

A Novel DDoS Attack Defending Framework
with Minimized Bilateral Damages

†Yu Chen*, ‡Wei-Shinn Ku, ‡Kazuya Sakai, †C. DeCruze
†Dept. of Electrical & Computer Engineering, SUNY - Binghamton, Binghamton, NY 13902
‡Dept. of Computer Science & Software Engineering, Auburn University, Auburn, AL 36849

Abstract∗- Distributed Denial of Service (DDoS) attacks are one
of the most damaging threats against Internet based
applications. Many of the DDoS defense mechanisms may
unintentionally deny a certain portion of legitimate user
accesses by mistaking them as attackers or may simply not
block enough traffic to adequately protect the victim. Other
better performing systems have not yet to reach adoption
because of designs that require a substantial investment into
the Internet infrastructure before offering much effectiveness.
This paper proposes Heimdall, a novel traffic verification
based framework to protect legitimate traffic from bilateral
damages. Based on a proof-of-work technique and application
of distributed hash ID, aside from protecting established
connections, our system can validate new initial request for
communication and open valid channels between users and the
protected server. Through intensive simulation experiments on
the ns-2 network simulator, we verified that Heimdall scheme
can effectively protect legitimate communications and filter out
malicious flows with very high accuracy.

Keywords: Network security, DDoS Attacks, Traffic verification,
Proof-of-work system.

1. Introduction
Distributed Denial of Service (DDoS) attacks have

become one of the major threats to Internet based services
and electronic transactions [9]. While many research efforts
have been suggested, widespread adoption of any DDoS
defense has yet to happen. Fighting against DDoS attacks
effectively on the Internet has been a pressing task which
involves two critical issues: (1) accurately identifying the
machines participating in the forwarding of malicious flows
and (2) effectively cutting the malicious flows at those
machines while minimizes the bilateral damages on
legitimate traffic flows [3].

Previously, we have proposed a distributed change-point
detection technique to detect DDoS attacks at an early stage
[3]. A Change-Aggregation Tree (CAT) is constructed and
nodes in a CAT are routers that participate in forwarding the
malicious flows. Such routers are called Attack Transit
Routers (ATRs). The links in the CAT indicate the path
along which malicious attacking traffic goes through
towards the victim machine. Essentially, the CAT presents

∗ Manuscript submitted on Oct. 01, 2009 to the 7th IEEE Consumer
Communication and Networking Conference - Security for CE
Communications (CCNC’10), Las Vegas, NV, USA, Jan. 9 – 12, 2010.
Corresponding author: Yu Chen, SUNY – Binghamton, Binghamton, NY
13902. E-mail: ychen@binghamton.edu, Tel.: (607) 777-6133.

the spatiotemporal propagation pattern of the malicious
flows inside the network.

Figure 1 illustrates the CAT construction principle in
distributed DDoS attack detection. Figure 1(a) shows a
flooding attack launched from 4 zombies. The ATRs detect
abnormal surge of traffic at their I/O ports. The victim is
attached to the end router R0. All the attack flows home
towards the end router. Figure 1(b) presents a CAT tree
rooted at the end router. The CAT presents a traffic-flow
tree pattern rooted at the router connected to the edge
network, where the victim is attached. Hence, once a CAT is
constructed, a DDoS attack is detected and ATRs are
identified. The next task is to filter out malicious flows
while minimize the impact on the performance of legitimate
applications.

Note that CAT based detection scheme can be extended
into multiple ISP networks or Autonomous Systems (ASs).
The ATRs in a CAT can belong to multiple domains and
those domains are not necessarily physically connected with
each other directly. Due to the limited space, interested
readers can find more detailed description of CAT in [3].

(a) (b)

Figure 1. Illustration of the CAT principle.

Unfortunately, accurate segregation of malicious flows
from legitimate flows is very difficult. Many of the
suggested DDoS defense schemes may unintentionally deny
a certain portion, to a greater or lesser percent, of legitimate
users’ access by mistaking them as attackers or may simply
not block enough attacking traffic to adequately protect the
victim. Other better performing systems have not yet to
reach adoption because of designs that require a substantial
investment into the Internet infrastructure.

