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Using numerical calculations of equi-energy contour plot of the Fourier transform of the spin
Hamiltonian, we study the magnetic phase diagram (J2 and J3) of the rutile type β-MnO2, where
J1 (< 0) is fixed and is the antiferromagnetic interaction along the diagonal direction, J2 is the
interaction along the c axis, and J3 is the interaction along the a axis. The magnetic phase diagram
consists of the multricritical point (the intersection J2J3 = J2

1 and J2 + J3 = 2J1), the helical order
along the c axis, the (h = 1/2, k = 0, l = 1/2) phase, the helical order along the a axis, and the
phase (h = 0, k = 0, l = 1). The shift of the location of the magnetic Bragg peak in the (h, 0, l)
reciprocal lattice plane is examined with the change of J2 and J3 in the magnetic phase diagram.
The shift is continuous on the first-order phase transition, and is discontinuous on the second-order
phase transition. The detail of our magnetic phase diagram is rather different from that reported
by Yoshimori.

PACS numbers: 75.25.-j, 75.10.Hk, 75.10.Dg

I. INTRODUCTION

It is well known that β-MnO2 (with the rutile-type
structure) is one of the systems with a helical spin order
along the c axis. Erickson1 found from magnetic neutron
scattering on β-MnO2 that the helical spin order with a
period of 7c along the c axis. The direction of spins in
the c plane turns from one plane to the next plane by an
angle of 129◦ (5π/7). In 1958, Yoshimori2 theoretically
demonstrated the origin and stability of the helical spin
order in β-MnO2, based on the experimental results from
Erickson. The spin Hamiltonian of β-MnO2 is described
by a form of the Heisenberg-type, where the combination
of n.n. exchange interactions, n. n. n. exchange inter-
actions, and son on are included. His success lies in the
use of the Fourier transform of the spin Hamiltonian in
the reciprocal lattice space. Then the Fourier transform
depends only on exchange interactions and wavevectors
Q. The location of the magnetic Bragg points in the re-
ciprocal lattice space are uniquely determined from the
condition that the Fourier transform takes a maximum.

In spite of the success in theory established by
Yoshimori,1 Erickson has not published his detailed data
of the magnetic neutron scattering of β-MnO2 as far as
we know. Since 1958, there have been several papers on
the magnetic structure of β-MnO2 using magnetic neu-
tron scattering3–5 and magnetic x-ray scattering.6,7 In
recent years, Sato et al, have reported that the mag-
netic Bragg peaks appear at the wave vector Q = (1, 0,
2 + ε) in the units of a∗ (= 2π/a), b∗ (= 2π/b), and
c∗ (= 2π/c) in the reciprocal lattice space, where ε =
0.297 at 10 K, increases with increasing temperature, and
reaches 0.2992 just below TN (= 92 K). The value of ε
is rather different from 2/7 derived by Yoshimori.1 This
indicates that the helical spin structure along the c axis
is incommensurate with the c- axis lattice constant.

Because of the crystal field (distorted octahedron
formed by O2− ions) in the vicinity of Mn4+ ion, the

ground orbital state of Mn4+ ion (3d3, L = 3 and S =
3/2) is split into the t2g (dε) level (lower energy level,
triple degenerate) and the eg (dγ) level (upper energy,
double degenerate). As a result, the ground state is now
orbital singlet, indicating that the orbital angular mo-
mentum is quenched. The eg electrons are responsible
for the metallic conduction, while the localized t2g elec-
trons are responsible for the magnetism. In recent years,
Sato et al.8 have reported the transport properties of a
single crystal β-MnO2, such as electrical resistivity, ther-
mopower, Hall effect, and magnetoresistance. Their data
show an appreciable anomaly near TN . This implies that
there is a strong correlation between conduction εg elec-
trons and localized t2g magnetic moment through the
Hund’s rule. The DC magnetic susceptibility shows a sig-
nificant deviation from a molecular-field theory based on
a localized spin model, which was assumed by Yoshimori1
on his helical spin order.

In the present paper, we study the magnetic phase dia-
gram of β-MnO2 type structure using the molecular field
theory developed by Yoshimori,1 where Mn4+ spins are
localized. The exchange interactions J1 along the diago-
nal axis of the system, J2 along the c axis and J3 along the
a axis are taken into account. Note that J1 is assumed to
be fixed and be antiferromagnetic. According to Sato et
al.,8 the intra-atomic t2g−eg exchange interaction (Hund
coupling), the transfer interaction between adjacent eg

orbitals, and the occupancy of the eg orbitals are defined
by JHund, t, and c, respectively. Since |Jn| À |cJHund|
and |Jn| À |ct| for β-MnO2 (n = 1, 2, 3),8 this means
that the spin structure of β-MnO2 below TN is not af-
fected by the effect of cJHund and ct at al. In other words,
the spin structure is well described by the localized spin
model with J1, J2, and J3. We find that our magnetic
phase diagram (J2 vs J3) consists of four phases including
the helical phase along the c axis, the phase with (1/2,
0, 1/2), the helical phase along the axis, and the phase
with (1, 0, 0). The detail of our phase diagram is rather
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different from that proposed by Yoshimori.1 We use a nu-
merical calculation approach in finding the distribution
of the magnetic Bragg peaks in the fixed reciprocal lattice
planes such as (h, k, l) with one index fixed. To this end
we calculate the equi-energy contour plot of the negative
sign of the Fourier transform of the spin Hamiltonian,
J(h, k, l). The magnetic Bragg peaks are located inside
the maximum equi-energy contour. The selection rule for
the location of the magnetic Bragg peaks is the same as
that derived by Yoshimori.1 This numerical method has
an advantage in visualizing the location of the magnetic
Bragg peaks in the reciprocal lattice space. The nature
of the phase transitions on the phase boundaries will be
discussed.

II. BACKGROUND: GENERAL THEORY FOR
THE ORDERED SPIN STRUCTURE

We follow the theory presented by Nagamiya.9 We con-
sider a lattice of magnetic atoms such as β-MnO2. The
unit cell can be chosen so that it contains one magnetic
atom. On each magnetic atom, we assume a classical
spin. Between the spin Si at the position Ri and Sj

at Rj , there is an Heisenberg-type exchange interaction.
The Heisenberg spin Hamiltonian is expressed by

H = −2
∑

i,j

J(Rij)Si · Sj , (1)

where

J(−Rij) = J(Rij)

and

Rij = Ri −Rj

The exchange interaction J(Rij) is not restricted to the
nearest neighbors. We now use the Fourier transforma-
tions of the exchange interaction and spin;

J(q) =
∑

j(6=i)

J(Rij) exp(−iq ·Rij), (2)

Si =
1√
N

∑
q

Sq exp(iq ·Ri) (3)

with

Sq =
1√
N

∑

i

Si exp(−iq ·Ri)

where N (= N1N2N3) is the total number of spins, and
S∗q = S−q. The position vector Ri is expressed by

Ri = n1a1 + n2a2 + n3a3 (n1, n2, n3 are integers)

where n1 = 0 − N1, n2 = 0 − N2, n3 = 0 − N3, and a1,
a2, and a3 are the fundamental lattice vectors. We also
define the reciprocal lattice vector G by

G(h, k, l) = hb1 + kb2 + lb3 (h, k, l are integers)

where b1, b2, and b3 are fundamental reciprocal lattice
vectors and are given by

b1 = 2π
a2 × a3

[a1,a2,a3]
,b2 = 2π

a3 × a1

[a1,a2,a3]
,b3 = 2π

a1 × a2

[a1,a2,a3]

with

[a1,a2,a3] = a1·(a2 × a3) = a2·(a3 × a1) = a3·(a1 × a2) .

