# Spin Hamiltonian of $\mathrm{Fe}^{2+}$ and $\mathrm{Co}^{2+}$ spin in the trigonal crystal field 

Masatsugu Suzuki* and Itsuko S. Suzuki<br>Department of Physics, State University of New York at Binghamton, Binghamton, New York 13902-6016

(Dated: January 8, 2005)


#### Abstract

The magnetic properties of $M \mathrm{Cl}_{2}{ }^{1-4}$ and $M_{c} \mathrm{Ta}_{2} \mathrm{~S}_{2} \mathrm{C}^{5}$ with $M=\mathrm{Fe}$ and Co is mainly determined by magnetic behaviors of magnetic $M$ ions in a crystal field such that the anion octahedra surrounding the M ions are trigonally elongated along the $c$-axis. The crystal field splitting of the $d$ levels is usually stronger than the spin-orbit coupling, but weaker than the exchange interaction between M atoms. Here we present a simple review on the spin Hamiltonian of $\mathrm{Fe}^{2+}$ and $\mathrm{Co}^{2+}$ under the trigonal crystal field. The program of the Mathematica 5.0 is also attached to the Appendix. This note is used as supplement for Ref. 4.


PACS numbers:

## I. SPIN HAMILTONIAN OF $\mathrm{Fe}^{2+}$ IN THE TRIGONAL CRYSTAL FIELD

The free-ion $3 \mathrm{~d}^{6}{ }^{5} \mathrm{D}$ state of the $\mathrm{Fe}^{2+}$ is split by the cubic crystal field into the orbital doublet $(E)$ and orbital triplet $\left(T_{2}\right)$, the latter being the lowest one. ${ }^{1,2}$ We consider the splitting of the orbital triplet by the perturbing Hamiltonian given by

$$
\begin{equation*}
H_{0}=-\lambda^{\prime} \mathbf{l} \cdot \mathbf{S}-\delta\left(l_{z}^{2}-2 / 3\right) \tag{1}
\end{equation*}
$$

where $\lambda^{\prime}=k \lambda(k \approx 1$ but less than unity $)$ and $S$ is the spin angular momentum of the magnitude 2. A fictitious angular momentum $l$ of the magnitude 1 represents the triplet state ( $l$ is antiparallel to the real orbital angular momentum $L(=-k \mathbf{l})$. Since $l_{z}+S_{z}$ is a constant of the motion, its eigenvalue $m$ can be used to classify the various states, where $m=l_{z}^{\prime}+S_{z}^{\prime}, l_{z}\left|l_{z}^{\prime}\right\rangle=l_{z}^{\prime}\left|l_{z}^{\prime}\right\rangle\left(l_{z}^{\prime}=1\right.$, $0,-1)$, and $S_{z}\left|S_{z}^{\prime}\right\rangle=S_{z}^{\prime}\left|S_{z}^{\prime}\right\rangle\left(S_{z}^{\prime}=2,1,0,-1,-2\right)$. Figure 1 (a) shows the splitting of the ground orbital triplet by the spin-orbit coupling $\lambda^{\prime}(<0)$ and the trigonal field $\delta$ $(>0)$, where each energy level $E$ normalized by $\left|\lambda^{\prime}\right|$ is plotted as a function of $x\left(=\delta / \lambda^{\prime}\right)$. The energy levels are denoted by $E_{3}(m= \pm 3), E_{2}^{( \pm)}(m= \pm 2), E_{1}^{(i)}(i=$ $1,2,3)(m= \pm 1), E_{0}^{(0)}$ and $E_{0}^{( \pm)}(m=0)$. The ground level is either $E_{0}^{(+)}$or $E_{1}^{(1)}$, depending on the sign of $x$. All the energy states except for $E_{1}^{(1)}$ and $E_{0}^{(+)}$might be neglected, since these lowest levels lie $100 \mathrm{~cm}^{-1}$ below the others. Thus we may use a fictitious $\operatorname{spin} s=1$ for the lowest three states denoted by the eigenkets $\left|\psi_{0}\right\rangle$ for the singlet and $\left|\psi_{ \pm 1}\right\rangle$ for the doublet:

$$
\begin{aligned}
\left|\psi_{ \pm 1}\right\rangle & =c_{1}| \pm 1,0\rangle+c_{2}|0, \pm 1\rangle+c_{3}|\mp 1, \pm 2\rangle\left(E=E_{1}^{(1)}\right) \\
\left|\psi_{0}\right\rangle & =a_{1}|1,-1\rangle+a_{2}|0,0\rangle+a_{3}|-1,1\rangle \quad\left(E=E_{0}^{(+)}\right)
\end{aligned}
$$

The parameters $c_{1}, c_{2}, c_{3}, a_{1}, a_{2}$, and $a_{3}$ are defined by

$$
\begin{aligned}
& c_{1}=\alpha\left(-\sqrt{3} /\left(1+\xi_{1}\right)\right), c_{2}=\alpha, c_{3}=\alpha \sqrt{2} /\left(1-\xi_{1}\right) \\
& a_{1}=a_{3}=-\sqrt{3} /\left(6+\xi_{0}^{2}\right)^{1 / 2}, a_{2}=\xi_{0} /\left(6+\xi_{0}^{2}\right)^{1 / 2}
\end{aligned}
$$

where $\alpha=\left[3 /\left(1+\xi_{1}\right)^{2}+1+2 /\left(1-\xi_{1}\right)^{2}\right]^{-1}$, and the parameters $\xi_{0}$ and $\xi_{1}$ are related to the energy $E_{1}^{(1)}$ and
$E_{0}^{(+)}$through

$$
E_{1}^{(1)} / \lambda^{\prime}=-x / 3+1+\xi_{1}, E_{0}^{(+)} / \lambda^{\prime}=-x / 3+1+\xi_{0}
$$

The $g$-factors can be evaluates as $g_{c}=g_{c}^{(0)}+\Delta g$ and $g_{a}=g_{a}^{(0)}+\Delta g$, where $\Delta g$ is due to the effect of spinorbit coupling in admixing the upper orbital levels into the ground three orbitals, and $g_{c}^{(0)}$ and $g_{a}^{(0)}$ are given by

$$
\begin{align*}
g_{c}^{(0)} & =\left\langle\psi_{ \pm}\right| V_{z}\left|\psi_{ \pm 1}\right\rangle=-k c_{1}^{2}+2 c_{2}^{2}+(k+4) c_{3}^{2} \\
g_{a}^{(0)} & =\sqrt{2}\left\langle\psi_{0}\right| V_{x}\left|\psi_{ \pm 1}\right\rangle \\
& =-k\left(c_{1} a_{2}+c_{2} a_{3}\right)+2 \sqrt{3}\left(c_{1} a_{1}+c_{2} a_{2}\right)+2 \sqrt{2} c_{3} a_{3} \tag{2}
\end{align*}
$$

where $V_{z}=-k l_{Z}+2 S_{z}$ and $V_{x}=-k l_{x}+2 S_{x}$. For a given $k$, the two $g_{c}^{(0)}$ and $g_{a}^{(0)}$ values are functions of the single parameter $x$ and so they bear a functional relationship to each other. In Fig. 1(b) we show the $g_{c}^{(0)}$ and $g_{a}^{(0)}$ as a function of $x$ with $k$ as a parameter: $g_{c}^{(0)}>g_{a}^{(0)}$ for $x<0$ and $g_{c}^{(0)}<g_{a}^{(0)}$ for $x>0$. Note that $x=-1.27$ for $\mathrm{FeCl}_{2}$. If we take the $z$ axis parallel to the $c$ axis, and $x$, $y$ axes perpendicular to it, we have $S_{x}=q s_{x}, S_{y}=q s_{y}$, and $S_{z}=p s_{z}$, where

$$
\begin{align*}
p & =\left\langle\psi_{ \pm 1}\right| \pm S_{z}\left|\psi_{ \pm 1}\right\rangle=c_{2}^{2}+2 c_{3}^{2} \\
q & =\left\langle\psi_{0}\right| S_{x} \mp i S_{y}\left|\psi_{ \pm 1}\right\rangle \sqrt{2} \\
& =\sqrt{3}\left(c_{1} a_{1}+c_{2} a_{2}\right)+\sqrt{2} c_{3} a_{3} \tag{3}
\end{align*}
$$