In this paper, we propose a novel DDoS attack
countermeasure framework called Heimdall, which offers
significant defense without significant infrastructure

changes. Taking advantage of existing proof-of-work
technique and application of distributed hash ID, aside from
protecting established connections, our system can validate
new initial requests for communication and open valid
channels between users and the protected server. Through
intensive simulation experiments using the ns-2 network
simulator, we verified that Heimdall can effectively protect
legitimate communications and filter out malicious flows
with very high accuracy.

The rest of the paper is organized as follows: Section 2
provides a brief review of related work. Section 3 discusses
the rationale and architecture of Heimdall. Section 4
presents the experiment results and the system performance
evaluation. Section 5 discusses several design issues and
concludes this paper.

2. Related Work
A considerable number of DDoS attack defense and

response mechanisms have been suggested [2], [9]. This
section provides a brief overview of DDoS defense schemes
that are closely related to our work.

From the perspective of system deploy locations, a DDoS
countermeasure can be allocated at the victim network, the
source network, or/and distributed in the network. Defenses
located at the victim side help to alleviate the excessive
traffic. Thus, they provide better protection per dollar for a
victim. The distributed network-wide defense mechanisms
rely on changes in the current Internet. Such changes would
need to happen on all parts of the Internet's topology. ISPs
would have responsibility for source network defenses. The
providers would then need to guarantee no malicious traffic
generated from their users can exit the ISP network and
enter the surrounding networks. Alternatively, traffic that
does exit has some manner of simple identification that
allows for simple filtering of malicious traffic [2].

Hop-Count filtering [7] proposed to detect suspicious
packets by comparing the hops between the source and the
victim. This avoids the assumption that a relationship exists
between the TTL field in legitimate TCP/IP packets and the
number of hops a packet travels across. Traffic level
measurements [1] focus on the way legitimate traffic acts
when face communication difficulties. In this case, when the
victim detects an aggregate, it compares the traffic patterns
before the aggregate with the patterns after the aggregate to
differentiate legitimate and illegitimate traffic. A broad
range of anti-DDoS techniques comes under the term Packet
Filtering [12]. In the case of an attack, or when the pool of
the victim's available resources is close to empty, the server
will give preference to trusted users over untrusted ones.
Trust forms by monitoring traffic behavior patterns to
separate typical usage from malicious attacks.

Communication between routers allows for aggregate
management before it may congest Internet pathways. In
Pushback defenses [5], [6], the detection of aggregates
triggers routers to identify malicious flows and implement
traffic controls. This router sends a message to connected
aggregate carrying routers and each router continues the

strategy to push back congestion. StackPi [13] works to
build a map of the route packets take as they traverse across
networks to identify the source of malicious traffic in place
of non reliable source IPs. The IP Identification field of the
IP packet contains hashes of the packet's path. As the field
fills, newer entries may overwrite older ones, but the
amount of concatenation, and the range on routers which
perform such markings are adjustable depending on the
implementation of StackPi. WebSOS [5] offers a great deal
of protection with a great deal of complexity. Direct
communication with the victim cannot happen. The only
communication happens through perimeter nodes. Each
incoming connection must also have passed verification
from the protected server. The perimeter of secure nodes
have the responsibility of ensuring malicious traffic stays
out of the secure network and randomizing the paths taken
once the data gets inside.

Since DDoS attacks used spoofed IP addresses to avoid
detection, the attackers fail to establish a valid connection
and prevent legitimate users from making one. Portcullis
[11] uses a proof-of-work system to prioritize capability
request packets. Potential users must spend CPU time to
solve puzzles and in doing so, DDoS advantage of superior
available bandwidth lessens, allowing legitimate users to
establish connections. While the intermediate network
defenses do encompass the victim network and the source
network, D-WARD [10] falls entirely in the domain of the
source network: ISPs. In the event of aggregates, D-WARD
will dramatically reduce available bandwidth or drop
outgoing packets entirely. The exterior routers can monitor
the valid IPs that exists behind them, preventing forged IP
addresses from leaving the AS.

Among the previously reported works, Portcullis and
Pushback defenses most closely resemble Heimdall. To
ensure the validity of puzzles, Portcullis uses unique
identifiers distributed from DNS servers. While Portcullis
shows a great deal of success with “limited” deployment, its
success still relies on the cooperation of the Internet's
governing bodies to allow for the distribution of puzzle
keys. In contrast, Heimdall utilizes the CAT tree obtained
during the detection of DDoS attacks [3] to track the path of
malicious traffic flows. Work reported below focuses on the
principle and framework of the countermeasure, the specific
design and implementation of puzzle generation/solving
functions are beyond the scope of this paper.

