
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 1

A Survey on the Application of FPGAs for
Network Infrastructure Security

Hao Chen,Yu Chen*, Douglas H. Summerville

Abstract—Given the rapid evolution of attack methods and
toolkits, software-based solutions to secure the network in-
frastructure have become overburdened. The performance gap
between the execution speed of security software and the amount
of data to be processed is ever widening. A common solution to
close this performance gap is through hardware implementation
of security functions. Possessing the flexibility of software and
high parallelism of hardware, reconfigurable hardware devices,
such as Field Programmable Gate Arrays (FPGAs), have be-
come increasingly popular for this purpose. FPGAs support the
performance demands of security operations as well as enable
architectural and algorithm innovations in the future. This paper
presents a survey of the state-of-art in FPGA-based implementa-
tions that have been used in the network infrastructure security
area, categorizing currently existing diverse implementations.
Combining brief descriptions with intensive case-studies, we hope
this survey will inspire more active research in this area.

Index Terms—Network Security, Network Infrastructure Se-
curity, Hardware-based Application, FPGA.

I. INTRODUCTION

THE growth and success of the Internet has made it
fertile ground for malicious attackers and abusers. The

increase in both the number and sophistication of attacks
against the network infrastructure necessitates more robust
security solutions. Despite the high level of knowledge reached
in the theory of network infrastructure security, successful
application has been inhibited by the inability to practically
implement many of these security measures [18].

The current Internet looks much different from its early
appearance. The Internet has evolved from the widespread
interconnection of separate physical networks. The original
design focused on efficient data transmission in an envi-
ronment where network resources were precious and user
groups were limited to scientists and engineers with implicit
trust in one another. Hence, security was not an important
design requirement, especially to the protection of the network
infrastructure. After decades of evolutionary development, the
Internet has become a polluted place, infested with viruses
and malware [48]. Today, millions of computers are connected
in a complex global web supporting a wide-range of con-
sumer, corporate and government users having expectations

Manuscript received 10 October 2008; revised 30 April 2009, 23 November
2009, 6 March 2010, 22 June 2010.

Hao Chen is with Dept. of Electrical & Computer Eng., SUNY-Binghamton,
Binghamton, NY 13902 (e-mail: hchen8@binghamton.edu).

Yu Chen is with Dept. of Electrical & Computer Eng., SUNY-Binghamton,
Binghamton, NY 13902 (e-mail: ychen@binghamton.edu).

Douglas H. Summerville is with Dept. of Electrical & Com-
puter Eng., SUNY-Binghamton, Binghamton, NY 13902 (e-mail: dsum-
mer@binghamton.edu).

of a reliable communication infrastructure. However, the main
infrastructure of the Internet is based on the same end-to-end
paradigm as when it was initiated in the 1970’s [10].

Fortunately, the research community has never stopped their
efforts to reinforce the security of the network infrastructure.
One of the most important achievements is the development of
various Network Intrusion Detection Systems (NIDS). Unlike
a network firewall, which selectively blocks all outside traffic
to prevent intrusions, a NIDS is able to evaluate traffic to
discern suspected intrusions from normal traffic. There are
several variations of NIDS, such as Network Intrusion Pre-
vention System (NIPS), Host-based Intrusion Detection Sys-
tem (HIDS), and Protocol-based Intrusion Detection System
(PIDS) [90]. SNORT [89], one of the most widely used NIDS,
is an example of a software-based, light-weight NIDS.

Despite the great progress that has been made, there is
an ever-widening performance gap between the processing
requirements of NIDS and their software implementations. The
increasing number and sophistication of attacks, the perfor-
mance limitations of sequential software execution and the
increase in network throughput all contribute to the widening
of this gap. Under these conditions, it is natural to consider
the use of hardware implementations for securing the network
infrastructure. The major motivation for shifting from software
to hardware is to enable real-time implementation of sophis-
ticated security functions.

At the same time, it is equally important to maintain the
system flexibility provided by general purpose computing
power. Typical hardware implementations are usually dedi-
cated for a few specific accelerations and in many cases still
require the assistance of software for proper operation. Since
security threats are constantly evolving, defense systems also
require both static and dynamic update mechanisms. Thus,
reconfiguration is as important to a hardware implementation
as programmability is to software. Indeed, the design boundary
between hardware and software is illusory at this point [48].
Field Programmable Gate Array (FPGA) devices have com-
monly been proposed because they feature both the flexibility
of software and the high performance of hardware [41]. The
FPGA is a suitable and popular hardware platform for many
network security applications, including protocol wrapper [14],
packet classification [98], and intrusion detection [13, 63, 104].
The emergence of the NetFPGA platform [66] is a good
example showing the high demand for incorporating FPGAs
into network implementations.

In addition to performance, hardware involvement also
brings opportunities for architectural or algorithm innova-
tions. The fundamental performance difference between hard-



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 2

ware and software solutions lies in their dissimilar execution
paradigms. Essentially, hardware involved implementation al-
lows executing many operations in parallel, while the execu-
tion of pure software implementation is serial or with limited
parallelism [33]. In the hardware design area, high efficiency
operation execution is still an active research topic.

Applying reconfigurable hardware for network infrastruc-
ture security has been a hot topic in the network security
community [12, 34, 69]. Much research effort has been de-
voted and many achievements have been reported. However,
to the best of our knowledge there has not yet been an attempt
to systematically document these efforts. The objective of this
paper is to present a clear and concise overview of state-of-
the-art in the use of reconfigurable hardware approaches in
network infrastructure security, from individual components
to systems.

The remainder of this paper is organized as follows. Section
2 provides background in network infrastructure security.
A detailed survey of reconfigurable hardware-based security
applications is presented in sections 3 through 6. As the
fundamental components for traffic monitoring, applications
on packet header classification and pattern matching are first
investigated in sections 3 and 4, respectively. Since more than
85% of actual network traffic is TCP/IP protocol based [70,
94], applications on TCP stream processing are included in
section 5. System applications focusing on DDoS (Distributed
Denial-of-Service) attack detection and Internet worm con-
tainment are presented in section 6. After a brief discussion
of certain open questions and major challenges of hardware-
based security applications in section 7, we conclude our paper
in section 8.

II. BACKGROUND

A. Review of Current Security Situation

Network security is a critical issue for the application of
new technologies in all areas of society and the economy. It is
particularly important for e-transactions, where it is a prereq-
uisite for instilling confidence in users [18]. As evidenced by
the declining trend financial losses, financial and intellectual
investments in network security have begun to pay off [88].
However, current and future threats to network security are
still severe and should be taken seriously, which motivates
continuing this investment [50].

According to a Computer Security Institute (CSI) survey,
the average annual cost due to cyber-crime doubled in 2007
from the previous year. After five years of continuous decline
in average estimated losses due to cyber-crime since 2001,
the tide turned. Companies reported average annual losses of
$350,424 in 2007, up sharply from the $168,000 they reported
in 2006 [88]. However, the average loss per respondent dra-
matically reduced from $3,149 in 2001 to $345 in 2007 [88].
This set of data reflects both the severe situation of network
security, as well as people’s achievement in this battle.

Targeted attacks have become a trend in network security.
A targeted attack is a malware attack aimed exclusively at an
organization or organizations within a sector or market [88].
Around 20% of the respondents of the CSI survey suffered

this kind of security incident. Such narrowly targeted attacks
are becoming more popular than ever [112].

As one type of notorious target attacks, Denial-of-Service
(DoS) attacks continue to threaten network security. Since
2000, DoS attacks have grown rapidly and have been one of
the major threats to the availability and reliability of network-
based services. This type of attack was listed as causing the
second highest total cyber crime cost in 2004. Although the
percentage of losses caused by DoS attacks has been reduced
in recent years, the total losses are increasing. This is due to
financial losses incurred for every minute that a site is down
[88].

Distributed DoS (DDoS) attacks, evolving from DoS at-
tacks, can cause even more significant damage. Through the
exploration of asymmetry between powerful Botnets [32]
and individual machines, the attacker compromises multiple
machines and recruits them into a zombie army, subsequently
and indirectly launching an attack towards a specific victim
from these zombies [84]. The DDoS attacks against Yahoo!,
eBay, Amazon.com and other popular websites in February
2000 revealed the vulnerability of even very well equipped
networks [21].