In Fig. 1(c) we show the parameters $p$ and $q$ as a function of $x$ : $p<q$ for $x>0$ and $p>q$ for $x<0$. The resultant spin Hamiltonian for $\mathrm{Fe}^{2+}$ is given by

$$
\begin{equation*}
H=-D \sum_{i}\left(s_{i z}^{2}-2 / 3\right)-2 J \sum_{\langle i, j\rangle} \mathbf{s}_{i} \cdot \mathbf{s}_{j}-2 J_{A} \sum_{\langle i, j\rangle} s_{i z} s_{j z}, \tag{4}
\end{equation*}
$$

where $J=q^{2} K$ and K is the isotropic exchange energy with the form of $-2 K \mathbf{S}_{i} \cdot \mathbf{S}$ between the real spins $\mathbf{S}_{i}$ and $\mathbf{S}_{j}, D \approx \delta / 10(>0)$ is the single ion anisotropy, and $J_{A}\left(=J\left(p^{2}-q^{2}\right) / q^{2}\right)$ (see Fig. 1(d)) is the anisotropic exchange interaction. The second term is the isotropic exchange interaction, and third term is the anisotropic exchange interaction. The spin anisotropy parameter $D_{e f f}$


FIG. 1: Derivation from $\mathrm{Fe}^{2+}$ spin Hamiltonian: (a) the energy levels, (b) $g$-factors $g_{c}^{(0)}$ and $g_{a}^{(0)}$ with $k(=0.9$ and 1$)$, (c) spin anisotropy parameters $p, q$ and (d) $p^{2} / q^{2}-1$, as a function of $x\left(=\delta / \lambda^{\prime}\right) . x=-1.27$ for $\mathrm{Fe}_{0.33} \mathrm{Ta}_{2} \mathrm{~S}_{2} \mathrm{C}$. Derivation from $\mathrm{Co}^{2+}$ spin Hamiltonian: (e) the energy levels, (f) $g$-factors $g_{c}^{(0)}$ and $g_{a}^{(0)}$ with $k(=0.9$ and 1$),(\mathrm{g})$ spin anisotropy parameters $p, q$ and (h) $p^{2} / q^{2}-1$, as a function of $x\left(=\delta / \lambda^{\prime}\right)$. $x=1.68$ for $\mathrm{Co}_{0.33} \mathrm{Ta}_{2} \mathrm{~S}_{2} \mathrm{C}$ (from Ref. 5).
is defined as $D_{\text {eff }}\left(=D(s-1 / 2)+2 z s J_{A}\right)$ is negative. The $X Y$ symmetry appears when $D_{\text {eff }}<0$.

## II. SPIN HAMILTONIAN OF $\mathrm{Co}^{2+}$ IN THE TRIGONAL CRYSTAL FIELD

In a cubic crystal field the free-ion $3 \mathrm{~d}^{7}{ }^{4} \mathrm{~F}$ state is split into two orbital triplets and one orbital singlet with a triplet the lowest. ${ }^{1,3,4}$ We consider the splitting of the ground state orbital triplet ${ }^{4} \mathrm{~T}_{1}$ into six Kramers doublets. The perturbing Hamiltonian consists of the spinorbit coupling and trigonal distortion of the crystal field,

$$
\begin{equation*}
H_{0}=-(3 / 2) k \lambda \mathbf{l} \cdot \mathbf{S}-\delta\left(l_{z}^{2}-2 / 3\right) \tag{5}
\end{equation*}
$$