Noting that

a1 · b1 = 2π,a2 · b2 = 2π,a3 · b3 = 2π,

we have

G(h, k, l) ·Ri = 2π(n1h + n2k + n3l) = 2π × integer.

The periodic boundary condition for Si leads to

exp[iq·(N1a1)] = 1, exp[iq·(N2a2)] = 1, exp[iq·(N3a3)] = 1.

This means that the wavevector q is given by

q = q1b1 + q2b2 + q3b3,

where

q1 =
m1

N1
, q2 =

m2

N2
, q3 =

m3

N2
.

For convenience we assume that

−N1

2
≤ m1 ≤ N1

2
,−N2

2
≤ m2 ≤ N2

2
,−N3

2
≤ m3 ≤ N3

2

corresponding to the first Brillouin zone. There are
N1N2N3 = N wavevectors in the first Brillouin zone.
The spin Hamiltonian is rewritten as

H = −
∑
q

J(q)Sq · S−q. (4)

We look for the lowest minimum of Eq.(1) under the con-
dition that

S2
i = S2 =

1
N

∑

q,q′
Sq · S−q′ exp[i(q− q′) ·Ri], (5)

for any i. Instead of this condition, we impose a milder
condition

NS2 =
∑

i

S2
i =

1
N

∑

i

∑

q,q′
Sq · S−q′ exp[i(q− q′) ·Ri]

=
∑
q

Sq · S−q (6)

where we use
∑

i

exp[i(q− q′) ·Ri] = Nδq,q′

Under this milder condition, the minimum of Eq.(1) is
obtained simply by taking only that q for which J(q)has
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the maximum. Denoting this q by Q (q = -Q being
equally allowed), we have the minimum value of Eq.(4)
as

−J(Q)(SQ · S−Q + S−Q · SQ).

We also obtain

Si =
1√
N

[SQ exp(iQ ·Ri) + S−Q exp(−iQ ·Ri)]

The condition (6) can be written as

NS2 = 2SQ · S−Q + SQ · SQ exp[2iQ ·Ri]
+ S−Q · S−Q exp[−2iQ ·Ri],

for any Ri. This indicates that

SQ · SQ = 0. (7)

Here we assume that

SQ = RQ + iIQ,

S−Q = RQ − iIQ,

where RQ and IQ are real vectors.

SQ · S−Q = (RQ + iIQ) · (RQ − iIQ)
= RQ ·RQ + IQ · IQ

SQ · SQ = (RQ + iIQ) · (RQ + iIQ)
= RQ ·RQ − IQ · IQ + 2iRQ · IQ = 0. (8)

Then we have

RQ = IQ

RQ · IQ = 0.

Then the vector RQ is perpendicular to the vector IQ,
and the magnitude RQ is the same as the magnitude IQ.
From Eq.(8), we get

R2
Q = I2

Q =
1
4
NS2.

The minimum energy Emin is obtained as

Emin = −NS2J(Q). (9)

The spin vector is expressed by

Si =
1√
N

[(RQ + iIQ) exp(iQ ·Ri)

+ (RQ − iIQ) exp(−iQ ·Ri)]

=
2√
N

[(RQ cos(Q ·Ri)− IQ sin(Q ·Ri)]

= S[(R̂Q cos(Q ·Ri)− ÎQ sin(Q ·Ri)]

where R̂Q and ÎQ are the unit vectors which are perpen-
dicular to each other. For convenience, R̂Q and ÎQ are
in the x-y plane. The z axis is perpendicular to the x-y

a  
J3  a 

J2  

c  

J1  

FIG. 1: (Color online) The position of Mn4+ ions (denoted by
solid circles) and O2− (denoted by open circles) in β-MnO2

(rutile-type structure, space group P42/mmm). a = b =
4.396Å. c = 2.871Å. J1, J2, and J3 are the exchange in-
teractions between Mn2+ spins. One of the O atom is located
at (ua, ua), where u = 0.302.

plane. Then using the unit vectors ex and ey, we get the
final result

Si = S[cos(Q ·Ri + φ)ex + sin(Q ·Ri + φ)ey], (10)

where φ is the angle between R̂Q and x axis.
The spin structure thus derived is the most fundamen-

tal spin structure and is realized as a result of the mini-
mum energy state in the classical spin system. The fer-
romagnetic state (Q = 0) and antiferromagnetic state
(Q = the zone boundary of the first Brillouin zone) are
the special case of the spin structures. In general, Q is
not related to the crystal structure, but is related to the
details of the exchange interactions.

III. HELICAL SPIN ORDER FOR β-MnO2

A. Calculation of J(q) for β-MnO2

Figure 1 shows the structure (rutile) of β-MnO2 where
a = b = 4.396Å, c = 2.871Å, and u = 0.302.8 The ex-
change interactions J1, J2, and J3 defined by Fig. 1 are
antiferromagnetic. The definition of J1, J2, and J3 are
the same as that used by Yoshimori. The Néel tempera-
ture TN is equal to 92 K. Each Mn4+ ion and surrounding
six O2− ions form a cation-occupied deformed octahedron
(we will discuss later).

Here we calculate J(q) for MnO2, where the wavenum-
ber q, the lattice vectors a(n) (n = 1, 2,. . . , 4) and c are
given by

q = (qx, qy, qz),

a(n) = a cos[
π

2
(n− 1)], a sin[

π

2
(n− 1)], 0,

c = (0, 0, c).

Then the expression of J(q) is given by
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J(q) = J1 exp[iq · c + a(1) + a(2)
2

] + J1 exp[iq · −c + a(1) + a(2)
2

]

+J1 exp[iq · c + a(2) + a(3)
2

] + J1 exp[iq · −c + a(2) + a(3)
2

]

+J1 exp[iq · c + a(3) + a(4)
2

] + J1 exp[iq · −c + a(3) + a(4)
2

]

+J1 exp[iq · c + a(4) + a(1)
2

] + J1 exp[iq · −c + a(4) + a(1)
2

]

+J2 exp[iq · c] + J2 exp[−iq · c] (11)
+J3 exp[iq · a(1)] + J3 exp[−iq · a(1)] + J3 exp[iq · a(2)] + J3 exp[−iq · a(2)].

