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We consider a spin glass system which is cooled from high temperature to a temperture T below
a spin freezing temperature TSG [so called the ZFC (zero-field cooled) cooling protocol] and kept at
T for a wait time tw. After a magnetic field H is applied at t = 0, the ZFC susceptibility χZF C

is measured as a function of the time t. It is known that χZF C(t) exhibits a stretched exponential
relaxation with a relaxation time τ . Correspondingly the relaxation rate S(t) shows a peak at a
characteristic time tcr. We find some relation between tcr and τ , which may be useful in analyzing
the aging dynamics of the spin glass system.

PACS numbers:

Here we present a simple review on the stretched ex-
ponential relaxation of χZFC of SG phase after the ZFC
aging protocol. Theoretically1,2 and experimentally3–16

it has been accepted that the time variation of χZFC(t)
may be described by a product of a power-law form and
a stretched exponential function

χZFC(t) = MZFC(t)/H = χ0 − At−m exp[−(t/τ)1−n],
(1)

where the exponent m may be positive and is very close to
zero, n is between 0 and 1, τ is a characteristic relaxation
time, and χ0 and A are constants. In general, these pa-
rameters are dependent on tw. This form of χZFC(t) in-
corporates both the nonequilibrium aging effect through
the stretched exponential factor [exp[−(t/τ)1−n] in the
crossover region (t ≈ tw and t > tw) between the quasi
equilibrium state and nonequilibrium state, and an equi-
librium relaxation response at t � tw through a pure
power-law relaxation (t−m). Note that Ogielski1 fits his
data by a stretched exponential multiplied by a power
function. For 0.6 < T/TSG < 1, Ogielski1 fits it by a
power law with a different temperature dependence of
exponent m. When t � τ , χZFC(t) is well described
by a power law form given by At−m. However, in the
regime of t ≈ τ , the stretched exponential relaxation is a
very good approximation in spite of finite m that is very
small.

For all temperatures, χZFC(t) increases with increas-
ing t and the relaxation rate S(t), which is defined by

S(t) = dχZFC(t)/d ln t = tdχZFC(t)/dt, (2)

exhibits a maximum at tcr that is close to tw. Using
Eq.(1) for χZFC(t), the relaxation rate S(t) can be de-
rived as

S(t) = −(Aτ−m) exp[−(t/τ)1−n]

(t/τ)−(m+n)[(1 − n) + m(t/τ)n−1]. (3)

The condition that S(t) may have a peak at t = tcr

[dS(t)/dt = 0] leads to the ratio xcr = tcr/τ satisfying
the following equation

(1−n)2x2
cr − (1−n)(1−2m−n)xn+1

cr +m2x2n
cr = 0. (4)

The solution of Eq.(4) can be exactly obtained as

xcr = tcr/τ = (ξ/2)1/(1−n), (5)

with

ξ = [1−2m−n+(1−n)1/2(1−4m−n)1/2]/(1−n), (6)

where 4m+n < 1. Note that the value of xcr is uniquely
determined only by the values of n and m. When m = 0,
xcr = 1 (or tcr = τ), which is independent of n. Figure
1(a) shows the contour plot of xcr in the (n,m) plane
with −0.02 ≤ m ≤ 0.08 and 0.2 ≤ n ≤ 0.9, where the
points having the same xcr are connected by each solid
line. The value of xcr is lower than 1 for m > 0, is equal
to 1 for m = 0 irrespective of n, and is larger than 1 for
m < 0. Figure 1(b) shows a plot of xcr as a function
of m at various fixed n. The maximum value of S(t) at
t = tcr is given by

Smax = Aτ−m2−1+ m
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When m = 0, Smax is equal to S0
max [= A(1−n)/e] with

e = 2.7182.
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FIG. 1: (Color online)(a) Contour plot of xcr (0.1 ≤ xcr ≤ 1.1) in the (n, m) plane, where xcr = tcr/τ , and the points with the
same xcr are connected by the same solid line. The definition of tcr and τ is given in the text. (b) Plot of xcr vs m at various
n. The expression for xcr is given by Eqs.(5) and (6).
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