level E normalized by |λ′| is
plotted as a function of x (= δ/λ′). The energy levels
are denoted by E3 (m = ±3), E(±)

2 (m = ±2), E(i)
1 (i =

1, 2, 3) (m = ±1), E(0)
0 and E

(±)
0 (m = 0). The ground

level is either E(+)
0 or E(1)

1 , depending on the sign of x.
All the energy states except for E(1)

1 and E(+)
0 might be

neglected, since these lowest levels lie 100 cm−1 below
the others. Thus we may use a fictitious spin s = 1 for
the lowest three states denoted by the eigenkets |ψ0〉 for
the singlet and |ψ±1〉 for the doublet:

|ψ±1〉 = c1| ± 1, 0〉 + c2|0,±1〉 + c3| ∓ 1,±2〉 (E = E
(1)
1 ),

|ψ0〉 = a1|1,−1〉+ a2|0, 0〉 + a3| − 1, 1〉 (E = E
(+)
0 ).

The parameters c1, c2, c3, a1, a2, and a3 are defined by

c1 = α(−
√

3/(1 + ξ1)), c2 = α, c3 = α
√

2/(1 − ξ1),

a1 = a3 = −√
3/(6 + ξ20)1/2, a2 = ξ0/(6 + ξ20)1/2,

where α = [3/(1 + ξ1)2 + 1 + 2/(1 − ξ1)2]−1, and the
parameters ξ0 and ξ1 are related to the energy E(1)

1 and

E
(+)
0 through

E
(1)
1 /λ′ = −x/3 + 1 + ξ1, E

(+)
0 /λ′ = −x/3 + 1 + ξ0.

The g-factors can be evaluates as gc = g
(0)
c + ∆g and

ga = g
(0)
a + ∆g, where ∆g is due to the effect of spin-

orbit coupling in admixing the upper orbital levels into
the ground three orbitals, and g(0)

c and g(0)
a are given by

g(0)
c = 〈ψ±|Vz |ψ±1〉 = −kc21 + 2c22 + (k + 4)c23,

g(0)
a =

√
2〈ψ0|Vx|ψ±1〉

= −k(c1a2 + c2a3) + 2
√

3(c1a1 + c2a2) + 2
√

2c3a3,

(2)

where Vz = −klZ +2Sz and Vx = −klx+2Sx. For a given
k, the two g(0)

c and g(0)
a values are functions of the single

parameter x and so they bear a functional relationship
to each other. In Fig. 1(b) we show the g(0)

c and g
(0)
a as

a function of x with k as a parameter: g(0)
c > g

(0)
a for

x < 0 and g(0)
c < g

(0)
a for x > 0. Note that x = −1.27 for

FeCl2. If we take the z axis parallel to the c axis, and x,
y axes perpendicular to it, we have Sx = qsx, Sy = qsy,
and Sz = psz, where

p = 〈ψ±1| ± Sz|ψ±1〉 = c22 + 2c23,

q = 〈ψ0|Sx ∓ iSy|ψ±1〉
√

2

=
√

3(c1a1 + c2a2) +
√

2c3a3. (3)

In Fig. 1(c) we show the parameters p and q as a function
of x: p < q for x > 0 and p > q for x < 0. The resultant
spin Hamiltonian for Fe2+ is given by

H = −D
∑

i

(s2iz − 2/3) − 2J
∑

〈i,j〉
si · sj − 2JA

∑

〈i,j〉
sizsjz ,

(4)
where J = q2K and K is the isotropic exchange energy
with the form of −2KSi · Sj between the real spins Si

and Sj , D ≈ δ/10 (> 0) is the single ion anisotropy, and
JA (= J(p2−q2)/q2) (see Fig. 1(d)) is the anisotropic ex-
change interaction. The second term is the isotropic ex-
change interaction, and third term is the anisotropic ex-
change interaction. The spin anisotropy parameter Deff
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FIG. 1: Derivation from Fe2+ spin Hamiltonian: (a) the en-

ergy levels, (b) g-factors g
(0)
c and g

(0)
a with k (= 0.9 and 1),

(c) spin anisotropy parameters p, q and (d) p2/q2 − 1, as a
function of x (= δ/λ′). x = −1.27 for Fe0.33Ta2S2C. Deriva-
tion from Co2+ spin Hamiltonian: (e) the energy levels, (f)

g-factors g
(0)
c and g

(0)
a with k (= 0.9 and 1), (g) spin anisotropy

parameters p, q and (h) p2/q2−1, as a function of x (= δ/λ′).
x = 1.68 for Co0.33Ta2S2C (from Ref. 5).

is defined as Deff (= D(s − 1/2) + 2zsJA) is negative.
The XY symmetry appears when Deff < 0.