Then J(q) can be rewritten as

J(q) = J(h, k, l) = 8J1 cos(πh) cos(πk) cos(πl)
+ 2J2 cos(2πl) + 2J3[cos(2πh) + cos(2πk)](12)

where

qx = (
2π

a
)h = a∗h, qy = (

2π

a
)k = a∗k, qz = (

2π

c
)l = c∗l

with h, k, and l being dimensionless numbers and a∗ and
c∗ are reciprocal lattice constants.

B. Mathematica programs used in the present
work

In order to determine the magnetic Bragg peaks in
the reciprocal lattice plane, we use the following three
Mathematica programs, ContourPlot for the equi-energy
contour plot, FindMaximum for finding maximum, and
ListVectorPlot3D for drawing the spin directions in the
lattice points of the real space.

1. Contour plot program

This program is used to determine the overview on
the positions of the magnetic Bragg peaks in the (h, k, l)
reciprocal lattice plane, where one of h, k, and l are fixed.
When the values of J1, J2, and J3 are given, using the
Mathematica program [ContourPlot], we can make a plot
of the contours of J(h, k, l) = a (constant) in the (h, k, l)
plane, where the parameter a is changed appropriately
such that the maximum value of J(h, k, l) is obtained.
This program is very useful to find the selection rule for
the position of the magnetic Bragg peaks, as a function
of J1, J2, and J3.

2. Finding maximum program

This program is used to determine the exact position of
the magnetic Bragg peak in the (h, k, l) reciprocal lattice

plane, where one of h, k, and l are fixed. For convenience,
here we assume that l is fixed such that l = 0. Using the
Mathematica program [FindMaximum], we find the max-
imum value of J(h, k, l) for given J2 and J3, where J1 (=
-1) is fixed, and the regions of h and k are appropriately
chosen. This program is very convenient when one wants
to know how the position of the Bragg point changes as
a function of J2 and J3.

3. ListVectorPlot3D program

This program is used to draw the spin directions at
each lattice sites in the real space. The spin structure
depends on the values of Q.

IV. SELECTION RULE FOR THE MAGNETIC
BRAGG PEAKS FROM SIMPLE ANALYSIS

A. Distribution of magnetic Bragg peaks in the (h,
k, l = fixed integer) reciprocal lattice plane

The magnetic Bragg peaks can be located at the
wavevector q, where J(h, k, l) takes a maximum. When
l = fixed integer, J(h, k, l) is given by

J(h, k, l) = 8J1(−1)l cos(πh) cos(πk)
+ 2J2 + 2J3[cos(2πh) + cos(2πk)],

suggesting that the location of the magnetic Bragg peaks
in the (h, k, l = fixed integer) reciprocal lattice plane
depends only on J1 and J3,and is independent of the J2.
The selection rule can be derived as follows.
(i) The distribution of the magnetic Bragg peaks is the
same in the reciprocal lattice planes, (h, k, 1), (h, k, 3),
(h, k, 5), (h, k, 7),...
(ii) The distribution of the magnetic Bragg peaks is the
same in the reciprocal lattice planes , (h, k, 0), (h, k, 2),
(h, k, 4), (h, k, 8),...
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B. Magnetic Bragg peaks along the l direction
with h = fixed integer and k = 0

When k = 0 and h is a fixed integer, J(h = fixed
integer, k = 0, l) is rewritten as

J(h, 0, l) = 8(−1)hJ1 cos(πl) + 2J2 cos(2πl) + 2J3,

which indicates that the location of the magnetic Bragg
peaks along the (h = fixed integer, k = 0, l) direction
depends only on J1 and J2, and is independent of J3.
The following selection rules can be derived.
(i) The location of the magnetic Bragg peaks along the
l direction is the same for (1, 0, l), (3, 0, l), (5, 0, l), (7,
0, l), · · ·.
(ii) The location of the magnetic Bragg peaks along the
l direction is the same for (0, 0, l), (2, 0, l), (4, 0, l), (8,
0, l), · · ·.

C. Magnetic Bragg peaks along the l direction
with h = k = half inetgers

For h = k = half-integer (= 1/2, 3/2, 5/2, · · ·), we
have

J(h, h, l) = 2J2 cos(2πl)− 4J3,

leading to the appearance of the magnetic Bragg peaks
appear at

l = 1/2, 3/2, 5/2, · · ·

for h = k = 1/2, 3/2, 5/2, 7/2, · · · .

D. Magnetic Bragg peaks along the (0, 0,l)
direction

For any l, J(0, 0, l) can be expressed by

J(h = 0, k = 0, l) = J(θ) = 8J1 cos(θ)+2J2 cos(2θ)+4J3.

with θ = πl . This indicates that the location of the
magnetic Bragg peaks along the (0, 0, l) direction, is in-
dependent of J3. The derivative of J(0, 0, l) with respect
to θ is obtained as

dJ(θ)
dθ

= −4[J1 + J2 cos(θ)] sin(θ) = 0.

Then we get the two solutions.
(i) Ferromagnetic or antiferromagnetic configurations

sin θ = 0, θ = 0, π.

where

J(θ = 0) = 8J1 + 2J2 + 4J3

J(θ = π) = −8J1 + 2J2 + 4J3.

(ii) Helical spin configuration

cos θ = −J1/J2, θ = θ0 = arccos(−J1/J2),

under the condition of |J1/J2| < 1, where

J(θ = θ0) = −4
J2

1

J2
− 2J2 + 4J3.

The difference is calculated as

J(θ = θ0)− J(θ = π) = −4J2(
J1

J2
− 1)2,

J(θ = θ0)− J(θ = 0) = −4J2(
J1

J2
+ 1)2.

Then the helical spin order appears when

J(θ = θ0) > J(θ = π),
J(θ = θ0) > J(θ = π).

If the conditions J2 < 0 and |J1/J2| < 1 are satisfied, the
magnetic Bragg peaks appear at the wavevectors denoted
by

(h, k, l) = (0, 0, 1±ε), (0, 0, 3±ε), (0, 0, 5±ε), (0, 0, 7±ε), · · · ,
where ε is defined as

cos(πε) =
J1

J2
.

E. Magnetic Bragg peaks along the (h, 0, 0)
direction

J(h, k = 0, l = 0) and its derivative are given by

J(h, k = 0, l = 0) = 8J1 cos(πh)+2J3 cos(2πh)+2J2+2J3,

and

dJ(h, k = 0, l = 0)
dh

= 8π[J1 − J3 cos(πh)] sin(πh),

respectively. Since |J1/J3| > 1 in MnO2, we have only
sin(πh) = 0. Since J1 < 0, we have the following selection
rule. The magnetic Bragg appears only at

(1, 0, 0), (3, 0, 0), (5, 0, 0), (7, 0, 0), · · ·
along the h-direction.