3. Design of Heimdall Architecture
This section presents the function blocks of our Heimdall

architecture first, then the detailed design and principles are
introduced in section 3.2.

3.1 Heimdall System Architecture
As shown in Figure 2 below, Heimdall architecture

consists of three distinct function units: a puzzle/identifier
generator, a puzzle solution verifier, and a puzzle resolver.
They are allocated at the victim, the intermediary Heimdall
routers, and the user machine respectively.

The puzzle/identifier generator is deployed at the user
machines that adopt the Heimdall system. When a DDoS
attack is detected, a CAT is constructed and the victim is
recognized. Then the generator produces a puzzle and a
unique puzzle identifier (UPI). The victim machine sends
them to Heimdall routers in the CAT tree. And the generator
will keep producing new UPIs and sending them to
Heimdall routers periodically.

Puzzle verifiers are deployed in the intermediary
Heimdall routers. When an initiation of new connection to
the victim is received, the router will not forward this
request to the victim immediately. Instead, the verifier
generates a new ID for the client and sends it along with the
puzzle and UPI to the client. Then, the router validates the
client’s responses. Only if the client solved the puzzle
correctly the router will forward the connection initialization
request to the victim. Otherwise, any packet sent by the
client to the victim will be dropped.

At the client side, there is a puzzle resolver. This enables
the client to receive packets from the router, which contains
a puzzle, a UPI, and an ID. Upon receiving such a packet,
the resolver will figure out a puzzle solution and transmit
the result to the appropriate router.

Figure 2. Deployment of Heimdall function units.

3.2 Design Rationale
With the three main components as illustrated in Figure 2,

the Heimdall system works by utilizing a proof-of-work
technique similar to Portcullis [11]. However, Heimdall
system focuses primarily on validating the initial request for
communication, the opening of a valid channel between
clients and the protected server. Certain existing systems
allow established connections to prioritize traffic before it
reaches the server. However, these systems lack a way for
new users to establish valid connections during a DDoS
attack as users whose requests appear in an aggregate may
initially appear indistinguishable from the malicious traffic.
The design goal of Heimdall is to guarantee that all
legitimate users can establish connections with the protected
victim even during a DDoS attack.

Using the CAT constructed during the DDoS attack
detection [3], as the root of the CAT, the victim server will

communicate with the ATRs and ATRs communicate with
peers during the verification process as described in [3]. For
ARTs that have Heimdall puzzle verifier embedded, the key
function they take can be broken down into two parts:
puzzle identification and puzzle verification.

Puzzle identification provides an approach by which
ATRs can verify that the clients have solved the assigned
puzzles, rather than simply computing different puzzles
beforehand. Only upon detection of an attack, the victim
will generate and send puzzles and UPIs to ATRs. The UPI
value will be updated periodically, so that each UPI remains
valid for some fixed period of time.

Through puzzle verification the verifiers recognize and
validate legitimate users if the replied UPI and puzzle
solution match. The puzzles need to meet certain criteria. It
should allow users to geometrically increase their effort,
take the ID and UPI as inputs so multiple users cannot share
work and is cryptographically secure.

For clients to perform proof-of-work, they also need to
complete two tasks. Firstly the clients have to figure out the
correct solution of the puzzle in fixed time constraint. Then,
a hash function is executed with the input including the
puzzle solution, the UPI and the ID issued by the router.

An example puzzle is similar to the one used in Portcullis
[11], where the user performs a hash function H(x, r, ID) =
p. Here, x is the solution to the puzzle, r is the UPI and ID is
the assigned client ID. The UPI prevents attackers from
using the same solution to launch replay attacks as the
server would release its own identifier. This also removes
the need of source IP address as part of the puzzle
parameters. Each machine starting to establish a connection
must include a specific ID given by the router. When
duplicate IDs are detected, all received packets except the
first one will be dropped to preclude collaborative work on
the puzzles.

