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A scaling form of the zero-field cooled (ZFC) and field-cooled (FC) magnetic susceptibility is
presented for superparamagnets based on the the Néel model. Numerical calculation is carried out
by using the Matrhematica 5.0. Recently we find that stage-2 Cu0.93Co0.07Cl2 graphite intercala-
tion compound (GIC) provides a model system of superparamagnets. An extensive study on the
superparamagnetism of this system is reported in a paper submitted to Phys. Rev. B (January,
2005).

PACS numbers:

I. NÉEL MODEL

Superparamagnetism is a phenomenon by which the
system may exhibit a behavior similar to paramagnetism
at temperatures below the Curie or the Néel tempera-
ture. Superparamagnetism occurs when the system is
composed of very small crystallites (1-10 nm). The en-
ergy required to change the direction of magnetization
of a crystallite is called the crystalline anisotropy energy
and depends both on the material properties and the
crystallite size. As the crystallite size decreases, so does
the crystalline anisotropy energy, resulting in a decrease
in the temperature at which the material becomes super-
paramagnetic.

In the Néel model,1 the particles exhibit single-domain
ferromagnetic behavior below the blocking temperature
Tb, and are superparamagnetic above Tb. In the super-
paramagnetic state, the moment of each particle freely
rotates, so a collection of particles acts like a param-
agnet where the constituent moments are ferromagnetic
particles (rather than atomic moments as in a normal
paramagnet).

We consider a single-domain particle with uniaxial
anisotropy. The variable part of the energy is then given
by an expression of the type

F = ∆Ea sin2 θ

where ∆ Ea = KuV , θ is an angle between the mag-
netization and the easy direction. Either θ = 0 or π
is a direction of minimum energy. These directions are
separated by an energy barrier of the height ∆Ea. The
magnetization will remain stable and lie along these di-
rections unless some perturbing force exists that can take
the magnetization over the energy barrier. Thermal ag-
itation may provide such a perturbation. This process
is most likely to occur if the volume V of the particle is
small, so that the height of the energy barrier is lowered,
or if the temperature T is high. If the process does occur,
the time average of the remanence will be zero. Particles
whose magnetization changes spontaneously are analo-
gous to paramagnetic atom, except that their magnetic
moment is much larger. Such particles are said to exhibit
superparamagnetism. Their existence was first predicted
by Néel.

In the Néel relaxation process, the relaxation time of
the magnetization between these two states is given by
thermal activation (Arrehenius law),

τ = τ0 exp
(

∆Ea

kBT

)
, (1)

where τ0 is a microscopic limiting relaxation time ( usu-
ally τ0 ≈ 10−9 sec), kB is the Boltzmann constant, and
∆Ea is the height of the energy barrier due to anisotropy.
The energy barrier in the presence of an DC magnetic
field H is given by

∆Ea = KuV

(
1 − H

HK

)2

, (2)

where Ku is the uniaxial anisotropy constant, V is the
particle volume, HK is the anisotropy field defined by HK

= 2Ku/Ms, and Ms is the saturation magnetization of
the particle. Note that the energy barrier ∆Ea is propor-
tional to V . In other words, the relaxation time becomes
large in the limit of large V . The particles are assumed to
be noninteracting and the blocking temperature is given
by

Tb(H) =
KuV

kB ln(τm/τ0)

(
1 − H

HK

)2

, (3)

or

Tb(H)
Tb(H = 0)

=
(

1 − H

HK

)2

,

where τm is the measurement time. The measurement
time is tm typically 1-100 sec for DC measurements and
is the inverse of the measurement frequency for the AC
measurements. When we have typically τ0 = 10−9 sec
and τm = 102 sec, τm is estimated as

τm = τ0 exp
(

∆Ea

kBTb

)
,

or
∆Ea

kBTb
= ln

(
τm

τ0

)
= ln(1011) = 25.328,

leading to ∆Ea = 25.328kBTb ≈ 25kBTb. Below the
blocking temperature Tb of the order Ea/25kB, the
fluctuations between the two states are becoming long
enough to be observable on a laboratory time scale.
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II. FERROMAGNETIC BLOCKED STATE

For V < Vp, the particle moment can achieve thermal
equilibrium in the time of measurement and exhibits su-
perparamagnetic behavior, while for V > Vp the particle
moment is blocked. Superparamagnetism in such clus-
ters is frozen into a more stable ferromagnetic state at
T = Tb. The particle moment is blocked in the direction
of the easy axis. In a single domain particle the easy di-
rections of magnetization are separated by ∆Ea. If the
particle size is sufficiently small, above Tb thermal fluctu-
ations dominate and particles can spontaneously switch
its magnetization from one easy axis to another. Such
a system of superparamagnetic particles does not show
hysteresis in the M -H curves above Tb; hence Hc and MR

are zero. Moreover, the magnetization curves measured
above Tb are expected to superimpose on each other when
plotted as a function of H/T .

Above Tb, if all particles have the same volume V ,
the magnetization M sp of superparamagnetic particles
is given by2

M sp
ZFC(V ) = M sp

FC(V ) = εMsL

(
MsV H

kBT

)
, (4)

where ε is the volume fraction occupied by ferromag-
netic particles. In general, the magnetization of the
superparamagnetism is considerably larger than that of
atomic paramagnetism, and shows a tendency to satu-
rate in rather small magnetic fields. Note that L(x) ia a
Langevin function defined by

L(x) = coth(x) − 1/x.