V. DETERMINATION OF J2 AND J3 FROM
EXPERIMENTAL DATA ON β-MnO2

A. The ratio J2/J1

We now calculate the value of ε, at which J(h = 1, k =
0, l = 2+ ε) takes a maximum, as a function of J2, where
J1 = −1. The value of ε is uniquely determined as a
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FIG. 2: (Color online) Plot of ε as a function of J2. J1 = −1

function J2 as shown in Fig. 2. When J2 = −1.6039, we
find ε = 2/7 (Yoshimori1).

Experimentally, the magnetic Bragg peak is observed
at (h = 1, k = 0, l = 2.29771) for β-MnO2. Here we
note that l = 2.29771 = 2 + 2/7 + 0.0120. The value of
l is slightly deviated from the value of 2 + 2/7, which
is predicted by Yoshimori.1 J(h = 1, k = 0, l) and its
derivative are given by

J(h = 1, k = 0, l) = −8J1 cos(πl) + 2J2 cos(2πl) + 4J3,

and

J(h = 1, k = 0, l)
dl

= 4π[2J1 sin(πl)− J2 sin(2πl)],

respectively. J(h = 1, k = 0, l) has a maximum when

cos(πl) =
J1

J2
.

or

l = 1± ε, 3± ε, 5± ε, · · · ,
where

cos(πε) =
J1

J2
.

Note that J(h = 0, k = 0, l) has a maximum when

cos(πl) = −J1

J2
.

Since the magnetic Bragg peak appears at l = 2.29771,
we have

J1

J2
= 0.59359

or

J2

J1
= 1.68469

indicating that J2 < 0 since J1 < 0.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

p3

ÈQ
È�

T
N

FIG. 3: (Color online) Plot of |Θ| /TN as a function of p3,
where p2 = 1.68469.

B. Ratio p3 = J3/J1

The ratio J3/J1 cannot be determined uniquely from
the experimental results on the magnetic neutron scat-
tering or x-ray magnetic scattering. The ratio |Θ| /TN

can be calculated as

|Θ|
TN

=
J(0)
J(θ0)

=
4 + p2 + 2p3
2
p2

+ p2 − 2p3

, (13)

where p2 = J2/J1, p3 = J3/J1, Θ is the Curie-Weiss
temperature (the value is negative for β-MnO2) and TN is
the Néel temperature. The value of p3 can be determined
from the ratio |Θ| /TN since p2 is already determined. We
make a plot of |Θ| /TN as a function of p3 in Fig. 3.

As far as we know, there have been several reports
on the experimental values of Θ and TN for β-MnO2;
Θ = −316 K, TN = 84 K [Bizette and B. Tsai (1949)],10
Θ = −1050 K, TN = 92 K [Ohama and Hamaguchi
(1971)],12 Θ = −783 K, TN = 92 K [Sato et al.(2000)],8
respectively. Using the values of TN , Θ and the value
of p2 (= 1.68469) determined above, the value of p3

can be calculated as p3 = 0.537, 0.986, 1.091 using the
data of Bizette and Tsai,10 Sato et al.,8 and Ohama and
Hamaguchi,3 respectively.

We note that the boundary of the helical phase is de-
scribed by (the derivation will be shown later)

p3 = 1/p2 or J2J3 = J2
1 . (14)

The helical order can exist when p3 < 1/p2. When
p2 = 1.68469 for MnO2, p3 should be lower than 0.5935.
In other words, the ratio |Θ| /TN should be lower than
4.07853. Since TN = 92 K, this means that |Θ| should
be smaller than 375.2 K. The value of |Θ| by Bizette and
Tsai seems to be reasonable, while the values of |Θ| ob-
tained by Sato et al.8 and Ohama and Hamaguchi3 are
much higher than 375.2 K. Note that Yoshimori1 predicts
that the boundary is described by p3p2 = 1/2. This ex-
pression is not correct according to our calculation.
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FIG. 4: (Color online) (a)(b) Distribution of magnetic Bragg
points in the (h, k = 0, l) reciprocal lattice plane. J1 = −1,
J2 = −1.68469. J3 = −0.2. p3 = J3/J1 = 0.2. (c)(d)
Distribution of magnetic Bragg points in the (h, k = 0, l) re-
ciprocal lattice plane. J1 = −1, J2 = −1.68469. J3 = −0.3.
p3 = J3/J1 = 0.3. (e)(f) Distribution of magnetic Bragg
points in the (h, k = 0, l) reciprocal plane around h = 1
and l = 2. J1 = −1, J2 = −1.68469. J3 = −0.4.
p3 = J3/J1 = 0.4.

VI. NUMERICAL CALCULATION

A. The contour plot of J(h, 0, l) in the (h, 0, l)
reciprocal lattice plane

Using the numerical calculation of the contour plot us-
ing the Mathematica, we find the location of the magnetic
Bragg peaks in the (h, 0, l) reciprocal lattice, where

J(h, 0, l) = 8J1 cos(πh) cos(πl)
+ 2J2 cos(2πl) + 2J3[cos(2πh) + 1],

takes a maximum, where J1 = −1, J2 = p2J1 =
−1.68469, and J3 = p3J1 = −0.3. Figures 4(a)-(f)
show the contour plot of J(h, 0, l) in the reciprocal lat-
tice plane of (h, 0, l), where p3 is changed as a parameter
(p3 < 0.5935). As is predicted above, we find that the
magnetic Bragg peaks appear at

(0, 0, 1± ε), (0, 0, 3± ε), (0, 0, 5± ε), (0, 0, 7± ε), . . . ,
(1, 0, 0± ε), (1, 0, 2± ε), (1, 0, 4± ε), (1, 0, 6± ε), . . . ,
(2, 0, 1± ε), (2, 0, 3± ε), (2, 0, 5± ε), (2, 0, 7± ε), . . . ,

where ε = 0.29771 and is independent of p3 (p3 <
0.5935). Note that the essential results are independent
of the choice of p3 at least for 0.2 ≤ p3 ≤ 0.4.

B. The contour plot of J(h, k = h, l) in the
(h, k = h, l) reciprocal lattice plane

Using the contour plot of the J(h, k = h, l), we find the
location of the magnetic Braggs in the (h, h, l) reciprocal
lattice, where

J(h, h, l) = 8J1 cos2(πh) cos(πl)+2J2 cos(2πl)+4J3 cos(2πh).