In addition, the trend of malicious threats has been moving
towards massively distributed Internet worms and spyware.
When combined with DoS attacks, the financial damage can
be profoundly high. For example, CodeRed, a well known
worm that included a built-in DoS attack payload, infected
more than 250,000 systems in just 9 hours on July 19, 2001
[19]; and the numerous varieties of the MyDoom worm carried
time-triggered DoS attack programs as their payload, causing
devastating results in 2004 [43].

B. Network Infrastructure Security

Securing the network infrastructure has become a high
priority due to its underlying effects for data protection, e-
commerce and even national security [44]. A reliable network
should feature at least two levels of security: information
security and infrastructure security. Information security is
based on information theory, and primarily focuses on data
protection using techniques such as authentication and en-
cryption [20]. Although important, this topic is out of the
scope of our paper. Infrastructure security, on the other hand,
focuses on the protection of network resources that support
information sharing [1]. Its importance and urgency have
gradually come to be considered equal to information security
with the emergence and growth of threats targeting the network
infrastructure. In fact, infrastructure and information security
are complementary; a healthy network should be secured in
both dimensions for reliable operation.

From the perspective of our study, all pertinent parts con-
nected to the network could be considered as infrastructure
components, including: DNS servers, routers, buffers and end-
hosts. Since these are the important components for informa-
tion gathering, exchange and distribution in the network they
are the most valuable attack objects. Similar to the formidable
challenge of securing all possible points of entry for attacks
against a nation, it is neither practical nor necessary to respond



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 3

everywhere in the network infrastructure [52]. As long as the
pertinent components are secured, the entire network infras-
tructure can be considered as secured. In short, a meaningful
network infrastructure security policy maintains the health of
critical components inside the network, preventing them from
being attacked, thereby, maintaining the availability, reliability
and stability of network services [23].

Few security issues were taken into account and standard-
ized as protocols in the original design of the Internet. This
intrinsic deficiency has enabled many opportunities for attack.
Other sources of vulnerability in the network infrastructure
include implementation deficiencies, misconfiguration, and
selection of topology and protocol. Though the situation has
improved due to the emergence of security protocols such as
IPSec (IP security) [54], it takes time for these to become
widely adopted. In addition, the exponential growth of the
Internet has resulted in a heterogeneous network infrastructure
that may cause slow adoption of protocol solutions. As a
result, security strategies are overdue to protect the network
infrastructure. In order to provide quality-of-service to its
users, a robust network infrastructure is imperative.

Many infrastructure security solutions are based on network
traffic analysis [3, 101]. Therefore, any useful application
for traffic analysis could be considered as a security appli-
cation in the context of network infrastructure security. TCP
flow processing, packet classification, pattern matching, shrew
attack defense and worm containment represent the major
application categories focusing on specific parts of network
infrastructure security [82, 86]. Network Intrusion Detection
Systems (NIDS) and Network Intrusion Prevention Systems
(NIPS), on the other hand, focus on the security of the entire
infrastructure [114].

C. Requirements for a Successful Security Application

After surveying current security applications related to
network infrastructure, we observe that a successful solution
usually bears following characteristics:

• Real-Time Protection. It is essential for an effective
protection mechanism to process data at line-speed with
affordable cost. All traffic is subjected for inspection in a
timely manner, and alerts are generated accurately when
abnormal situations occur.

• Flexible Updating. Constantly evolving malicious attacks
require security solutions to be adaptive to retain effec-
tiveness. The update could be of the knowledge databases
(signatures) that the security analysis depends on, a new
solution for resolving, or even the system itself. Updating
an application will often be more practical than replacing
it in practice.

• Well Controlled Scalability. Scalability is another crit-
ical concern for practical deployment. Many reported
approaches work well on a small scale research network,
but their performance deteriorates rapidly when deployed
to practical scale networks, such as campus level net-
works or larger. The main reason for this is that system
complexity usually increases at a much greater rate than
the network size on which it operates.

D. Hardware-based Infrastructure Security

Hardware implementation of security solutions has become
a trend as the gap between network data rates and off-the-
shelf processor computing power continues to increase. With
the rapid development of technology, hardware devices play
increasingly important roles in network security. Among the
reported research, most hardware implementations focus on
the construction of platforms that perform raw data collec-
tion or analysis. These platforms may not provide complete
security solutions, but they exhibit great potential [48].

The shift towards hardware-based implementation is moti-
vated by two major issues that prevent purely software-based
security applications from moving forward. First, the perfor-
mance of purely software-based applications is usually inad-
equate for practical deployment. For example, the saturation
analysis throughput of Snort [89] is only 137 Mbps [31] using
the standard configuration. Other systems, like Bro [79] and
WebSTAT [109], are not able to handle data rates higher than
100Mbps [92]. Second, processors have become overburdened
by the bandwidth expansion of network connections. State-of-
art processors such as Intel XEON Woodcrest (3.0 GHz) and
Intel Itanium Montecito (1.6GHz) are unable to maintain high
enough throughput while running multiple Regular Expression
Engines based Snort IDS [74]. Thus, it is necessary to offload
network applications to dedicated hardware [40] and free up
the host processor [74].

In addition to powerful computing capability, hardware
devices naturally support parallel execution of operations.
Compared with mostly sequential execution of software-based
implementations, this unique feature leads to more efficient
data-parallelism and multi-stage processing, which is unbeat-
able by current software-based platforms.

In contrast to software implementations, application-
oriented and highly parallel design paradigms make hard-
ware implementations superior in terms of performance. For
example, TCP Stream Reassembly and State Tracking, an
Application Specific Integrated Circuit (ASIC) developed at
Georgia Tech., could analyze a single TCP flow at 3.2Gbps
in 2002 [76]. A FPGA-based TCP-processor developed by
Open Network Laboratory (ONL) at Washington University
was capable of monitoring 8 million bidirectional TCP flows
at OC-48 (2.5Gbps ) data rate in 2004 [92].

ASIC-based devices not only possess the advantage of high
performance, achieved through circuit design dedicated to the
task, but have the potential for low unit price. However,
substantial cost relief from huge non-recurring engineering
investment can only be achieved when ASIC devices achieve
sufficiently high-volume production. Unfortunately, this may
not be applicable to network security applications. Constant
evolving standards and requirements make it unfeasible to
fabricate ASIC-based network security applications at such a
high volume [48]. Moreover, custom ASICs offer little or no
reconfigurability, which could be another reason that ASICs
have not been widely applied in the network security area.

Reconfigurability is an essential requirement for the suc-
cess of hardware-based network security applications and
the availability of reconfigurable hardware has enabled the



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 4

design of hardware-based security applications [34, 118]. A
reconfigurable device could be considered as a hybrid hard-
ware/software platform since reconfigurability is used to keep
the design up to date [48]. FPGAs are the most representative
reconfigurable hardware devices.

A Field-Programmable Gate Array (FPGA) is a type of
general-purpose, multi-level programmable logic device that
can be programmed by end users [107]. At the physical level,
logic blocks and programmable interconnections compose the
main structure of a FPGA. A logic block usually contains a
4-input look-up table (LUT) [15] and a flip flop for basic
logic operations, while programmable interconnections be-
tween blocks allow users to implement multi-level logic. At the
design level, a logic circuit diagram or a high level hardware
description language (HDL) [73], such as VHDL or Verilog, is
used for the programming that specifies how the chip should
function. In the electronics industry it is vital to reach the
market with new products in the shortest possible time and to
reduce the financial risk of implementing new ideas. FPGAs
were quickly adopted for the prototyping of new logic designs
shortly after they were invented in the mid 1980s due to their
unique feature of flexibility in hardware development [15].

While the performance and size of FPGAs limited their
application in the early days, advancements in density and
speed have resulted in narrowing the performance gap between
FPGAs and ASICs enabling FPGAs not only to serve as fast
prototyping tools but also to become primary components
in embedded systems [113]. Current FPGAs share the per-
formance advantage of ASICs because they can implement
parallel logic functions in hardware. They also share some of
the flexibility of embedded network processors in that they
can be dynamically reconfigured [47].