where $\lambda^{\prime}=k \lambda, \lambda$ is the spin-orbit coupling constant and may be different from its free-ion value of $-180 \mathrm{~cm}^{-1}$, and $k$ is the orbital reduction factor due to admixture of ${ }^{4} \mathrm{P}$ into ${ }^{4} \mathrm{~T}_{1}$ and is less than but of order unity, $\delta$
is the trigonal field strength, and $S$ is the spin angular momentum of the magnitude $3 / 2$. A fictitious angular momentum $l$ of the magnitude 1 represents the triplet state ( $l$ is antiparallel to the real orbital angular momentum $\mathbf{L}=-3 k \mathbf{l} / 2)$. Since $l_{z}+S_{z}$ is a constant of the motion, its eigenvalue $m$ can be used to classify the various states, where $m=l_{z}^{\prime}+S_{z}^{\prime}, l_{z}\left|l_{z}^{\prime}\right\rangle=l_{z}^{\prime}\left|l_{z}^{\prime}\right\rangle\left(l_{z}^{\prime}=1,0\right.$, -1), and $S_{z}\left|S_{z}^{\prime}\right\rangle=S_{z}^{\prime}\left|S_{z}^{\prime}\right\rangle\left(\mathrm{S}_{z}^{\prime}=3 / 2,1 / 2,-1 / 2,-3 / 2\right)$. In Fig. 1(e) we show the energy level $E$ of the six Kramers doublets normalized by $\left|\lambda^{\prime}\right|$, as a function of $x\left(=\delta / \lambda^{\prime}\right)$ : one $E_{s}(m= \pm 5 / 2), E_{q}^{( \pm)}(m= \pm 3 / 2)$, and $E_{c}^{(0)}, E_{c}^{(1)}$, and $E_{c}^{(2)}(m= \pm 1 / 2)$. For all values of $x, E_{c}^{(0)}$ is the lowest energy. The wave functions $\left|\psi_{ \pm 1}\right\rangle,\left|\psi_{ \pm 3}\right\rangle$, and $\left|\psi_{ \pm 4}\right\rangle$ for $m= \pm 1 / 2$ are given by

$$
\begin{aligned}
\left|\psi_{ \pm 1}\right\rangle= & c_{1}|\mp 1, \pm 3 / 2\rangle+c_{2}|0, \pm 1 / 2\rangle \\
& +c_{3}| \pm 1, \mp 1 / 2\rangle\left(E_{ \pm 1}=E_{c}^{(0)}\right) \\
\left|\psi_{ \pm 3}\right\rangle= & c_{4}|\mp 1, \pm 3 / 2\rangle+c_{5}|0, \pm 1 / 2\rangle \\
& +c_{6}| \pm 1, \mp 1 / 2\rangle\left(E_{ \pm 3}=E_{c}^{(1)}\right) \\
\left|\psi_{ \pm 4}\right\rangle= & c_{7}|\mp 1, \pm 3 / 2\rangle+c_{8}|0, \pm 1 / 2\rangle \\
& +c_{9}| \pm 1, \mp 1 / 2\rangle\left(E_{ \pm 4}=E_{c}^{(2)}\right)
\end{aligned}
$$

where the parameters $c_{i}(i=1-9)$ are defined by

$$
\begin{aligned}
& \left.c_{1}=\beta_{0} \sqrt{6} / \zeta_{0}, c_{2}=-\beta_{0}, c_{3}=\beta_{0} \sqrt{8} /\left(\zeta_{0}+2\right)\right) \\
& \left.c_{4}=\beta_{1} \sqrt{6} / \zeta_{1}, c_{5}=-\beta_{1}, c_{6}=\beta_{1} \sqrt{8} /\left(\zeta_{1}+2\right)\right) \\
& \left.c_{7}=\beta_{2} \sqrt{6} / \zeta_{2}, c_{8}=-\beta_{2}, c_{9}=\beta_{2} \sqrt{8} /\left(\zeta_{2}+2\right)\right)
\end{aligned}
$$