The location of the magnetic Bragg peaks is given by

(0, 0, 1± ε), (0, 0, 3± ε), (0, 0, 5± ε), (0, 0, 7± ε), . . . ,
(1/2, 1/2, 1/2), (1/2, 1/2, 3/2), (1/2, 1/2, 5/2), (1/2, 1/2, 7/2), . . . ,

(1, 1, 1± ε), (1, 1, 3± ε), (1, 1, 5± ε), (1, 1, 7± ε), . . . ,
(3/2, 3/2, 1/2)(3/2, 3/2, 3/2), (3/2, 3/2, 5/2), (3/2, 3/2, 7/2), . . . ,

in the reciprocal lattice plane of (h, k = h, l), where ε =
0.29771.

C. The contour plot in the (h, k, l) plane with l = 2n

Using the contour plot of the Mathematica, we find
the location of the magnetic Braggs in the (h, k, l = 2n)
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FIG. 5: (Color online) (a) Magnetic Bragg points in the
(h, k, l = 2n) reciprocal lattice plane. (b) Magnetic Bragg
points in the (h, k, l = 2n + 1) reciprocal lattice plane.
J1 = −1, J2 = −1.68469. J3 = −0.3. p3 = 0.3.

reciprocal lattice, where

J(h, k, l = 2n) = 8J1 cos(πh) cos(πk)
+ 2J3[cos(2πh) + cos(2πk)] + 2J2,

which does not depend on the index n. Figures 5(a)
show the location of magnetic Bragg peaks in the in-
plane (h, k, l = 2n) reciprocal lattice plane. We find that
the magnetic Bragg peaks appear for h + k = odd. This
selection rule is true for l = 2n with any integer n.

D. The contour plot in the (h, k, l) plane with
l = 2n + 1

Using the contour plot of the Mathematica, we find the
location of the magnetic Braggs in the (h, k, l = 2n + 1)
reciprocal lattice, where

J(h, k, l = 2n + 1) = −8J1 cos(πh) cos(πk))
+ 2J3[cos(2πh) + cos(2πk)] + 2J2,

which does not depend on the index n. Figure 5(b) show
the location of the magnetic Bragg peaks in the in-plane
(h, k, l = 2n + 1) reciprocal lattice plane, where n is the
integer. The magnetic Bragg peaks appear for h + k =
even for l = 2n + 1.

VII. PHASE DIAGRAM IN THE (J2, J3) PLANE

The phase diagram for J1 = −1 can be determined us-
ing the programs of the ContourPlot and FindMaximum.
The phase diagram consists of the four phases; (i) the he-
lical order along the c axis, (ii) the helical order along the
a axis, (iii) the ordered phase with h = 1/2, k = 0, and
l = 1/2, and (iv) the ordered phase with h = 0, k = 0,
l = 1.

A. Ordered phases

1. Helical order along the c axis

Spins in the same ab plane are parallel, i.e., h = 0
and k = 0. They screw along the c axis. We find the
maximum of

J(h = 0, k = 0, l) = 4J3 + 8J1 cos(lπ)
+ 2J2 cos(2lπ),

by taking the derivative of J(h = 0, k = 0, l) with respect
to l. The condition of the local maximum is given by

cos(πlmax) = −J1

J2
,

where |J1/J2| < 1. Then the maximum of J(h = 0, k =
0, l) is given by

Jmax(h = 0, k = 0, l = lmax) = 4J3 − 4
J2

1

J2
− 2J2

for the helical order with (h = 0, k = 0, and l = lmax)

cos(πlmax) = −J1

J2
= − 1

1.68468
= −0.59358,

lmax = 0.70228.

2. Helical order along the a axis

The helical spin order where the spins in the same bc
plane are parallel and they screw along the a axis. We
find the maximum of

J(h, k = 0, l = 1) = 2J2+2J3+8J1 cos(πh)+2J3 cos(2πh),

by taking the derivative of J(h, k = 0, l = 0) with respect
to h. The condition of the local maximum is given by

cos(πhmax) = −J1

J3
,

where |J1/J3| < 1. The maximum value is

Jmax(hmax, k = 0, l = 1) = 2J2 − 4
J2

1

J3
.

3. The ordered phase with h = 0, k = 0, and l = 1

J(h = 0, k = 0, l = 1) is given by

J(h = 0, k = 0, l = 1) = −8J1 + 2J2 + 4J3.

4. The ordered phase with h = 1/2, k = 0, and l = 1/2

This phase corresponds to the MnF2-type antiferro-
magnetic structure (named by Yoshimori1). J(h =
1/2, k = 0, l = 1/2) is evaluated as

J(h = 1/2, k = 0, l = 1/2) = −2J2.
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B. Boundaries between ordered phases

1. The phase boundary between the spin order with the
phase (h = 1/2, k = 0, and l = 1/2) and the helical spin

order along the c axis

The difference of J(h, k, l) between the helical spin or-
der along the c axis and the phase (h = 1/2, k = 0, l =
1/2) is given by

Jmax(h = 0, k = 0, l = lmax)− J(h = 1/2, k = 0, l = 1/2)

= 4J2 − 4
J2

1

J3
.

So the helical ordered phase is energetically favorable
when

J2 >
J2

1

J3
,

with the condition of |J1/J2| < 1. When J3 < 0, this
inequality can be rewritten as

J2J3 < J2
1 ,

or

p2p3 < 1.

2. The phase boundary between the spin order with (h = 0,
k = 0, l = 1) and the spin order with (h = 1/2, k = 0,

l = 1/2)

The difference of J(h, k, l) between the (h = 0, k =
0, l = 1) and the phase (h = 1/2, k = 0, l = 1/2) is given
by

J(h = 1/2, k = 0, l = 1/2)− J(h = 0, k = 0, l = 1)
= −4J2 − 4J3 + 8J1

where

J(h = 0, k = 0, l = 1) = −8J1 + 2J2 + 4J3,

and

J(h = 1/2, k = 0, l = 1/2) = −2J2.

When

2J1 > J2 + J3,

the phase (h = 1/2, k = 0, l = 1/2) is energetically favor-
able. When

2J1 < J2 + J3.

the phase h = 0, k = 0, l = 1) is energetically favorable.

-3 -2 -1 1 2 3
J2

-3

-2

-1

1

J3

H-c

H-a

Hh=0,k=0,{=1L

Hh=1�2,k=0,{=1�2L

BC

J1=-1

FIG. 6: (Color online) Scans A, B, and C in the phase diagram
(J2, J3) to determine the location of the magnetic Bragg peaks
in the (h, k, l) reciprocal space. J1 = −1.

3. The phase boundary between the helical order along the
a axis and the phase (h = k = 1/2, and l = 1)

The difference of J(h, k, l) between the (h = 0, k =
0, l = 1) and the helical order along the a axis is given
by

Jmax(hmax, k = 0, l = 1)− J(h = 0, k = 0, l = 1)

= −4J3(
J1

J3
− 1)2,

where

J(h = 0, k = 0, l = 1) = −8J1 + 2J2 + 4J3,

Jmax(hmax, k = 0, l = 1) = 2J2 − 4
J2

1

J3
.