Combining the performance advantages of ASICs with
software-like re-programmability, current FPGA technologies
enable new infrastructure security applications. With millions
of computers now attached to the Internet, it is infeasible
to rely on every user being diligent in keeping their se-
curity provisions up to date. A feasible way to maintain
the efficiency and reliability of system security is to apply
security applications at a much smaller number of aggregation
points [48]. Featuring powerful functionality but compact size,
FPGA-based security implementations are one of the most
suitable candidates for this purpose. They can be deployed
anywhere within the network infrastructure for considerable
improvement in security.

In practice, most network infrastructure security applica-
tions follow the strategy of being deployed adjacent to routers
and work as security reinforcement to them. In this way, the
original configuration of network routers can be mostly pre-
served, reducing sharing of valuable resources and minimizing
the negative impact to already heavily burdened routers. This
strategy reduces the chance of malicious traffic touching
routers. Also, the balance between intrusion analyzing and
resolving can be maintained [21]. While it is not possible to
detect and eradicate all malicious traffic at few aggregation
points, the robustness of the system can usually be guaranteed
at the cost of accepting some security risk.

III. PACKET CLASSIFICATION

The network infrastructure faces serious security challenges
due to the exponential growth of the Internet. In practice, it
is infeasible to have an entire network infrastructure protected
due to economic, social or political reasons. It is difficult to
avoid the presence of malicious users inside the network, espe-
cially the Internet. Existing infrastructure security applications
are usually focused on the protection of a specific network
area, such as a campus-network or an enterprise-network. As a
result, most network infrastructure security applications adopt
a passive defense strategy. The basic rationale is I cannot stop
you, but I can prevent you.

Timely detection of malicious attacks is one of the essential
functions for network security applications. Without effective
detection, subsequent countermeasures are useless. To take
full advantage of the high parallelism supported by hardware
devices, signature-based detection is the most fundamental
and spontaneous strategy adopted. The signature can include
source/destination address, port numbers, protocols being ap-
plied, and patterns of content or any combination of these.
By comparing specific strings contained in incoming packets
to known signatures the detection system is able to identify
previously known malicious attacks.

For network infrastructure security, packet inspection is
the first approach for malicious activity detection. A packet
consists of two kinds of data: control data in the packet header
and user data in the payload [56]. Packet header fields are
essentially constant in length and appear at fixed locations in
the packet, while packet payloads can be variable in length
with no fixed format. Conventionally, packet classification
focuses on the processing of packet headers, while deep
packet inspection focuses on processing of the payload. A
combination of the two can be applied for a complete packet
matching approach [98].

Packet classification is an important technology for net-
work infrastructure security. From early firewalls to recent
high-performance routers and sophisticated Intrusion Detec-
tion systems (IDS), classification plays an indispensable role.
Research in packet classification has achieved substantial
progress in recent years. The reported research work in this
area has been well summarized and categorized into four basic
types by Taylor [105]. Therefore, instead of trying to repeat
the big picture, this survey focuses more on recent emerging
hardware based techniques.

A. Existing Applications

To the best of our knowledge, the first hardware imple-
mentation of packet classification was developed in 2002.
Called a flow classifier [117], it is a module employing a
hybrid hardware-software architecture performing straightfor-
ward operations. A 16-bit flow identity, which is generated
through a hash calculation of a packet’s five-tuple value, is
assigned to each packet [103]. With these identities, individual
packets are classified to different flows for further parallel
flow monitoring. The design was implemented using a Xilinx
VirtexII XC2V8000 FPGA board, and reported results indicate
that it is sufficient for 10 Gbps traffic rates.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 5

Song and Lockwood developed a hardware-based approach
for network intrusion detection in 2005 [98]. Combining the
advantages of Ternary Content Addressable Memory (TCAM)
[102, 115] and the Bit Vector (BV) algorithm [5, 58], the BV-
TCAM architecture was introduced. The approach is based
on the observation that while TCAM structure is efficient for
direct data-lookup with prefix or exact values, it is not suitable
for those that fall within a range. The complementary Bit
Vector algorithm, however, is well-suited for this task. In this
manner, this architecture eliminates the requirement for prefix
expansion or port range lookups. With a limited embedded
TCAM, packet classification can be easily implemented in
currently available FPGAs. This design was prototyped in a
Xilinx XCV2000E based FPX platform [64]. The evaluation
results show that this application is good enough to sustain at
least OC48 traffic rate (2.5Gbps).

A more recent achievement in hardware-based packet classi-
fication was reported in 2007 [69]. A Gigabit packet filter was
tailored for implementation on FPGAs. Instead of choosing
other advanced search algorithms, the architecture adopts a
linear-search based algorithm for packet classification. The
powerful hardware allows the linear-search based algorithm
to achieve high performance under multi-parallel operation
mode. Moreover, a linear search is the best choice when
using the internal memory blocks of FPGA for storage [69].
This pipelined packet-filter architecture was implemented on a
Virtex-4 FX-12 FPGA and was demonstrated to filter network
traffic at layers 2 and 3 with a throughput of 1 Gbps. Evaluated
with a system frequency at 125 MHz, it only took 2,300 ns for
a filter to make a decision of accepting or dropping a packet.

B. Technology Analysis

In general, packet classification refers to the operation of
categorizing different packets into equivalent classes based on
their header information [5]. These equivalent classes, known
as flows, are grouped by certain rules that include matching
the source/destination addresses or ports of the packets, or
the protocols being applied to them. A corresponding action
is associated with each rule to indicate the subsequent pro-
cessing, such as forwarding, copying or dropping. The rules
are stored in a database, one rule for each flow type. When
a packet arrives, at least one matched rule should be found
in the database, allowing further processing to be conducted.
If more than one rule is matched by a packet, an arbiter
makes a decision according to a predefined policy, usually
the longest pattern match. While each of these steps of packet
classification is an important technology concern, the most
important is how to perform effective rule matching.

Intensive research on packet classification has been car-
ried out and many algorithms and architectures have been
developed for this purpose. Taylor’s survey in 2004 [105]
summarized the major packet classification techniques. He
framed each technique as employing one or more of four
high-level approaches: Exhaustive Search, Decision Tree, De-
composition, and Tuple Space. Our analysis follows the same
categorization and is complementary to Taylor’s work. While
Taylor’s survey focuses on the description of techniques, we

focus on the analysis of hardware-based application of these
techniques.

Exhaustive search is intuitively the most straightforward
approach to find a matching rule by examining all the rules
in database. The basic linear search looks for filter rules
sequentially until the first rule matches. The matching priority
of the search is usually implicit. It is easy to modify the linear
search to run in parallel operation mode, and a fully paral-
lelized search can be achieved by using a Content Addressable
Memory (CAM) [42] or similar data-addressable memory-
structure. Ternary Content Addressable Memory (TCAM)
[115] is commonly used, as it can find a matching rule in
constant time.

Although CAM-based approaches are popular and practical
methods for the implementation of packet classification, they
are limited by two major drawbacks. First, the hardware
complexity results in storage inefficiency, high power con-
sumption and limited scalability for long input-key searching.
The second issue is the inefficient representation of filters with
port ranges. The emergence of Extend-TCAM (ETCAM) [102]
improves the performance; however, the cost of the E-TCAM
approach doubles in terms of gate count [69].

Decision-tree based approaches require the pre-construction
of a decision tree based on rule- databases, and then bit-keys
obtained from packet header fields are used to traverse the tree
from root to leaf. The searching time highly depends on the
length of search key. The Bit Vector algorithm [58] is a classic
tree-based search algorithm. More sophisticated tree-based
algorithms introduce the concept of ’cut’. A ’cut’ in multi-
dimensional space is isomorphic to a branch in a decision
tree [105]. These branch decisions in cutting algorithms are
more complicated than single bit decision in a bit-vector,
but the principles are the same. The BV-TCAM [85][98]
approach is a hybrid of the Bit-Vector algorithm and TCAM
structures. It combines the advantages of both for performance
improvement. However, the search of a decision tree inherits a
serial nature precluding it from fully parallel implementation.