II. SPIN HAMILTONIAN OF Co2+ IN THE
TRIGONAL CRYSTAL FIELD

In a cubic crystal field the free-ion 3d7 4F state is split
into two orbital triplets and one orbital singlet with a
triplet the lowest.1,3,4 We consider the splitting of the
ground state orbital triplet 4T1 into six Kramers dou-
blets. The perturbing Hamiltonian consists of the spin-
orbit coupling and trigonal distortion of the crystal field,

H0 = −(3/2)kλl · S− δ(l2z − 2/3), (5)

where λ′ = kλ, λ is the spin-orbit coupling constant and
may be different from its free-ion value of -180 cm−1,
and k is the orbital reduction factor due to admixture
of 4P into 4T1 and is less than but of order unity, δ

is the trigonal field strength, and S is the spin angular
momentum of the magnitude 3/2. A fictitious angular
momentum l of the magnitude 1 represents the triplet
state (l is antiparallel to the real orbital angular momen-
tum L = −3kl/2). Since lz + Sz is a constant of the
motion, its eigenvalue m can be used to classify the var-
ious states, where m = l′z + S′

z, lz|l′z〉 = l′z|l′z〉 (l′z = 1, 0,
-1), and Sz|S′

z〉 = S′
z|S′

z〉 (S′
z = 3/2, 1/2, -1/2, -3/2). In

Fig. 1(e) we show the energy level E of the six Kramers
doublets normalized by |λ′|, as a function of x (= δ/λ′):
one Es (m = ±5/2), E(±)

q (m = ±3/2), and E
(0)
c , E(1)

c ,
and E(2)

c (m = ±1/2). For all values of x, E(0)
c is the low-

est energy. The wave functions |ψ±1〉, |ψ±3〉, and |ψ±4〉
for m = ±1/2 are given by

|ψ±1〉 = c1| ∓ 1,±3/2〉+ c2|0,±1/2〉
+c3| ± 1,∓1/2〉 (E±1 = E(0)

c ),
|ψ±3〉 = c4| ∓ 1,±3/2〉+ c5|0,±1/2〉

+c6| ± 1,∓1/2〉 (E±3 = E(1)
c ),

|ψ±4〉 = c7| ∓ 1,±3/2〉+ c8|0,±1/2〉
+c9| ± 1,∓1/2〉 (E±4 = E(2)

c ),

where the parameters ci (i = 1 - 9) are defined by

c1 = β0

√
6/ζ0, c2 = −β0, c3 = β0

√
8/(ζ0 + 2)),

c4 = β1

√
6/ζ1, c5 = −β1, c6 = β1

√
8/(ζ1 + 2)),

c7 = β2

√
6/ζ2, c8 = −β2, c9 = β2

√
8/(ζ2 + 2)),

with βj = [6/ζ2
j + 1 + 8/(ζj + 2)2]1/2 (j = 0, 1, 2) The

parameter ζj (j = 0, 1, 2) is related to E(j)
c /λ′ as

E(j)
c /λ′ = −x/3 + 3(ζj + 3)/4,

and

x = δ/λ′ = 3(ζj + 3)/4 − 9/(2ζj) − 6/(ζj + 2).

The wave functions |ψ±2〉 and |ψ±5〉 for m = ±3/2 are
given by

|ψ±2〉 = d1|0,±3/2〉+ d2| ± 1,±1/2〉 (E±2 = E(+)
q ),

|ψ±5〉 = d3|0,±3/2〉+ d4| ± 1,±1/2〉 (E±5 = E(−)
q ),

where the parameter di (i = 1- 4) is defined by

d1 = γ(+)9/(2
√

6), d2 = γ(+)(2x/3 + E(+)
q /λ′),

d3 = γ(−)9/(2
√

6), d4 = γ(−)(2x/3 + E(−)
q /λ′),

with γ(±) = [(9/(2
√

6))2 + (2x/3 + E
(±)
q /λ′)2]1/2. Since

there are only two states in this lowest Kramers doublet,
the true spin S (= 3/2) can be replaced by a fictitious
spin s within the ground state. The g-factors can be
evaluates as gc = g

(0)
c + ∆g and ga = g

(0)
a + ∆g, where

∆g is due to the effect of spin-orbit coupling in admixing
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the upper orbital levels into the ground orbital triplet.
The values of g(0)

c and g(0)
a , are given by

g(0)
c = 2〈ψ±1|Vz |ψ±1〉 = (3k + 6)c21 + c22 − (3k + 2)c23,

g(0)
a = 2〈ψ±1|Vx|ψ∓1〉 = 4

√
3c1c3 + 4c22 − (3

√
2k)c2c3,

(6)

with Vz = −(3k/2)lZ + 2Sz and Vx = −(3k/2)lx + 2Sx.
In Fig. 1(f) we show the values of g(0)

a vs g(0)
c with k as

a parameter (k = 0.9, 0.95, and 1.0): g(0)
c 〉g(0)

a for x < 0
and g(0)

c < g
(0)
a for x > 0.