Then the helical order is stable for J3 < −1. This in-
equality is satisfied for the condition of the helical order

|J1/J3| < 1.

C. Multicritical point (J2 = −1 and J3 = −1 and
phase transition lines

All four ordered phases merge only at the multicritical
point at (J2 = −1 and J3 = −1), where the line given
by 2J1 = J2 + J3 and the curve J2J3 = J2

1 intersect with
other (see the phase diagram of J3 vs J2). Note that
J1 = −1. As will be shown later, the line (2J1 = J2 +J3)
is of the first-order. The lines denoted byJ2 = −1 and
J3 = −1 are of the second-order.
(1) Using the program of finding maximum in J(q) for
each point (J2, J3) in the phase digram, we find the local
maximum point (h, 0, l) in the h-l plane. The location
of these points is plotted as a function of J2 when J3 is
fixed and as a function of J3 when J2 is fixed.
(2) Using the program of finding maximum in J(q) for
each point (J2, J3) in the phase diagram, we find the local
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FIG. 7: (Color online) (a) l vs J2 and (b) h vs J2 along the
scan A (−4 ≤ J2 ≤ 0 and J3 = −0.4). k = 0. J1 = −1.

maximum point (h, k, 0) in the h-k plane These points
are plotted as a function of J2 when J3 is fixed and as a
function of J3 when J2 is fixed.

1. Scan A

In the Scan A (see Fig. 6), we choose J3 = −0.4 and
J1 = −1. J2 is changed as a parameter between −4.0
and 0. We make a plot of l vs J2 in Fig. 7. The disconti-
nuity in l vs J2 occurs at J2 = −2.5 (the phase boundary
between the phase with (h = 1/2, k = 0, l = 1/2) and
the helical order along the c axis), where the relation
J2J3 = J2

1 is satisfied (J1 = −1). We find that the rela-
tion of l vs J2 is well described by

cos(πl) = −J1

J2
,

for −2.5 ≤ J2 ≤ −1 (the helical phase along the c axis).
The value of l is independent of J3. For example, when
l = 0.8, we have J2 = −1.24 as shown in Fig. 7(a). We
note that l is equal to 1 at J2 = −1 (the phase boundary
between the helical phase along the c axis and the phase
with (h = 0, k = 0, l = 1) and remain unchanged (l = 1)
for −1 ≤ J2 ≤ 0. We also make a plot of h vs J2 in
Fig. 7(b). The value of h undergoes a sudden change

-4 -3 -2 -1 0
0.0

0.1

0.2

0.3

0.4

J3

h

J1=-1
k=0

FIG. 8: (Color online) h vs J3 along the scan B (−4 ≤ J3 ≤ 0
and J2 = 1.5). J1 = −1. k = 0 and l = 1.

from h = 0.5 to 0 at J2 = −2.5 (at the phase boundary
between the phase with (h = 1/2, k = 0, l = 1/2) and
the helical order along the c axis) and remains constant
(h = 0) for −2.5 ≤ J2 ≤ 0. Note that there is no change
of h at J2 = −1.

2. Scan B

In the Scan B (see Fig. 6), we choose J2 = 1.5 and
J1 = −1. J3 is changed as a parameter between -4.0
and 0. We make a plot of h vs J2 in Fig. 8. The value
of h decreases with increasing J3 and reduces to zero at
J3 = −1 (the phase boundary (second-order) between
the helical order along the a axis and the phase with
(h = 0, k = 0, l = 1). We find that the relation of h vs
J3 is well described by

cos(πh) = −J1

J3
.

The value of h is independent of J2. For example, when
h = 0.2, we have J3 = −1.236. The plot of l vs J2 (which
is not shown here) indicates that l remains constant (l =
1) for −4 ≤ J3 ≤ 0, where J2 = 1.5.

3. Scan C

In the Scan C, we choose J2 = −0.4 and J1 = −1. J3

is changed as a parameter between -3.5 and 0. We make
a plot of h vs J3 and l vs J3 in Figs. 9(a) and (b). As
shown in Fig. 9(a), the value of h decreases with increas-
ing J3, showing an abrupt decrease at J3 = −2.5 (which
is denoted by J2J3 = J2

1 ) at the phase boundary (first-
order) between the phase with (h = 1/2, k = 0, l = 1/2)
and the helical order along the a axis). The value of h de-
creases with further increasing J3, following Eq.(?????),
and reduces to zero at J3 = −1 at the phase boundary
(second-order) between the helical order along the a axis
and the phase with (h = 0, k = 0, l = 1).
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FIG. 9: (Color online) (a) h vs J3 and (b) l vs J3 along the
scan C (−3.5 ≤ J3 ≤ 0 and J2 = 0.4). J1 = −1. k = 0.

In Fig. 9(b), the value of l increases with increasing
J3. It shows an abrupt change from l = 1/2 to l = 1 at
J3 = −2.5 at the phase boundary (first-order) between
the phase with (h = 1/2, k = 0, l = 1/2) and the helical
state along the a axis.

VIII. CONTOUR PLOT OF (h, 0, l) FOR
TYPICAL POINTS IN THE (J2, J3) PHASE

DIAGRAM

Here we show the contour plot of J(h, 0, l) for the typ-
ical points in the (J2, J3) phase diagram (see Fig. 10).
The maximum points in the countour plot of J(h, 0, l))
correspond to the magnetic Bragg peaks in the (h, 0, l)
plane.

A. The points A, B, C, D, and E with J1 = −1.0
and J2 = −0.5

Typical contour plot of (h, 0, l) at the points A, B, C,
D, and E in the (J2, J3) phase diagram are shown in
Fig. 11. The point A (J3 = −0.5) is in the phase with (h
= 0, k = 0, l = 1). The point B (J3 = -1.5) is in the helical
phase with the a axis. The point C (J3 = −2) is the phase
boundary between the phase with (h = 0, k = 0, l = 1)
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1
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J
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H - c H0,0,1L

H1�2,0,1�2L

H - a

J2J3=J1
2

J2+J3=2J1

Multicritical point

FIG. 10: (Color online) Phase diagram of J3 vs J2: J1 =
−1.H-a: helical order along the a axis.H-c: helical order along
the c axis. The ordered phase with (h = 1/2, k = 0, l =
1/2). The ordered phase with (h = 0, k = 0, l = 1). The
multicritical point is at (J2 = −1, J3 = −1). The calculations
of the contour plots are made at the points (A, B, C, · · ·, P).

and the helical phase with the a axis. The points D
(J3 = −3.0) and E (J3 = −4.0) are in the phase with
(h = 1/2, k = 0, l = 1/2).