with $\beta_{j}=\left[6 / \zeta_{j}^{2}+1+8 /\left(\zeta_{j}+2\right)^{2}\right]^{1 / 2}(j=0,1,2)$ The parameter $\zeta_{j}(j=0,1,2)$ is related to $E_{c}^{(j)} / \lambda^{\prime}$ as

$$
E_{c}^{(j)} / \lambda^{\prime}=-x / 3+3\left(\zeta_{j}+3\right) / 4
$$

and

$$
x=\delta / \lambda^{\prime}=3\left(\zeta_{j}+3\right) / 4-9 /\left(2 \zeta_{j}\right)-6 /\left(\zeta_{j}+2\right)
$$

The wave functions $\left|\psi_{ \pm 2}\right\rangle$ and $\left|\psi_{ \pm 5}\right\rangle$ for $m= \pm 3 / 2$ are given by

$$
\begin{aligned}
& \left|\psi_{ \pm 2}\right\rangle=d_{1}|0, \pm 3 / 2\rangle+d_{2}| \pm 1, \pm 1 / 2\rangle \\
& \left.\left|\psi_{ \pm 5}\right\rangle=d_{ \pm 2}=E_{q}^{(+)}\right)
\end{aligned},
$$

where the parameter $d_{i}(i=1-4)$ is defined by

$$
\begin{aligned}
d_{1} & =\gamma^{(+)} 9 /(2 \sqrt{6}), d_{2}=\gamma^{(+)}\left(2 x / 3+E_{q}^{(+)} / \lambda^{\prime}\right) \\
d_{3} & =\gamma^{(-)} 9 /(2 \sqrt{6}), d_{4}=\gamma^{(-)}\left(2 x / 3+E_{q}^{(-)} / \lambda^{\prime}\right)
\end{aligned}
$$

with $\gamma^{( \pm)}=\left[(9 /(2 \sqrt{6}))^{2}+\left(2 x / 3+E_{q}^{( \pm)} / \lambda^{\prime}\right)^{2}\right]^{1 / 2}$. Since there are only two states in this lowest Kramers doublet, the true spin $S(=3 / 2)$ can be replaced by a fictitious spin $s$ within the ground state. The $g$-factors can be evaluates as $g_{c}=g_{c}^{(0)}+\Delta g$ and $g_{a}=g_{a}^{(0)}+\Delta g$, where $\Delta g$ is due to the effect of spin-orbit coupling in admixing
the upper orbital levels into the ground orbital triplet. The values of $g_{c}^{(0)}$ and $g_{a}^{(0)}$, are given by

$$
\begin{align*}
& g_{c}^{(0)}=2\left\langle\psi_{ \pm 1}\right| V_{z}\left|\psi_{ \pm 1}\right\rangle=(3 k+6) c_{1}^{2}+c_{2}^{2}-(3 k+2) c_{3}^{2} \\
& g_{a}^{(0)}=2\left\langle\psi_{ \pm 1}\right| V_{x}\left|\psi_{\mp 1}\right\rangle=4 \sqrt{3} c_{1} c_{3}+4 c_{2}^{2}-(3 \sqrt{2} k) c_{2} c_{3} \tag{6}
\end{align*}
$$

with $V_{z}=-(3 k / 2) l_{Z}+2 S_{z}$ and $V_{x}=-(3 k / 2) l_{x}+2 S_{x}$. In Fig. 1(f) we show the values of $g_{a}^{(0)}$ vs $g_{c}^{(0)}$ with $k$ as a parameter $\left(k=0.9,0.95\right.$, and 1.0): $\left.g_{c}^{(0)}\right\rangle g_{a}^{(0)}$ for $x<0$ and $g_{c}^{(0)}<g_{a}^{(0)}$ for $x>0$.