If we take the z axis parallel to the c axis, and x, y
axes perpendicular to it, we have Sx = qsx, Sy = qsy,
and Sz = psz;

p = 2〈ψ±1| ± Sz|ψ±〉 = 3c21 + c22 − c23,

q = 〈ψ±1|Sx ± iSy|ψ∓1〉 = 2c22 + 2
√

3c1c3. (7)

In Fig. 1(g) we show the parameters p and q as a function
of x: p < q for x >0 and p > q for x < 0. The spin
Hamiltonian of Co2+ may be written as

H = −2J
∑

〈i,j〉
si · sj − 2JA

∑

〈i,j〉
sizsjz , (8)

where Ji = q2K and K is the isotropic exchange energy
with the form of −2KSi ·Sj between the real spins Si and
Sj , and JA = (p2 − q2)/q2J is the anisotropic exchange
interaction. The first term of the spin Hamiltonian is
an Heisenberg-type exchange interaction and the second
term is anisotropic exchange interaction. Since s = 1/2,
there is no single ion anisotropy. The ratio JA/J (=
(p2 − q2)/q2) (see Fig. 1(h)) provides a measure for the
spin symmetry of the system.

III. VAN VLECK SUSCEPTIBILITY OF Co2+

Acording to Lines,3 the Van Vleck susceptibility for
Co2+ is expressed as

χc
V =

2NAµ
2
B

2s+ 1
|〈ψ+1|Vz |ψ+3〉|2
E+3 − E+1

+
|〈ψ+1|Vz |ψ+4〉|2
E+4 − E+1

, (9)

χa
V =

2NAµ
2
B

2s+ 1
|〈ψ+1|Vx|ψ+2〉|2
E+2 − E+1

+
|〈ψ+1|Vx|ψ−3〉|2
E−3 − E+1

+
|〈ψ+1|Vx|ψ−4〉|2
E−4 − E+1

+
|〈ψ+1|Vx|ψ5〉|2
E+5 − E+1

, (10)

with s = 1/2, where the matrix elements are given by

〈ψ+1|Vz |ψ+3〉 = (3k/2 + 3)c1c4 + c2c5 − (3k/2 + 1)c3c6,

〈ψ+1|Vz|ψ+4〉 = (3k/2 + 3)c1c7 + c2c8 − (3k/2 + 1)c3c9,

〈ψ−1|Vx|ψ−2〉 = −(3
√

2k/4)(d1c1 + d2c2)

+
√

3c2d1 + 2c3d2,
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FIG. 2: Plot of Van Vleck susceptibility χc
V and χa

V as a
function of x, where k (= 0.9 and 1.0) is changed.

〈ψ−1|Vx|ψ+3〉 =
√

3c3c4 + 2c2c5 +
√

3c1c6
−(3

√
2k/4)(c3c5 + c2c6),

〈ψ−1|Vx|ψ+4〉 =
√

3c3c7 + 2c2c8 +
√

3c1c9
−(3

√
2k/4)(c3c8 + c2c9),

〈ψ−1|Vx|ψ−5〉 = 2c3d4 +
√

3c2d3

−(3
√

2k/4)(c1d3 + c2d4),

and

|〈ψ−i|Vx|ψ−j〉| = |〈ψj |Vx|ψi〉| = |〈ψi|Vx|ψj〉|.

In Fig. 2 we show the plot of χc
V /NAµ

2
B/|λ| and

χa
V /NAµ

2
B/|λ| as a function of x with k as a parameter (k

= 0.9, 0.95, 1.0). For x = 1.68 and k = 0.9 for Co2+ spin
for CoCl2, the Van Vleck susceptibility can be calculated
as χc

V = 4.19 NAµ
2
B/(|λ|) and χa

V = 7.29 NAµ
2
B/(|λ|):

χc
V = 6.1 × 10−3 (emu/Co mole) and χa

V = 10.6 × 10−3

(emu/Co mole) when λ = −180 cm−1 = -259 K.

APPENDIX: MATHEMATICA 5.0 PROGRAMS

Program-1
Spin Hamiltonian for Fe2+ spins in the trigonal field
Program-2
Spin Hamiltonian for Co2+ spins in the trigonal field
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