Decomposition achieves performance improvement through
the reduction of search complexity. Parallel operation can
be performed by decomposing multiple-field searches into
multiple instances of single-field searches. In this manner the
total search time can be reduced. This approach leverages
the common case in which a packet rarely matches multi-
ples rules [46]. After searching, a mechanism is needed to
collect the disjoint results for final matching evaluation. In
general, decomposition based algorithms are known to have
high memory requirements [69]. For instance, the Distributed
Cross-producing of Field Labels (DCFL) approach provides
higher throughput, but at the cost of exponential memory
requirements. For a set of N filters containing d fields each,
the size of the cross-product table could be O(Nd) [106].
An improved bit-vector scheme called Aggregated Bit Vector
(ABV) was developed from this idea. By searching a constant
number of memory words in each field instead of examining
all the leaves, it reduces memory access from N to logA

N [5].
Unlike decision-tree based approaches that perform the rule-

search by exploring the relationships among rules, tuple-space
based approaches can quickly narrow down the scope of a



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 6

multiple field search by partitioning the rule-set into similar
rules.

A tuple defines a series of specified bit numbers in each rule
field [105]. It can be considered as a hash-like value to check
whether a packet matches specific rules [69]. The motivation
for using tuples arises from the fact that the number of distinct
tuples is much less than the number of rules in the rule set
[103]. The more similar the rules are the more they can be
grouped into tuples. After scope-narrowing, the complexity of
the search is reduced. Since the number of tuples depends on
the number of characters, the search time is predictable and
usually short.

While each technique has its own set of suitable applica-
tions, the brute-force linear search is the best for hardware
implementation mainly because of its compatible features with
hardware devices. Brute-force based linear search algorithms
are usually considered inefficient and as a result are cautiously
used in software-based applications. However, the simple
search mechanism allows for simpler implementation while
high parallelism enables optimization in hardware-based appli-
cations. Modern high-performance hardware devices provide
powerful functionality that can greatly accelerate processing
speed. In addition, parallel processing can be realized without
much overhead.

Linear search employs common RAM architectures for
sequential rule database search. Since incorporation of RAM-
based memory is relatively common within FPGAs, efficient
utilization can be achieved. On the contrary, CAM-based
approaches are able to achieve highly parallel search but the
CAM itself is a complex structure that is more difficult to
efficiently implement on a hardware device like a FPGA. The
decision tree and decomposition techniques require memory
structures to store and access the decision tree efficiently. So
far, efficiently implementing decision tree in hardware is still
an open problem [69].

Packet inspection consists of packet classification using
header information and deep packet inspection using payload
trunk. Indeed, many search or match techniques are orthogonal
to each other.

IV. PATTERN MATCHING APPLICATION

With the emergence of application level network attacks,
inspection of packet headers alone is no longer sufficient
[27]. Deep packet inspection has been introduced to reinforce
network security and is dedicated to the task of payload
inspection. The inspection of packet headers is relatively easy
due to the explicit format specified by protocols. However, the
inspection of payload contents is more challenging since the
payload contents can be any format that is determined by the
applications. Therefore, it is more complex and expensive to
perform deep packet inspection at payload level.

Pattern matching is the most popular approach for payload
inspection [62]. It is one of the fundamental functions for
anomaly detection and has been widely applied for security
purposes in the network infrastructure, including Firewalls and
Intrusion Detection Systems (IDS). The major task of pattern
matching is straightforward; incoming packets are compared

with a large number of patterns (or signatures), with subse-
quent processing based on the matching pattern [30]. In order
to conduct comparison operations efficiently, it is essential to
update the pattern database frequently, even dynamically if
possible, since the security environment constantly evolves.

The performance of pattern matching is often described
by two metrics: throughput and scalability [51]. Indeed, the
speed of pattern searching determines the acceptable process-
ing throughput, since all meaningful operations should be
performed in real time [6]. Scalability evaluates how well
a design fits to a real implementation. In practice, available
resources are always limited. A design with higher processing
throughput, but at the cost of significantly increased resource
utilization, is considered to possess poor scalability. In terms
of hardware pattern matching applications, better scalability
implies that more patterns could be accommodated for a
given amount of memory while the Quality-of-Service (QoS)
of pattern matching operations is maintained. The speed of
pattern matching is improved by accommodating more patterns
on chip, which results in improved overall performance.

The introduction of reconfigurable hardware, such as FPGA
devices, enables great strides for pattern matching applications
providing powerful processing capability that software-based
solutions cannot match. Techniques specialized for hardware
implementation of pattern matching have been developed
[12, 28, 63, 77]. In the following sub-sections, four typical
hardware-based pattern matching techniques will be discussed:
Finite Automata (FA), Content Addressable Memory (CAM),
Bloom-filter, and min-cut partition.

A. Finite Automata (FA) Technique

Finite Automata (FA) describes a class of models of compu-
tation that are characterized as having a finite number of states
[59]. This concept has been widely applied and is prevalent in
the digital logic design area. As it applies to pattern matching,
the result of a FA processed input string is either accepted
or rejected. A successful matching occurs when the string of
input characters match the labeled patterns, or, more precisely,
the regular expressions, on any path of the FA that leads from
the initial state to the final state. Currently, there are two types
of FA approaches reported for hardware implementation: Non-
deterministic Finite Automata (NFA) and Deterministic Finite
Automata (DFA) approaches.

1) Existing Applications: In recent years, several Non-
deterministic Finite Automata (NFA) implementations have
been reported. Sidhu and Prasanna [95] mapped the NFA logic
for regular expression onto a Xilinx Virtex FPGA and the Self-
Reconfigurable Gate Array (SRGA) to perform fast pattern
matching in 2001. The proposed approach takes O(n+m) time
and O(n2) space to find matches to a regular expression of
length n in text of length m. Using this method, Hutchings and
Franklin compiled patterns of the open-source NIDS system
Snort using JHDL [11], a Java-based design tool, and then
converted them to a FPGA bit-stream for implementation [49].
The result shows that the FPGA-based string matcher exceeds
the performance of the software-based system by a factor of
600 for large patterns.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 7

Clark and Schimmel further developed the NFA generator
with a similar approach in 2003 [29], but focused more on
complex regular expressions. They reported that using their
approach, the entire Snort rule database consisting of over
1,500 rules and 17,000 characters can be fit on a single one-
million-gate FPGA board while keeping pattern matching at
gigabit traffic rate. In 2004, they proposed a scalable pattern
matching using multi-character decoder NFA technology [30].
This approach offers flexible trade-offs between character
capacity, throughput, and data bus width and rate. A wide
range of pattern set sizes can be covered by high-performance
circuits. This approach enables current-generation FPGAs to
match a large number of complex patterns at network data
rates from 1Gbps to 100Gbps.

Compared to hardware application of the NFA approach,
there are relatively few hardware Deterministic Finite Au-
tomata (DFA) implementations being reported. Moscola and
Lockwood at Washington University translated regular expres-
sions into DFA in 2003 [75]. The content scanner was im-
plemented on their Field-programmable Port Extender (FPX)
platform and tested using real Internet traffic on the Washing-
ton University Gigabit Switch (WUGS). The pattern matching
can be guaranteed at speeds of 1.184 Gbps for twenty-one
regular expressions each with 20 characters, and exceeding
speeds of 2.5 Gigabits/second for smaller numbers of similar
regular expressions.

In 2004, Bos and Huang [13] reported a DFA approach
on the IXP1200 network processor with support for large
rule sets. They employed the Aho-Corasick algorithm in a
parallel fashion, where each micro-engine processes a subset
of traffic for pattern matching. In order to allow for large
patterns as well as a large number of rules, the patterns are
stored in off-chip memory. The evaluation results show that
the processing speed is only 200Mbps, though the system is
capable of handling full content scan for realistic threats.

2) Technology Analysis: Although the specific implemen-
tations of Finite Automata (FA) are different, the main ap-
proaches are similar in that they build an efficient Finite State
Machine (FSM) for pattern matching. Of course, NFA and
DFA feature their own special properties.

A regular expression is a pattern that is used to match a set
of strings according to certain syntax rules [97]. An FA can be
constructed to recognize strings matching a regular expression.
An FA can be expressed as a directed graph where nodes
represent states and edges are labeled as characters. One state
is designated as the initial state and the remaining states are
intermediate or accepting (or final) states. When the last input
symbol has been received it will report the matching status
depending on whether the DFA/NFA is in an accepting state
or not.

For each input symbol, the next state of the current DFA
state is uniquely determined. No state in DFA has more than
one outgoing edge with the same label [95]. Unlike DFA, for
any input symbol the next state of NFA may not be uniquely
determined. It could be any one of several possible states
depending on its constituent sub-expressions. An extension of
an NFA is an NFA-epsilon, which allows epsilon (ε) transitions
that represent a transition to a new state without consuming

Fig. 1. NFA/DFA for regular expressions

any input symbols. Hence, the edge of an epsilon-NFA may
be labeled with a single character or [95].