B. The points F and G with J1 = −1.0 and J2 = 1.5.

Typical contour plot of (h, 0, l) at the points F and G
in the (J2, J3) phase diagram are shown in Fig. 12. The
point F (J3 = −0.5) is in the phase with (h = 0, k =
0, l = 1). The point G (J3 = −1.5) is in the helical phase
with the a axis.

C. The points H, I, J, K, and L with J1 = −1.0 and
J2 = −1.5

Typical contour plot of (h, 0, l) at the points H, I, J,
K, and K in the (J2, J3) phase diagram are shown in
Fig. 13. The point H (J3 = −0.2) is in the helical phase
along the c axis. The point I (J3 = −0.5) is in the helical
phase with the c axis and is on the line (J2 + J3 = 2J1).
The point J (J3 = −0.667) is on the phase boundary
between the helical phase with the c axis and the phase
with (h = 1.2, k = 0, l = 1/2). The points K (J3 = −3.0)
and L (J3 = −4.0) are in the phase with (h = 1/2, k =
0, l = 1/2).
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FIG. 11: (Color online) Distribution of Bragg peaks in the
(h, 0, l) reciprocal lattice plane. J1 = −1. J2 = −0.5, and
J3 is changed as a parameter. (a) Point A (J3 = −0.5), (b)
Point B (J3 = −1.5), (c) Point C (J3 = −2.0), (d) Point D
(J3 = −3.0), and (e) Point E (J3 = −4.0).
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FIG. 12: (Color online) Distribution of Bragg peaks in the
(h, 0, l) reciprocal lattice plane. J1 = −1. J2 = 1.5, and J3 is
changed as a parameter. F (J3 = −0.5) and G (J3 = −1.5).

D. The points M, N, O, and P with J1 = −1.0 and
J2 = −2

Typical contour plot of (h, 0, l) at the points M, N, O,
and P in the (J2, J3) phase diagram are shown in Fig. 14
The point M (J3 = −0.2) is in the helical phase along
the c axis. The point N (J3 = −0.5) is on the phase
boundary (J2 +J3 = 2J1) between the helical phase with
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FIG. 13: (Color online) Distribution of Bragg peaks in the
(h, 0, l) reciprocal lattice plane. J1 = −1. J2 = −1.5, and J3

is changed as a parameter. H (J3 = −0.2), I (J3 = −0.5), J
(J3 = −0.667), K (J3 = −1.2), and L (J3 = −1.5).
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FIG. 14: (Color online) Distribution of Bragg peaks in the
(h, 0, l) reciprocal lattice plane. J1 = −1. J2 = −2, and J3 is
changed as a parameter. M (J3 = −0.2), N (J3 = −0.5), O
(J3 = −0.7), and P (J3 = −0.8).
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FIG. 15: (Color online) structure in the phase (h = 0, k =
0, l = 1).

the c axis and the phase with (h = 1.2, k = 0, l = 1/2).
The points O (J3 = −0.7) and P (J3 = −0.8) are in the
phase with (h = 1/2, k = 0, l = 1/2).

IX. 3D SPIN STRUCTURES

What is the three dimensional (3D) spin structure
which is characterized with the wavevector of the mag-
netic Bragg peaks? The vector of spin at the site Ri of
the real lattice space is given by

Si = S[cos(Q ·Ri)ex + sin(Q ·Riφ)ey]

where S = 3/2, we assume that the phase factor φ is
equal to zero, and Q is defined as

Q = (ha∗, ka∗, lc∗).

A. Phase with (h = 0, k = 0, l = 1)

A typical spin structure for the phase with (0, 0, 1) is
described in Fig. 15.

B. Phase with (h = 1/2, k = 0, l = 1/2)

A typical spin structure for the phase with (1/2, 0,
1/2) is described in Fig. 16.

C. Helical ordered phase along the c axis; (0, 0, lmax)

The value lmax is obtained as 0.703= 5/7 – 0.0112857
for J2 = −1.67959, since

cos(πlmax) = −J1

J2
.

FIG. 16: (Color online) Spin structure in the phase (h =
1/2, k = 0, l = 1/2).

FIG. 17: (Color online) Incommensurate spin structure for
the helical order along the c axis with the phase (0, 0, 0.703).

A typical spin structure is incommensurate with the lat-
tice structure and described by Fig. 17.

D. Helical ordered phase along the c axis
(Yoshimori); commensurate structure

cos(πlmax) = −J1

J2
,

with lmax = 5/7 = 0.71429. A typical spin structure is
commensurate with the lattice structure and described
by Fig. 18. The magnetic unit cell along the c axis is
seven times larger than the unit cell of the crystal unit
cell.
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FIG. 18: (Color online) Commensurate spin structure for the
helical order along the c axis. with the phase (0, 0, 5/7),
which is proposed by Yoshimori.

FIG. 19: (Color online) Spin structure for the helical order
along the a axis with (hmax = 2/3, 0, 1). J1 = −1, J3 = −2.0.

E. Helical ordered phase along the a axis:
(hmax, 0, 1)

When J3 = −2.0 and J1 = −1, hmax is equal to 2/3,
since

cos(πhmax) = −J1

J3
.

Then a typical spin structure is described by Fig. 19.
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FIG. 20: (Color online) (a) Crystal structure of β-MnO2.
∠A1O4B1 = ∠C1O1B1 = 130.62◦. ∠A1O4A2 = 111.60◦.
∠B1O3D1 = 98.77◦. The distance (in the units of Å)
is denoted by numerical value. (b) Distorted octahedra
of β-MnO2. ∠O1B1O4 = 98.77◦, ∠O1B1O3 = 81.225◦,
∠O5O1O6 = 89.590◦, ∠O1O6O5 = 45.205◦, and ∠O1B1O5 =
∠O4B1O5 = 90.0◦ The distance (in the units of Å) is denoted
by numerical value.

X. DISCUSSION: NATURE OF EXCHANGE
INTERACTIONS IN THE RUTILE-TYPE β-MnO2

We show that the magnetic phase diagram with J1 =
−1 is uniquely determined by the combination of J2 and
J3, where the sign of J3 is mainly negative and the sign
of J2 is changed between negative to positive. For β-
MnO2, we have p2 = 1.68469 and as p3 = 0.537, leading
to J2 = −1.68469 and J3 = −0.537 when J1 = −1. This
point (J2, J3) for β-MnO2 is in the helical order along the
c axis, as shown in the magnetic phase diagram (Fig. 6).