If we take the $z$ axis parallel to the $c$ axis, and $x, y$ axes perpendicular to it, we have $S_{x}=q s_{x}, S_{y}=q s_{y}$, and $S_{z}=p s_{z}$;

$$
\begin{align*}
p & =2\left\langle\psi_{ \pm 1}\right| \pm S_{z}\left|\psi_{ \pm}\right\rangle=3 c_{1}^{2}+c_{2}^{2}-c_{3}^{2} \\
q & =\left\langle\psi_{ \pm 1}\right| S_{x} \pm i S_{y}\left|\psi_{\mp 1}\right\rangle=2 c_{2}^{2}+2 \sqrt{3} c_{1} c_{3} \tag{7}
\end{align*}
$$

In Fig. 1(g) we show the parameters $p$ and $q$ as a function of $x: p<q$ for $x>0$ and $p>q$ for $x<0$. The spin Hamiltonian of $\mathrm{Co}^{2+}$ may be written as

$$
\begin{equation*}
H=-2 J \sum_{\langle i, j\rangle} \mathbf{s}_{i} \cdot \mathbf{s}_{j}-2 J_{A} \sum_{\langle i, j\rangle} s_{i z} s_{j z} \tag{8}
\end{equation*}
$$

where $J_{i}=q^{2} K$ and $K$ is the isotropic exchange energy with the form of $-2 K \mathbf{S}_{i} \cdot \mathbf{S}_{j}$ between the real spins $\mathbf{S}_{i}$ and $\mathbf{S}_{j}$, and $J_{A}=\left(p^{2}-q^{2}\right) / q^{2} J$ is the anisotropic exchange interaction. The first term of the spin Hamiltonian is an Heisenberg-type exchange interaction and the second term is anisotropic exchange interaction. Since $s=1 / 2$, there is no single ion anisotropy. The ratio $J_{A} / J(=$ $\left.\left(p^{2}-q^{2}\right) / q^{2}\right)$ (see Fig. 1(h)) provides a measure for the spin symmetry of the system.

## III. VAN VLECK SUSCEPTIBILITY OF Co ${ }^{2+}$

Acording to Lines, ${ }^{3}$ the Van Vleck susceptibility for $\mathrm{Co}^{2+}$ is expressed as

$$
\begin{align*}
\chi_{V}^{c}= & \frac{2 N_{A} \mu_{B}^{2}}{2 s+1} \frac{\left.\left|\left\langle\psi_{+1}\right| V_{z}\right| \psi_{+3}\right\rangle\left.\right|^{2}}{E_{+3}-E_{+1}}+\frac{\left.\left|\left\langle\psi_{+1}\right| V_{z}\right| \psi_{+4}\right\rangle\left.\right|^{2}}{E_{+4}-E_{+1}},  \tag{9}\\
\chi_{V}^{a}= & \frac{2 N_{A} \mu_{B}^{2}}{2 s+1} \frac{\left.\left|\left\langle\psi_{+1}\right| V_{x}\right| \psi_{+2}\right\rangle\left.\right|^{2}}{E_{+2}-E_{+1}}+\frac{\left.\left|\left\langle\psi_{+1}\right| V_{x}\right| \psi_{-3}\right\rangle\left.\right|^{2}}{E_{-3}-E_{+1}} \\
& +\frac{\left.\left|\left\langle\psi_{+1}\right| V_{x}\right| \psi_{-4}\right\rangle\left.\right|^{2}}{E_{-4}-E_{+1}}+\frac{\left.\left|\left\langle\psi_{+1}\right| V_{x}\right| \psi_{5}\right\rangle\left.\right|^{2}}{E_{+5}-E_{+1}}, \tag{10}
\end{align*}
$$

with $s=1 / 2$, where the matrix elements are given by

$$
\left\langle\psi_{+1}\right| V_{z}\left|\psi_{+3}\right\rangle=(3 k / 2+3) c_{1} c_{4}+c_{2} c_{5}-(3 k / 2+1) c_{3} c_{6}
$$

$$
\begin{aligned}
\left\langle\psi_{+1}\right| V_{z}\left|\psi_{+4}\right\rangle= & (3 k / 2+3) c_{1} c_{7}+c_{2} c_{8}-(3 k / 2+1) c_{3} c_{9}, \\
\left\langle\psi_{-1}\right| V_{x}\left|\psi_{-2}\right\rangle= & -(3 \sqrt{2} k / 4)\left(d_{1} c_{1}+d_{2} c_{2}\right) \\
& +\sqrt{3} c_{2} d_{1}+2 c_{3} d_{2},
\end{aligned}
$$