Fig. 1, reproduced from [95], provides some logic struc-
tures for NFA/DFA models. Fig. 1(a) illustrates the simplest
structure for single character matching. It has an initial state
q and a final state f , and is applicable to both NFA and DFA.
Fig. 1(b) and (c), however, are NFA exclusive structures for
the computing of r1 | r2 and r1 · r2, i.e.: to match either r1
or r2, or to match both of them, respectively. N1 and N2 are
NFAs for regular expressions of r1 and r2. They each have
an initial state q and final state f . If the next state cannot
be determined immediately from current state, processing will
register the current status and move to all next possible states
for joint prediction until reaching the final state, otherwise
the matching fails. The feature of joint prediction gives NFA
higher throughput for pattern matching than DFA.

Although the functionality of NFA and DFA are transfer-
able, they feature different hardware behaviors [95]. For FPGA
implementation, their construction time and relative memory
occupation are much different. The construction technique
shown in [95] can dynamically generate an NFA for a length
n regular expression in O(n) time with O(n2) memory; while
constructing an equivalent DFA requires significantly more
time and memory area, both at O(2n). After construction, both
NFA and DFA are able to process one character per cycle.
Assuming a pattern matching operation between a length n
regular expression and length m input data, a serial machine
requires O(mn) time to reach the goal and requires O(n)
memory occupation. It takes total O(2n+m) time and O(2n)
memory occupation for the equivalent DFA and O(n + m)
time and O(n2) memory occupation for the equivalent NFA
to process.

From the perspective of hardware implementation, construc-
tion time causes great impact to the overall performance of
FA. Though the time complexity of NFA looks moderate,
it actually requires dynamic update, which may result in
even heavier construction overhead. In practice, optimized



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 8

DFA construction techniques can be fast. However, for any
DFA based matcher there will always be cases that cause
exponential blowup in the time and memory required [95].
Since it is impossible to eliminate the configuration time
of hardware, a feasible way is to minimize it. Within this
context, the preferred approach may be to implement the FA
construction algorithm as a program that outputs the FA logic
as a placed and routed netlist and subsequently use vendor
tools for generating configuration bits [95].

In terms of logic level design, there are two standard meth-
ods for FA implementation on FPGAs [95]. One is through
the use of binary encoding for state storage. However, this
method is not efficient for NFA implementation, since the
memory can look up only one next state at every clock cycle.
For NFA construction, the one-hot encoding (OHE) scheme
offers a better solution. It allows NFA to simultaneously look
up any possible next state. The key is that each state of the
NFA is associated with one flip-flop and that state is uniquely
indicated by an output of one from that flip-flop; thus, multiple
states can be encoded by having multiple ones with no conflict.

In comparison, NFA possesses shorter processing time and
can be implemented in smaller overall area than DFA, but at
the cost of dynamic NFA update. If the size of the completed
automaton is the most critical concern, the DFA approach
contains up to O(2n) states, where n is the number of
characters in the expression. However, the structure of DFA
are simpler than NFA since all the states are explicit, but at the
cost of higher memory consumption. This is more prominent
in hardware applications when the size of patterns increases
and the scalability issue dominates the overall performance
of pattern matching applications. A good tradeoff between
complexity and memory consumption is desired.

B. Content Addressable Memory (CAM) Technique
The most common hardware approach for pattern matching

is regular expression based finite-automata (FA), either NFA
or DFA, which results in designs with low cost but modest
throughput [100]. Though the use of parallelism in FA imple-
mentations has been attempted, it is difficult in general. The
implementations of FA are built with the implicit assumption
that the input data are processed sequentially. Thus, the overall
latency increases proportionally with the number of patterns.
In addition, FA implementations are restricted in operating
frequency by the complexity of combinational logic needed
for state transitions, where complex expressions result in
multilevel implementations [100]. In recent years, approaches
based on Content Addressable Memory (CAM) have had
renewed interest due to their unique ability to apply fast pattern
comparison without memory addressing [45].

1) Existing Applications: To the best of our knowledge,
Gokhale and Duois are the first who implemented Snort rules
with a CAM in 2002 [42]. Their implementation achieved a
throughput of 2.2 Gbps on a Xilinx Virtex XCV1000E device
running at 68 MHz with 32-bit data each clock cycle.

A Ternary Content Addressable Memory (TCAM) based
multiple-pattern matching approach was introduced by Yu and
Katz in 2004 [115]. It features a don’t care (’?’) state in addi-
tion to the ’0’ and ’1’ states used in classical CAM approaches.

The don’t care state can be used as a mask, allowing one
input to match multiple patterns simultaneously. Therefore, the
TCAM approach is capable of handling complex patterns, such
as arbitrarily long patterns, correlated patterns and patterns
with negation. For the ClamAv [55] virus database with 1768
patterns whose sizes vary from 6 bytes to 2189 bytes, the
proposed approach can operate at 2 Gbps with a 240 kB
TCAM.

Sourdis and Pnevmatikatos proposed a CAM implemented
using discrete comparators in 2003 [99]. They adopted a
scalable, low-latency architecture with extensive fine-grain
pipelining to tackle the fan-out, match and encode bottlenecks.
Their design achieved a processing bandwidth of 11 Gbps
with operating frequencies at 340 MHz for fast Virtex devices.
To increase throughput, they applied multiple comparators for
parallel matching of multiple search strings. The evaluation
of timing and area reports presented show that the match
cost per search pattern character is between 4 and 5 logic
cells. For a lower cost, they improved their implementation
using shared comparators and developed the Decoded CAM
(DCAM) in 2004 [100]. The results showed the area cost per
search pattern character is less than 1.1 logic cells and an
operating frequency of about 375 MHz (3 Gbps) on a Virtex2
device. When using quad parallelism to increase the matching
throughput, the area cost was further decreased to less than
one cell with a throughput of 10Gbps.

Hardware-based approaches are able to deal with pattern
matching under tremendously high speeds but have high
resource requirements. As the number of patterns increases,
sufficient storage resources are essential. A Binary Decision
Diagram (BDD) based CAM method was introduced by
Yusuf and Luk in 2005 [116] to solve the problem of size
limitation while retaining the speed advantage of hardware.
Their pattern-matching engine is based on the tree-based CAM
structure. Exploiting logic optimizations for multiple strings in
the form of BDD, the approach involves hardware sharing at
the bit level [116]. This method has been used to implement
the entire SNORT rule set with approximately 12% of the
area on a Xilinx CC2V8000 FPGA. The design can run at
a rate of about 2.5 Gbps and is about 30% smaller than
another related approach [8]. The main obstacle in optimizing
for speed is large fan-out, which implies long latency. This
is a common obstacle for tree-based structures. Adopting an
optimized multi-stage pipeline may be a good solution for
mitigation.

2) Technology Analysis: The core part of pattern matching
is performing fast comparison between input data and patterns.
Since all the patterns are stored in memory devices, it is
necessary to perform a memory search to obtain patterns for
comparison. Traditional memory search techniques based on
RAM technology require generating addresses to locate the
patterns. As a result, the speed of addressing often becomes
the limiting factor for memory search and further delays the
comparison.

CAM is a class of parallel pattern matching circuits that is
an outgrowth of RAM (Random Access Memory) technology
[83]. In RAM circuits, an address is necessary to access the
corresponding data. The number of address lines limits the



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 9

Fig. 2. Binary CAM operation in match mode with packet length =1

depth of a memory, but the width of the memory can be
extended as far as desired if possible. CAM circuits can also
work in dual mode. In one mode, the CAM operates like a
standard RAM circuit where data may be written to and read
from the device [111]. In the other mode, the CAM circuits
have a powerful parallel match mode: the entire memory array
can be searched in parallel using hardware that compares each
stored entry to an input value. If a matching value is found
in any of the memory locations, a match signal is generated.
Since no address line is required in match mode, the depth
of a memory system using CAM can be extended as far as
desired. As a further extension, a CAM circuit can provide the
addresses of matched patterns in match mode when necessary,
which is the opposite functionality of a standard RAM.

