Note on stretched exponential relaxation in spin glass phase
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We consider a spin glass system which is cooled from high temperature to a temperture 7' below
a spin freezing temperature Tsg [so called the ZFC (zero-field cooled) cooling protocol] and kept at
T for a wait time t,,. After a magnetic field H is applied at ¢ = 0, the ZFC susceptibility xzrc
is measured as a function of the time ¢. It is known that xzrc(t) exhibits a stretched exponential
relaxation with a relaxation time 7. Correspondingly the relaxation rate S(t) shows a peak at a
characteristic time t.,. We find some relation between t., and 7, which may be useful in analyzing

the aging dynamics of the spin glass system.

PACS numbers:

Here we present a simple review on the stretched ex-
ponential relaxation of xzpc of SG phase after the ZFC
aging protocol. Theoretically"? and experimentally> 6
it has been accepted that the time variation of xzrc (%)
may be described by a product of a power-law form and
a stretched exponential function

xzro(t) = Mzrc(t)/H = xo — At eXp[—(t/T)k"(],)
1
where the exponent m may be positive and is very close to
zero, n is between 0 and 1, 7 is a characteristic relaxation
time, and yo and A are constants. In general, these pa-
rameters are dependent on t,,. This form of xzrc(t) in-
corporates both the nonequilibrium aging effect through
the stretched exponential factor [exp[—(¢/7)'~"] in the
crossover region (¢ =~ t,, and t > t,,) between the quasi
equilibrium state and nonequilibrium state, and an equi-
librium relaxation response at t < t, through a pure
power-law relaxation (t~™). Note that Ogielski! fits his
data by a stretched exponential multiplied by a power
function. For 0.6 < T/Tsg < 1, Ogielski! fits it by a
power law with a different temperature dependence of
exponent m. When ¢t < 7, xzrc(t) is well described
by a power law form given by At~™. However, in the
regime of ¢ &~ 7, the stretched exponential relaxation is a
very good approximation in spite of finite m that is very
small.
For all temperatures, xzrc(t) increases with increas-
ing t and the relaxation rate S(t), which is defined by

S(t) = dxzre()/dInt = tdyzro(t) /A, (2)

exhibits a maximum at t.. that is close to t,. Using
Eq.(1) for xzrc(t), the relaxation rate S(¢) can be de-
rived as

S(t) = —(Ar™™)exp[—(t/7)' "]

(t/7)" "L = n) +m(t/r)" . (3)

The condition that S(¢) may have a peak at t = t.,
[dS(t)/dt = 0] leads to the ratio x¢r = tor/T satisfying
the following equation

(1—n)?22, — (1—n)(1—2m—n)z2 " +m?22" = 0. (4)

The solution of Eq.(4) can be exactly obtained as

Ter = tcr/T = (§/2)1/(17n)7 (5)
with
¢ = [1=2m—n+(1—n)"2(1—dm—n)"2 /(1 =n), (6)

where 4m +n < 1. Note that the value of x., is uniquely
determined only by the values of n and m. When m = 0,
Zer = 1 (or te = 7), which is independent of n. Figure
1(a) shows the contour plot of z.. in the (n,m) plane
with —0.02 < m < 0.08 and 0.2 < n < 0.9, where the
points having the same z.. are connected by each solid
line. The value of z., is lower than 1 for m > 0, is equal
to 1 for m = 0 irrespective of n, and is larger than 1 for
m < 0. Figure 1(b) shows a plot of z., as a function
of m at various fixed n. The maximum value of S(t) at
t =t is given by

Spax = AT TR
1 m V1—4m—n m
exp|—= + — 1—n)T-r
Plogt 1, Wi-n It =n)

X(1=n++v1—nyV1—4m—n)
x(1=2m—n+V1I—nVI—4m—n)Tnr. (7)

When m = 0, Spqz is equal to S°

ez 1= A(l —n)/e] with
e = 2.7182.
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FIG. 1: (Color online)(a) Contour plot of zer (0.1 < zer < 1.1) in the (n, m) plane, where z¢, = ter/7, and the points with the
same z.r are connected by the same solid line. The definition of ¢, and 7 is given in the text. (b) Plot of x.» vs m at various
n. The expression for z., is given by Eqgs.(5) and (6).
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