Figure 3 illustrates the workflow of the Heimdall system.
Once a DDoS attack has been detected, a CAT tree will be
created as shown in Figure 1 and the victim is identified.
Then the ATRs will receive puzzles and UPIs periodically
from the victim machine. When a client initiates a new
connection with the victim, the Heimdall router will
generate a new ID for the client and send it along with a
puzzle to the user. Once solved the puzzle, the user will
calculate a hash function H(x, r, ID) with the inputs
including the puzzle solution, the UPI, and the client ID.

When the router receives the hash function output from
the client, it will check whether it matches the correct result.
Only users which are able to pass the verification are
allowed to connect to the victim.

 In case when an ISP fully adopts Heimdall, it is ideal to
make all of the edge routers support Heimdall to best protect
its clients. The edge routers may themselves become targets
of a coordinated DDoS attack. If the path to such a router
does not include any other hardened routers it may not be
able to cope with the attack. However, the attackers have
very little ability to control the routes their traffic takes and
would not be able to ensure such attack paths. If there are

multiple ISPs adopt Heimdall, the spread of Heimdall
routers would make such attacks targeted on individual
routers even more difficult.

Figure 3. The workflow of Heimdall.

4. Experiment and Performance Analysis
In this section, we give the definition of the performance

evaluation metrics first, and then the simulation experiment
configurations are discussed. In subsection 4.3, the
numerical simulation results and some discussions regarding
the effectiveness of the Heimdall system are presented.

4.1 Performance Evaluation Metrics
To evaluate the performance of our Heimdall system, we

focus on the percentage of new legitimate connections
established versus the delay users need to tolerate. We
studied the effectiveness of our system with different values
of parameters including the percent of existing legacy
routers, the amount of malicious traffic, and the number of
Heimdall routers. Below are the metrics we adopted in our
simulation experiments:

• Successful connection rate: the percentage that
legitimate users can connect to the server;

• Connection delay (sec.): the time required by the
three-hand shake;

4.2 Experiment Setup
The network topology used in our ns-2 simulation

experiments is similar to Figure 1. The act of puzzle solving
is simulated by setting a fixed delay time that the users wait
before sending a result. As shown in Figure 1, once the
CAT tree has been constructed we know which routers are
ATRs. Heimdall routers are randomly placed in the
network. The victim server is connected to R0, while the
other ASs contain malicious DDoS attack zombies and
legitimate users who desire to access certain services
provided by the server. As each user tries to reach the
protected server (victim) their traffic must pass through a
number of intermediary Heimdall routers. The total amount
of malicious traffic from zombies rages from 20 KB/Sec to
200 KB/Sec. During DDoS attacks, 1000 new TCP requests
are generated.

4.3 Experiment Results and Performance Evaluation
Figure 4 compares the percentages of successful newly

initiated connections under variant DDoS attacks. As the
amount of malicious traffic becomes higher than 120
KB/Sec, it is more and more difficult for users set up new
connections with the server. The successful connection rate
decreases quickly. As shown in Fig. 4, without the help of
Heimdall routers, when the amount of malicious traffic is
200 KB/Sec, less than 40% of the newly initiated
connections can be set up successfully. In contrast, when
three routers, R4, R6, and R9, support Heimdall scheme, all
the new connections are set up successfully under variant
amount of malicious traffic.

Figure 4. Successful connection rate.

Figure 5 presents the average delays those success

legitimate connections have to experience under different
attacking scenarios. Again, it is obvious that the users need
to wait longer time when the DDoS attack traffic rate
increases. Particularly, the average delay increases
drastically when the attacking rate is higher than 140
KB/Sec. Our simulation results also show that the Heimdall
routers effectively decrease the delay the users suffer.

In addition, compare with the average connection delay
when there is no DDoS attack, the puzzle solving operation
does introduce some extra delay. Compare to the much
longer delay under attacks, it is acceptable for legitimate
users to spend a little bit time to solve the puzzles.

Figure 5. Average connection delay.

Figure 6 illustrates the results of the impact of the number
of Heimdall routers in the network. The successful
connection rate increases in proportion to the number of
Heimdall routers. When more than 3 Heimdall routers exist,
all of the new connections are established successfully.
Connection delay decreases toward the number of Heimdall
routers is 3, and then it slightly increases. This indicates that
placing too many Heimdall routers introduces the control
overhead to establish a new connection. It is interesting to
see that the moderate number of Heimdall routers is
preferred to increase the successful connection rate in
keeping with lower delay.