Content Addressable Memory (CAM) technology is optimal
for memory search without addressing since it can directly
compare the input data against entire list of patterns being
stored in the memory simultaneously. This unique feature
offers CAM based approaches superior speed for fast compar-
ison. It results in an order-of-magnitude reduction in search
time, compared with other memory search methods such as
binary or tree-based searches or look-aside tag buffers [83].

Fig. 2 illustrates the basic Binary CAM (BCAM) [42]
operation for pattern matching based on FPGA implementa-
tion. As implied by its name, only ’0’ or ’1’ is stored in a
BCAM. The width of CAM depends on how many LUTs are
contained in one entry; it also determines the width of input
data upon which the lookup is based. A typical FPGA logic
block contains a 4-input lookup table (LUT), which means
an individual LUT can handle at most 4-bit input data. For
simplicity, each entry in Fig. 2 contains only one LUT, so
the width of CAM is 4 bits. In Fig. 2, 4 bits of input data
are fetched for matching during each processing cycle. CAM
circuits compare the input with all the pattern entries in parallel
and ’OR’ the results for final match indication.

In general, a CAM requires nw bytes of memory space
to store n entries, each w bytes wide. The simple scenario
of an input packet of length kw can always be processed
in deterministic time O(k) if the pattern contained in each
processing entry is independent [115]. However, in many
practical applications this is not the case since a pattern may
cross processing entries. In addition, several patterns may be
correlated to one another. In that case, more sophisticated
mechanisms must be applied. As shown in Fig. 2, shift
registers may be applied for data holding to ensure that all

Fig. 3. TCAM operation in match mode with packet length =1

possible patterns can be detected. Instead of simply passing
bits four by four, shifting bits one by one will never miss a
pattern spanning two processing entries.

Besides the basic BCAM approach, two other improved
CAM approaches have been proposed: Ternary CAM (TCAM)
[115] and Decoded CAM (DCAM) [99]. To perform exact
matching with wildcards using a BCAM, the wildcards must
be expanded to all possible matching patterns, and a BCAM
entry is required for each. A more efficient method is to
match only the interesting parts of the input data with patterns
stored in each entry. The TCAM approach is dedicated for
this purpose, as illustrated in Fig. 3. In addition to the ’0’ and
’1’ states, it has a don’t-care state, represented as ’?’ in the
figure. With the application of wildcards, the TCAM masks-off
uninteresting bits at each entry for faster comparison.

Decoded CAM (DCAM) is a variety of basic CAM opti-
mized for parallel matching. It was proposed in [99]. Unlike
a basic BCAM, which employs a single large CAM to per-
form parallel comparison of all stored patterns, the DCAM
is implemented with discrete ’comparators’ for partitioned
comparison. Patterns that would otherwise be stored in a
large BCAM are first decomposed into elementary patterns
according to certain rules at the character-level and are stored
in smaller CAM circuits. Each comparator implements the
functionality of such a small CAM. Comparisons are then
performed between the input data and individual comparators
in parallel. Finally, these intermediate results are processed
by encoders for a matching decision. Taking advantage of
pipelining and redundancy in patterns, the approach has the
potential to increase the efficiency of the comparison operation
dramatically. This approach was proposed in [99] and further
developed in [100]; these enhancements are discussed in
section 4.3.

In summary, CAM circuits feature regular structures and
are suitable for pattern matching applications in hardware,
especially for parallel implementation. The unique feature of
searching the entire memory contents simultaneously makes
this approach faster than any RAM based searching approach.
However, this speed comes at the cost of larger resource
consumption than other approaches. With respect to FPGA
implementation, the construction of CAM circuits relies on
flip-flops for data storage, so the size of the implemented
circuits is restricted by the availability of flip-flops [45].
Thus, as pattern matching circuits become more and more
complicated, scalability issues emerge.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 10

C. Optimization for Scalability

Usually, scalability is not an issue for small or simple sys-
tems, but can be the dominant factor in large complex systems.
Hardware based approaches can significantly improve the
performance of pattern matching, but at the cost of increased
resource consumption. Without good system scalability, lim-
ited hardware resources can be quickly exhausted. Moreover,
any modification in FPGA implementations, especially the
constant update of pattern databases, requires synthesizing,
mapping, and programming to the target device, which can be
time consuming. As hardware based pattern matching applica-
tions become increasingly sophisticated, scalability becomes a
large concern. In recent years, several approaches have been
dedicated to maintaining scalability in pattern matching. Here,
we introduce two popular techniques: Bloom filter and min-cut
partition.

1) Existing Applications: A basic structure using Bloom
filter for packet payload inspection has been reported by a
research team from Washington University in 2004 [36]. Ba-
sically, it consists of two stages: the first stage uses hardware
Bloom filters to isolate all packets that potentially contain
predefined signatures and the second stage eliminates false
positives produced in the first. A prototype based on the FPX
platform [64] has been built. Evaluation results show that this
design can support up to 10,000 pattern matching operations
at a line speed of OC-48 (2.4 Gbps). They have reported
extensions of the design in [4] and [35], which provide detailed
implementation. They further improved their work to handle
arbitrarily large pattern matching operations at the cost of
slightly more on-chip memory in 2006 [37]. The idea of
handling arbitrary length patterns is to split up longer strings
into multiple shorter fixed-length segments that can be handled
by the basic Bloom filter.

Suresh and Guo proposed an automatic compilation frame-
work in 2006 [104]. They used ROCC, a C to VHDL compiler,
to generate a Bloom-filter based intrusion detection system on
FPGAs. It is the first work that automatically generates VHDL
for Bloom filter code written in C. Their synthesized hardware
application can run at 73MHz and handle a throughput of 18.6
Gbps, while occupying approximately 8% of the area of a
Xilinx XC2V8000 FPGA.

Researchers at University of Southern California have dealt
with the scalability issue using a partition based approach.
They have adopted a graph-based min-cut partition technique
to decompose a large pattern database into certain basic pattern
sets in 2004 [6]. After a reasonable partition is found, the
redundancy contained in a pattern database can be reduced to
reduce the corresponding consumption of hardware resources.
Since the partition problem is achieved at the Register Transfer
Level (RTL) rather than the gate level during the logic design
phase, the system is affected less by synthesis tools, which
facilitates pre-synthesis performance estimation [6].

In practice, pattern decomposition can be achieved via
parallel hardware decoders. This operation is called ”pre-
decode” at the system level because pattern decomposition
is done prior to pattern matching. The idea is to compare
each input character to a set of known values of interest.

Fig. 4. Basic bloom filter operations

The comparator outputs are fed through a network of shift-
register delay elements to maintain the temporal relationship
among characters; the outputs of these shift registers become
the individual match lines that are combined to perform pattern
matching. This concept is an extension of the approach [100]
mentioned in the previous section. Reported results indicate
at least 8 times more area efficiency than other shift-and-
compare architectures, and 2 times more efficiency than other
pre-decoded architectures [6].

A subsequent work, reported in 2005 [7], further optimized
the approach by combining graph-based partitioning and tree-
based matching of large pattern databases. Moreover, an op-
timized incremental design strategy was introduced for place-
and-route based on the min-cut partition approach. Usually,
full place-and-route is required when any modification is
made in FPGA design, no matter how small the change. The
proposed strategy needs only to perform partial place-and-
route, since other partition patterns are not affected.

2) Technology Analysis:
a) Bloom Filter based Technique: A Bloom filter is a

data structure allowing representation of a set of elements with
probabilistic membership queries [36]. Patterns are stored in
Bloom filters compactly via the computation of multiple hash
functions. An important property of Bloom filters is that the
computation time for pattern searching is independent of the
number of patterns contained in the database. In addition,
the required memory space for hashed pattern storage is
independent of the size of real patterns, though a capacious
memory is preferred. Both membership queries and memory
space depend on the number of hash functions. Hence, the
Bloom filter technique naturally possesses good scalability.

Assume that a Bloom filter contains k independent hash
functions and a memory with m bits. As shown in Fig. 4, for
example, k = 3 and m = 9. Each hash function maps to a
single location for a given key (pattern). During initialization,
the Bloom filter sets k bits out of m memory bits according
to the hash functions for each stored pattern, as shown in Fig.
4(a). While testing for membership, if any of the k memory
bits is zero, the pattern is not stored; however, ambiguities
exist when all bits are one. Fig. 4(b) and (c) illustrate one
such scenario. S1 and S2 represent the corresponding hash
values of incoming data. Though S1 and S2 both hit bits that
have already been set, only S1 is a true match since there
is no such pattern mapping to the exact location where S2

points. The erroneous matching result of S2 is called a false
positive [2]. Thus, each query result may be a match or a



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 11

Fig. 5. Basic unit for pattern matching application with bloom filters

false positive but never a false negative. Bloom filters may
over-report matches, but never miss any.