This function L(x) can be expanded in the vicinity of x
= 0 as

L(x) =
x

3
− x3

45
+

2x5

945
− x7

4725
+

2x9

93555
− 1382x11

638512875
+ · · · .

In the limit of x → ∞, L(x) reaches 1. When the system
is in a blocked state below Tb, the magnetization of the
ferromagnetic block state, M bl

ZFC(V ) is given by2

M bl
ZFC(V ) =

εM2
s H

2Ku

〈
sin2 φ

〉
=

εM2
s H

3Ku
,

noting that

〈
sin2 φ

〉
=

1
4π

π∫
0

sin2 φ(2π sinφ)dφ =
2
3
,

where φ is the angle between the applied field and the
easy direction of the magnetization and the average is
over all particles. The ZFC and FC

M bl
ZFC(V ) =

εM2
s H

3Ku
, M bl

FC(V ) = εMsL

(
MsV H

kBTb

)
(5)

in a blocked state below Tb.

III. SCALING FORM OF THE ZFC AND FC
SUSCEPTIBILITY

In summary, we have expressions for the ZFC and FC
susceptibility given by by

M sp
ZFC = M sp

FC = εMsL

(
MsV H

kBT

)
= εMsL

(
2hx

y

)
,

M bl
ZFC =

εM2
s H

3Ku
= εMs

2h

3
,

M bl
FC = εMsL

(
MsV H

kBTb

)
= εMsL

(
2h

ln(τm/τ0)
(1 − h)2

)
,

where h (= H/HK) is a magnetic field normalized by HK

(= 2Ku/Ms), y (= kBT/(Ku〈V 〉) is the reduced temper-
ature, x (= V/〈V 〉) is the volume ratio, and xm is defined
by

xm =
Vm

〈V 〉 =
kBT ln(τm/τ0)

Ku〈V 〉 = y
ln(τm/τ0)
(1 − h)2

.

Thus we have

MZFC(T, H, x)
H

= [
M sp

ZFC

H
U−1(xm − x)

+
M bl

ZFC

H
U−1(x − xm)]f(x)

=
χ0

h
[L

(
2hx

y

)
U−1(xm − x)

+
2
3
hU−1(x − xm)]f(x), (6)

and

MFC(T, H, x)
H

= [
M sp

FC(x)
H

U−1(xm − x)

+
M bl

FC(x)
H

U−1(x − xm)]f(x)

=
χ0

h
[L

(
2hx

y

)
U−1(xm − x)

+L

(
2h

ln(τm/τ0)
(1 − h)2

)
U−1(x − xm)]f(x),

(7)

where χ0 [= εMs/HK = εM2
s /(2Ku)] is a constant sus-

ceptibility, U−1(x) is the step function (U−1(x) = 1 for
x ≥ 0 and 0 for x < 0), and f(x) is assumed to be a
log-normal distribution function

f(x) =
1√

2πσx
exp

[
− (ln x)2

2σ2

]
.

Then the total ZFC and FC susceptibility are given by

χZFC(T, H) =
1
H

∞∫
0

MZFC(T, H, x)dx,
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FIG. 1: Plot of χZF C/χ0, χF C/χ0, and δ = (χF C − χZF C)/χ0 as a function of reduced temperature y, where σ is fixed as
σ = 0.7 and h = H/HK is changed as parameters.3 ln(τm/τ0) = 25.328.

and

χFC(T, H) =
1
H

∞∫
0

MFC(T, H, x)dx.

Using the scaling form of MZFC(T, H, x) and
MZFC(T, H, x), the ZFC and FC susceptibility are
given by the final forms;

χZFC

χ0
=

1
h

∞∫
0

[L
(

2hx

y

)
U−1(xm − x)

+
2
3
hU−1(x − xm)]f(x)dx, (8)

χFC

χ0
=

1
h

∞∫
0

[L
(

2hx

y

)
U−1(xm − x)

+L

(
2h

ln(τm/τ0)
(1 − h)2

)
U−1(x − xm)]f(x)dx.

(9)

IV. RESULT OF NUMERICAL CALCULATION

Figure 1 shows a typical example of χZFC/χ0,
χFC/χ0, and the difference defined by δ = (χZFC −
χFC)/χ0, as a function of the normalized temperature
y (= kBT/(Ku〈V 〉), by the appropriate choice of two
parameters;3
(1) h = H/HK : the normalized magnetic field,
(2) σ: width of the log-normal distribution function.
Note that ln(τm/τ0) = 25.328 is used here, x = V /〈V 〉 is
an integration variable, and the value of xm is a function
of y, h, and tw/t0; xm = 〈V 〉/Vm = y ln(tm/τ0)/(1−h)2.

APPENDIX:

Mathematica 5.0 program for the calculation of ZFC
and FC susceptibility.

Because of the use of numerical integration, one may
find some warning messages concerning the divergence.
In spite of this, one can find reasonable results such as
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Fig. 1.
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