FIG. 2: Plot of Van Vleck susceptibility $\chi_{V}^{c}$ and $\chi_{V}^{a}$ as a function of $x$, where $k$ ( $=0.9$ and 1.0) is changed.

$$
\begin{aligned}
\left\langle\psi_{-1}\right| V_{x}\left|\psi_{+3}\right\rangle= & \sqrt{3} c_{3} c_{4}+2 c_{2} c_{5}+\sqrt{3} c_{1} c_{6} \\
& -(3 \sqrt{2} k / 4)\left(c_{3} c_{5}+c_{2} c_{6}\right) \\
\left\langle\psi_{-1}\right| V_{x}\left|\psi_{+4}\right\rangle= & \sqrt{3} c_{3} c_{7}+2 c_{2} c_{8}+\sqrt{3} c_{1} c_{9} \\
& -(3 \sqrt{2} k / 4)\left(c_{3} c_{8}+c_{2} c_{9}\right) \\
\left\langle\psi_{-1}\right| V_{x}\left|\psi_{-5}\right\rangle= & 2 c_{3} d_{4}+\sqrt{3} c_{2} d_{3} \\
& -(3 \sqrt{2} k / 4)\left(c_{1} d_{3}+c_{2} d_{4}\right)
\end{aligned}
$$

and

$$
\left.\left|\left\langle\psi_{-i}\right| V_{x}\right| \psi_{-j}\right\rangle\left|=\left|\left\langle\psi_{j}\right| V_{x}\right| \psi_{i}\right\rangle\left|=\left|\left\langle\psi_{i}\right| V_{x}\right| \psi_{j}\right\rangle \mid .
$$

In Fig. 2 we show the plot of $\chi_{V}^{c} / N_{A} \mu_{B}^{2} /|\lambda|$ and $\chi_{V}^{a} / N_{A} \mu_{B}^{2} /|\lambda|$ as a function of $x$ with $k$ as a parameter $(k$ $=0.9,0.95,1.0)$. For $x=1.68$ and $k=0.9$ for $\mathrm{Co}^{2+}$ spin for $\mathrm{CoCl}_{2}$, the Van Vleck susceptibility can be calculated as $\chi_{V}^{c}=4.19 N_{A} \mu_{B}^{2} /(|\lambda|)$ and $\chi_{V}^{a}=7.29 N_{A} \mu_{B}^{2} /(|\lambda|)$ : $\chi_{V}^{c}=6.1 \times 10^{-3}(\mathrm{emu} / \mathrm{Co}$ mole $)$ and $\chi_{V}^{a}=10.6 \times 10^{-3}$ (emu/Co mole) when $\lambda=-180 \mathrm{~cm}^{-1}=-259 \mathrm{~K}$.

## APPENDIX: MATHEMATICA 5.0 PROGRAMS

Program-1
Spin Hamiltonian for $\mathrm{Fe}^{2+}$ spins in the trigonal field Program-2
Spin Hamiltonian for $\mathrm{Co}^{2+}$ spins in the trigonal field
${ }^{2}$ K. Inomata and T. Oguchi, J. Phys. Soc. Jpn. 23, 765 (1967).
${ }^{3}$ M.E. Lines, Phys. Rev. 131, 546 (1963).
${ }^{4}$ T. Oguchi, J. Phys. Soc. Jpn. 20, 2236 (1965).
${ }^{5}$ M. Suzuki, I.S. Suzuki, to be appeared in Phys. Rev. B. (2005): arXiv.org, cond-mat/0402501.