Due to the existence of false positives, Bloom filter based
approaches usually contain two basic stages: one for Bloom
filter querying and another for false positive elimination. A
model adapted from [35] presents a good illustration, as shown
in Fig. 5.

The lower portion of the figure, labeled Part 1, is for Bloom
filter querying. This model includes w Bloom filters each
having a different number of hash functions. Hashed patterns
with the same length are stored in the same Bloom filter
unit. In the figure, the rightmost Bloom filter unit contains
all hashed patterns with the shortest length.

For simplicity both the shortest length of hashed patterns,
and thus the number of corresponding hash functions, are
one in this case. From the right to the left, the number
increases by one. This indicates that the model has the ability
to process different length patterns simultaneously. With data
traffic connected, the size of operation window is w bytes.
At each clock cycle, one byte of data is shifted through the
window and all subsets of this w byte sequence of data are
subjected to simultaneous query. In the case of multiple hits
a potential match is chosen by a pre-defined policy; usually,
either the longest match or the shortest will be considered as
the interesting one.

As shown in Fig. 5, the functions of Part 2 include false
positive elimination and final commitment of a match. It
consists of two main components: a matching arbiter and a
hash table. The hash table may be stored in the on-board
RAM. The matching arbiter buffers the hash value of potential
matched data. Then, it recalls the hash values of interesting
patterns from the hash table and compares them. If they are
the same, a match is committed and a match signal is output.
The whole procedure requires temporary freezing of current
Bloom filter querying for processing, so as to cause certain
delay to the incoming traffic. Since the potential matching rate
is expected to be low in real traffic, this kind of delay may
have little effect to system performance. A proper applied data
buffer for traffic holding could further mitigate this risk.

Fig. 6. (a). Un-partitioned graph (b).Partitioned graph

Hardware based Bloom filter implementations are quite
attractive for quick pattern matching. In addition to possessing
good scalability, other possible security enforcements may be
added to the process of hash value generation. It is practical
for special purpose hardware to handle those tasks. However,
some researchers argue that the main weakness of the Bloom
filter approach lies in its fixed length pattern processing. With-
out optimization, accommodating n different length patterns
requires n Bloom filter units.

b) Min-cut Partition Based Technique: The min-cut par-
tition technique stems from graph theory. With respect to pat-
tern matching applications, the partition focuses on the pattern
database, with the goal of exploiting redundancy for hardware
optimization. Patterns can be considered as combinations of
different characters and some elementary characters tend to
repeat across patterns. According to the study in [6], Baker
pointed out that only about 100 different characters are ever
matched against within the whole set of the Snort database,
if more than 2000 patterns could be completely decomposed
into single characters.

The rationale for the partition is that the number of repeated
characters within a group be maximized, while the number of
characters repeated between groups is minimized. With min-
cut, the entire pattern database is partitioned into several small
groups. Fig. 6, reproduced from [6], illustrates this concept.
Fig. 6(a) represents the original pattern database, which is a
densely connected graph. Each node is a pattern and the edges
between them represent shared characters. Fig. 6(b) represents
the result after partition.

In terms of hardware implementation, this result implies that
the number of pipeline registers can be decreased, since small
groups naturally contain fewer characters, which reduces the
length of pipeline stage. Meanwhile, the average utilization
of each character is increased, because like characters more
frequently appear within few groups. In addition, more parallel
operations can be performed since more pattern units are
created due to the min-cut partition. Considering these advan-
tages, redundant hardware resources for pipelined operations
can be released or be used to support more parallel operations
if possible.

Through reasonable min-cut partitioning, the pattern match-
ing operation can be achieved efficiently and compactly.
However, rules for partitioning are usually heuristic; thus, it is
difficult to find a single algorithm to maintain efficiency across
applications. Fortunately, the emergence of design automation



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 12

tools enables efficient application of trial-and-error.

V. TCP STREAM PREPROCESSING APPLICATION

TCP is a connection-oriented protocol which provides
guaranteed transport for network applications over unreliable
network environments. In real network environments, such as
the Internet, more than 85% of traffic uses the TCP protocol
[54, 94]. With TCP, packets can be dropped, duplicated or
re-ordered during transmission. Hence, data streams observed
at network connection points may deviate from their original
patterns. Since this situation can be exploited to conceal
malicious activity, for security monitoring it is necessary to
reveal it through continuous TCP session monitoring [76].

A Network Intrusion Detection System (NIDS) is a type of
network security application that provides more sophisticated
protection than firewalls. TCP session monitoring is one of the
basic functions of a NIDS. To achieve TCP session monitoring
in a NIDS it is necessary to perform packet reordering, stream
reassembly and state tracking operations of TCP traffic [87].
In this paper, we consider these operations as preprocessing
of TCP traffic since most security applications require well
organized TCP streams for analysis.

Modern security applications that focus on the network
infrastructure will be inefficient or less effective without the
capability of high-speed TCP traffic handling. The data rate
of communication links on which current Internet backbones
operate is in the range from OC-3 (155 Mbps) to OC-768 (40
Gbps) [92]. Many advanced infrastructure security services
require high-speed TCP traffic manipulation, including packet
inspection, content-based routing, Internet worm detection,
DDoS attack resistance and spam removal. Hardware-based
implementations are essential to most security applications for
adequate performance.

However, hardware resources are generally limited in prac-
tice and efficient resource utilization is highly desired. Mod-
ular design for hardware offers an opportunity to separate
TCP stream preprocessing from security functions. Since
many security functions require TCP stream preprocessing,
separating this function allows subsequent applications to be
relieved of this task, which can result in more resources being
available for security functions. These recovered resources
can be utilized to support other tasks, enabling high quality
network services at Gigabit rates.

Thus far, the research in hardware based TCP stream pre-
processing has not received sufficient recognition as only a few
papers related to this topic have been published. The reasons
for this could be twofold. On the one hand, the processing
of TCP streams itself may seem to be fairly straightforward,
so it may not be considered to be worth the effort. On
the other hand, the benefit of modular design for hardware
TCP stream preprocessing may not be clearly identified. In
fact, implementing this function as an individual module is
meaningful to practical applications. In our opinion, a modular
TCP stream reassembly block can not only save valuable
resources for subsequent blocks, but also optimize the system
architecture in a concise way. This property is highly desirable
to implement complicated security applications at the system
level.

A. Existing Applications
A TCP stream reassembly and state tracking module was

reported in 2002 [76]. They proposed to implement portions
of the NIDS functions to a high performance reconfigurable
network card. Its feasibility has been demonstrated by a
reassembly module designed in VHDL and implemented on
the Xilinx XCF1000 FGPA platform. It operates at a 100 MHz
system frequency with 32 bit data width, so the maximum
throughput achieved is 3.2 Gbps for raw TCP/IP traffic.

After successfully adapting the reassembly function from
software to hardware with a single thread, feasibility with
multi-threaded execution was subsequently explored. This led
to the question of how to manage multi-threaded processing.
Though they did not present any detailed implementation,
it is conceivable that the proposed design works for multi-
threaded TCP reassembly processing under modest network
circumstances.

In 2003, Li and Torresen [61] implemented a reconfigurable
hardware architecture to replace a software based STREAM4
[38] preprocessor in Snort, which performs TCP stateful
inspection and reassembly functions. Through logging and
analyzing the TCP stream packet by packet, it is possible to
predict what will happen next based on the status of current
and past packets. This function is very helpful for detection
of certain abnormal activities.

The major innovation is the implementation of a Server
TCP stream reassembly block and a Client reassembly block.
Unlike the implementation in [76] where reassembled flows for
opposite directions are simply stored in two different RAMs
at the end of the processing, their approach segregates unpro-
cessed server-oriented streams and client-oriented streams at
the very beginning. The design was implemented on a Xilinx
Virtex XCV1000-6 FPGA. The core part of the TCP stream
reassembly unit consists of two 32 bit comparators and one
32 bit adder. Experimental results showed that this design
achieved a throughput of 3.06 Gbps.