Figure 6. Average connection delay.

5. Conclusions
It is nontrivial to minimize the bilateral damages to

legitimate traffic while trying to filter off malicious DDoS
attack flows. DDoS defenses may unintentionally deny a
certain portion, to a greater or lesser percent, of legitimate
users’ access by mistaking them as attackers.

This paper reports Heimdall, a novel countermeasure
system that effectively validates new initial request for
communication and open valid channels between users and
the protected server. The experimental results verified the
effectiveness of the Heimdall system. However, the reported
results are merely based on NS-2 simulation, which is still
not close enough to what happened in real world. Currently,
we are planning conduct more comprehensive and larger
scale emulation experiments on the DETER testbed [15].

Next, we will develop a complete mathematic model to
gain deeper insight. On the other hand, this paper focused
on the system architecture level study, and assumed any

existing puzzle-solving approach can be adopted. In our on-
going efforts, a novel proof-of-work system is being
designed to take full advantage of the established CAT tree
once a DDoS attack has been detected.

References
[1] B. Bencsath, and I. Vajda, “Protection Against DDoS

Attacks Based on Traffic Level Measurements,” Western
Simulation MultiConference, January 2004.

[2] A. Challita, M. E. Hassan, S. Maalouf, and A. Zouheiry, “A
Survey of DDoS Defense Mechanisms,” FEA Student
Conference, 2004.

[3] Y. Chen, K. Hwang, and W.-S. Ku, “Collaborative Detection
of DDoS Attacks over Multiple Network Networks,” IEEE
Transaction on Parallel and Distributed Systems, Vol. 18,
No. 12, December 2007.

[4] Y. Chen, Y. Kwok, and K. Hwang, “MAFIC: Adaptive
Packet Dropping for Cutting Malicious Flows to Push Back
DDoS Attacks,” IEEE International Conference on
Distributed Computing Systems Workshops, June 2005, pp.
123 – 129.

[5] D. L. Cook, W. G. Morein, A. D. Keromytis, V. Misra, and
D. Rubenstein, "WebSOS: Protecting Web Servers from
DDoS attacks," Proceedings of the 11th IEEE International
Conference on Networks (ICON 2003), September 2003, pp.
455 – 460.

[6] J. Ioannidis and S. Bellovin, “Implementing Pushback:
Router-Based Defense Against DDoS Attacks,” Network and
Distributed System Security Symposium, 2002 pp. 100 – 108.

[7] G. Jin, H. Wang, and K. G. Shin, “Hop-count Filtering: An
Effective Defense Against Spoofed DDoS Traffic,”
Proceedings of the 10th ACM Conference on Computer and
Communication Security, 2003.

[8] R. Mahajan, S. Bellovin, and S. Floyd, “Controlling High
Bandwidth Aggregates in the Network,” ACM SIGCOMM
Computer Communications Review, July 2002, pp. 62 – 73.

[9] J. Mirkovic, J. Martin, and P. Reiher, “A Taxonomy of
DDoS Attacks and DDoS Defense Mechanisms,” ACM
SIGCOMM Computer Communications Review, April 2004,
pp. 39 – 54.

[10] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the
Source,” IEEE International Conference on Network
Protocols, 2002.

[11] B. Parno, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu,
“Portcullis: Protecting Connection Setup from Denial-of-
Capability Attacks,” ACM SIGCOM’07, Aug. 27 – 31, 2007,
Japan.

[12] S. Tanachaiwiwat and K. Hwang, “Differential Packet
Filtering Against DDoS Flood Attacks,” ACM Conference
on Computer and Communications Security, October 2003.

[13] A. Yaar, A. Perrig, and D. Song, “StackPi: New Packet
Marking and Filtering Mechanisms for DDoS and IP
Spoofing Defense,” IEE Journal on Selected Areas in
Communications, October 2006, pp. 1853 – 1863.

[14] S. Zhang and P. Dasgupta, “Denying Denial-of-Service
Attacks: A Router Based Solution,” International
Conference on Internet Computing, June 2003.

[15] DETER testbed, http://www.deterlab.net/, as of Sept. 2009.