In Fig. 20(a), we show the structure of β-MnO2. Figure
20(b) shows the distorted octahedron where one Mn4+
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ion (cation) at the point B1, is surrounded by six O2−

ions (anion) at the points O1, O2, O3, O4, O5, and O6.
The cation-cation separation (A1C1, B1D1) along a [001]
axis is considerably smaller (2.871Å). Because of the
distorted octahedron formed by O2− ions in the vicin-
ity of Mn4+ ion, the ground orbital state of Mn4+ ion
(3d3, L = 3 and S = 3/2) is split into the t2g (dε) level
[lower energy level, triple degenerate; d(xy), d(yz), and
d(zx) states] and the eg (dγ) level (upper energy, double
degenerate;d(3z2 − r2), d(x2 − y2)). The t2g state is oc-
cupied by three electrons with spin up state | +〉. The
εg state is empty. As a result, the ground state is orbital
singlet, indicating that the orbital angular momentum is
quenched. In β-MnO2, the eg electrons are responsible
for the metallic conduction, while the localized t2g elec-
trons are responsible for the magnetism. In Fig. 20(b),
the (3z2− r2) orbital axis at the point B1 coincides with
O5B1O6 (the z axis). The d(x2 − y2) axes coincide with
O3B1O4 (the x axis) and the O1B1O2 (the y axis). The x
and y axes are perpendicular to the z axis. However, the
x axis is not perpendicular to the y axis (98.78◦, 81.22◦).

A. Origin of the direct exchange interaction J2

We consider the exchange interaction J2 between the
points B1 and D1 (or between the points A1 and C1).
The distance B1D1 (A1C1) is 2.871Å. In Fig. 20(b),
one d(xy) orbital (t2g) from the point B1 bisects the
angle ∠O1B1O3 and meets at the middle point of the
edge O1O3. The other d(xy) orbital from the point D1

(the center of neighboring octahedron) bisects the angle
∠O1D1O3 and meets at the middle point of the edge
O1O3. According to Goodenough,11 the predominant
interactions between neighboring cations whose cation-
ccupied octahedra share an edge, are assumed to be di-
rect cation-cation exchange interaction. Thus the inter-
action J2 is antiferromagnetic (Heitler-London type) for
β-MnO2.

B. Origin of superexchange interaction J1

We consider the interaction between Mn4+ at the
point B1 and the Mn4+ at the point C1 as shown in
Fig. 20, where the distance C1B1 is 3.424Å. Accord-
ing to Goodenough,11 this interaction (J1) is a superex-
change one since the cation-occupied octahedra share a
common corner (point O1). The angle C1O1B1 is equal
to 130.62◦, this interaction is antiferromagnetic for β-
MnO2. According to Goodenough,11 when the cation-
occupied octahedral share a common corner, there can
be no direct overlap of neighboring cation orbitals and
therefore there is no cation-cation interactions.

What is the origin of J1? The point C1 is the center
of the neighboring octahedron. The direction of C1O1

is the z axis of this octahedron. A p orbital of O1 is
expected to be directed toward C1 (pσ orbital) so as to

overlap the d(3z2−r2) orbital of the point C1, where the
p orbital (px, py, pz state) is called as pσ orbital when
the principal axis of the p orbital coincides with the di-
rection of the bond. A partial covalent bond between
the d(3z2− r2) orbital and the pσ orbital can be formed.
Then the charge transfer occurs from the pσ orbital with
the spin-up state |↑〉 to the εg state. Consequently, the
spin of Mn4+ at the point C1 is still in the spin-up state,
while the resulting spin of O2− at the point O1 is in the
spin-down state. The remaining pσ state at the point O1

is magnetically coupled with the t2g state of the Mn4+

at the point B1. When this coupling (denoted as K0)
is antiferromagnetic, then the suprexchange interaction
between Mn4+ at the point C1 and Mn4+ at the point B1

is ferromagnetic. On the other hand, when this coupling
K0 is ferromagnetic, then the superexchange interaction
between Mn4+ at the point C1 and Mn4+ at the point
B1 is antiferromagnetic. Here we note that the angle
α = ∠C1O1B1 is equal to 130.62◦ for β-MnO2, which is
very different from 90◦. If α = 90◦, the pσ orbital on
the bond O1C1 coincides with the pπ orbital on the bond
O1B1 (the y axis), where the p orbital (px, py, pz state)
is called as pπ orbital when the principal axis of the p or-
bital is perpendicular to the direction of the bond. The
pπ orbital is coupled with the t2g state of the Mn4+ at
the point B1, since the εg state is empty. According to
the Goodenough-Kamamori-Anderson rule,11–14 the in-
teraction K0 is antiferromagnetic, since the pπ orbital is
not orthogonal to the t2g orbital. If α = 180◦, the pσ

orbital is coupled with the t2g orbital of the Mn4+ at the
point B1 the interaction K0 is ferromagnetic, since the
pσ orbital is orthogonal to the t2g orbital.

The sign of K0 is dependent on the value of α. There
may be a critical angle αc. K0 is ferromagnetic for α > αc

and K0 is antiferromagnetic for α < αc. Experimentally,
the superexchange interaction J1 is antiferromagnetic for
β-MnO2, which means that K0 is ferromagnetic. The
critical angle αc is lower than 130.62◦.

The direct cation-cation exchange interaction (J2) is
expected to be stronger than the superexchange inter-
actions J1 The competition between J1 and J2 can lead
to a complicated compromise magnetic order; J2/J1 =
1.68469 for β-MnO2. Note that the discussion of
Osmond15 on the nature of J2 may be inappropriate.

C. Origin of superexchange interaction J3

We consider the interaction between Mn4+ at the point
A1 and the Mn4+ at the point A2, as shown in Figs. 20(a)
and (b), where the distance A1A2 is 4.396Å. Accord-
ing to Goodenough,11,12 this interaction (J3) is a su-
perexchange one (cation-anion-cation) since the cation-
occupied octahedra share a common corner (point O4).
The angle ∠A1O4A2 is equal to α = 111.60◦, the dis-
tance O4A2 is 3.343Å, and the distance O4A1 is 1.878Å.
This interaction is experimentally antiferromagnetic for
β-MnO2; p3 = J3/J1 = 0.537. This means that the crit-
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ical angle αc is between 90◦ and 111.60◦.

XI. CONCLUSION

We have studied the magnetic phase diagram of (J2 vs
J3) with J1 = −1 in the rutile type β-MnO2 by using the
equi-energy contour plot. The distribution of the mag-
netic Bragg peaks can be clearly visualized. The mag-
netic phase diagram consists of the multricritical point
(the intersection J2J3 = J2

1 and J2 + J3 = 2J1), the he-
lical order along the c axis, the (h = 1/2, k = 0, l = 1/2)
phase, the helical order along the a axis, and the phase
(h = 0, k = 0, l = 1). The phase transition is of the

first order between the (h = 1/2, k = 0, l = 1/2) phase
and the helical order along the c axis, and between the
(h = 1/2, k = 0, l = 1/2) phase and the helical order
along the a axis. The phase transition is of the second
order between the phase (h = 0, k = 0, l = 1) and the
helical order along the c axis, and between the phase
(h = 0, k = 0, l = 1) and the helical order along the a
axis.
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