Another similar implementation with a slight modification
was reported in [60], which was evaluated on top of the FPX
platform from Washington University at St. Louis (WUSTL)
[65]. The whole system has been placed and routed into a
XCV2000E FPGA with throughput at 2.75 Gbps. Only a total
of 2.5 percent of the SLICEs (496 of 19600 SLICEs) of an
XCV2000E-6 were required to implement this system [60].

Schuehler and Lookwood reported their TCP-splitter in
2002 [91]. TCP-splitter was designed as a lightweight, high
performance circuit module that provides a consistent TCP
data stream to client application systems. It consists of two
logical sections: TCP-input, which handles ingress IP frames
and most of the job of a TCP-splitter; and TCP-output,
which is responsible for packet routing and frame delivery
to either the IP stack or its client applications for further
security processing. Their synthesized design on a Xilinx
Virtex 1000E-7 FPGA demonstrated a throughput of 3.2 Gbps
at 100 MHz clock frequency.

A TCP processing Engine has been developed based on the
splitter [93]. The most significant improvement in the design
is the appearance of off-chip memory. Off-chip memory dra-
matically expands the available resources for TCP stream pro-



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 13

Fig. 7. Basic Models for TCP stream processing

cessing. In addition, with the assistance of off-chip memory,
cooperation between different functional modules becomes
feasible. Information from higher-level applications can be
used to assist servicing of future TCP stream processing. In
this way, the processing of a TCP stream can be evaluated at a
higher level, incorporating this intelligence with self-updating.

A structure for parallel TCP stream scanning was also
discussed [93]. The deigned circuit was targeted for the Xilinx
XCV2000E FPGA on the FPX platform. This architecture
is able to monitor eight million simultaneous TCP flows at
OC48 rates (2.5 Gbps). In addition, the cooperation issue was
discussed in a subsequent publication in 2004 [92], in which
they added a set of encoding and decoding circuits for the
cooperation among multiple FPGA devices.

B. Technology Analysis

Among the published TCP stream processing applications,
most adhere to one of two models. One model acts as a con-
nection endpoint of network traffic that accepts and processes
all the incoming network traffic; the other one acts as a monitor
that inspects the TCP streams passing through. Each model
has distinct characteristics that can complement the other.
Selection of a suitable model for implementation depends on
specific design requirements. Resource consumption is always
a big concern that affects the practical implementation.

Usually, the endpoint model is suitable for fine TCP stream
processing at end-system networks with moderate TCP con-
nections, such as deep state inspection. Necker and Contis’s
design [76] follows this model. By instantiating multiple
processing circuits, up to 30 TCP/IP connections can be
processed simultaneously on a single FPGA board. On the
other hand, the monitoring model is suitable for coarse TCP
stream processing in high throughput networks with massive
TCP connections, such as reassembly, reordering, or counting.
Following the monitoring model, it is able to monitor all TCP
flows passing through the TCP-splitter [91]. Fig. 7(a) repre-
sents the connection endpoint model, and Fig. 7(b) represents
the monitoring model.

Applications for TCP stream preprocessing require place-
ment at locations where the interesting traffic passes. Indeed,
all packets associated with a TCP/IP connection must be
available for inspection. Only in this manner can consistent

Fig. 8. Block diagram for TCP stream preprocessing

security protection be guaranteed to all the packets within
a TCP connection. In general, the best deployment locations
for TCP stream applications are at places where edge routers
are located [91]. It is extremely difficult to process traffic
in the middle of the network in practice, since packets may
subsequently be dropped, duplicated or re-ordered along the
way. However, it is not difficult to process them at the location
of connected points. In addition, the traffic passing through
the network is not widely distributed. In fact, it is usually
concentrated to flows over a limited number of routers [39].

To correct the TCP stream defects produced during trans-
mission, TCP stream applications mainly focus on the in-
spection of the packet header. Although packet classification
also focuses on packet header, it concentrates on malicious
inspection other than the typical TCP defects inspection.
Fig. 8 demonstrates the basic procedure of TCP steam pre-
processing.

When an incoming data stream enters the processing module
via an Ethernet line card, an input buffer holds its packets
for synchronization. Buffered packets are then decomposed
into packet headers and payloads by an input state machine.
Corresponding tags are assigned to both parts for later associ-
ation. Subsequently, payloads are dispatched to another buffer
to wait for reassembly, while packet headers are dispatched
to the header processing engine for advanced processing.
During inspection, all information contained in a packet header
is subject to checking, including IP address, port number,
sequence number, acknowledgement number, and flags.

A state manager works as a coordinator handling all
components of the header processing engine, including the
checksum engine and flow classifier. In addition, it assumes the
responsibility for off-chip memory access for updating. Since
the off-chip memory may contain useful information from
other applications, continuous updating not only improves the
resilience of the header processing engine, but also makes it
more intelligent. The header processing engine may feature
the capability to segregate or drop verified malicious flows
at this point. Therefore, the boundary between typical TCP
preprocessing and packet classification is blurred due to this
cooperation. Of course, this function is optional; its use
depends on specific application requirements.

After being inspected, eligible headers are rearranged into
flows according to certain rules. Individual packets are re-



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 14

assembled using the association numbers previously assigned.
Meanwhile, certain useful control signals may be assigned to
these flows for future use. Finally, reorganized TCP flows are
stored in an output buffer for further processing by subsequent
client applications.

VI. INTERNET WORMS AND DDOS ATTACK DETECTION
AND CONTAINMENT

Internet worms and Distributed Denial-of-Service (DDoS)
attacks have been identified as the two major security threats
towards the network infrastructure [16]. Since both aim at
vulnerabilities of the network infrastructure, our daily ac-
tivities are more sensitive to this kind of attack than other
higher level attacks. MyDoom, an Internet mailer worm first
detected on 26 January 2004, is considered one of the fastest-
spreading and possibly the most dangerous worm in history
[85]. In the first 36 hours after release, it reached more 160
countries and infected over 100 million emails [110]. Such
widespread infection can be even more severe if malicious
DDoS content, such as a ”Trojan horse”, is piggybacked onto
the payloads of worm packets for a joint attack. Unfortunately,
this became the case when approximately 500,000 computers
worldwide were infected by MyDoom.a, which then launched
a Denial of Service (DoS) attack on SCO Systems services
at www.sco.com on 1st February 2004, according to a report
form CRN.COM [53].

In practice, security applications can only protect a limited
network area and have little information about the network as
a whole. Even during a single attack, security strategies may
need to vary depending on the specific attack stage in progress.
Though different attacks exhibit diverse behaviors, security
strategies against them usually can be categorized as pre-attack
prevention, under-attack containment and post-attack update.

Currently, most security applications against worm attacks
are applied during the under-attack stage. Good disguise and
quick outbreak make worms difficult to prevent at the pre-
attack stage. Due to the property of self-propagation, worms
can spread quickly and have the potential to evolve into
massive attacks over the whole network within a short time.
Though many worms make no attempt to modify the systems
that they pass through, they may quickly exhaust the resources
of and finally crash these systems. It is essential to contain
the propagation of worms as early as possible during their
outbreak.

Compared with worm containment, security strategies
against DDoS attacks are more complicated due to the two-
phase discipline of DDoS attacks [84]. The first phase of
a typical DDoS attack is to compromise a large number of
computers and recruit them into a zombie army; the second
phase is to indirectly launch DDoS attacks towards a specific
target through these zombies [84]. The joint attack of DDoS
and worms can be even more destructive. If attackers take the
advantage of worm spreading to comprise thousands or even
millions of computers and subsequently launch a DDoS attack,
none of today’s network infrastructure will be able to survive
under such an aggressive attack without proper protection.

Exploring this two-phase attack discipline, security applica-
tions can limit or reduce the number of zombies by filtering

the malicious content intended for this purpose at the pre-
attack stage. However, under-attack containment is the core
part of the defense against a DDoS attack once it begins.
Finally, post-attack update should not be ignored, since it is
the most convenient way to maintain the resilience of security
applications.

A. Existing Applications

Although the importance of defending against Internet
worms and DDoS attacks has been widely recognized and
many efforts have been reported, few of these have addressed
defense approaches based on hardware. Excluding the fact
that certain applications may not be released due to national
security or commercial concerns, current academic research in
this area is still at the initial stage.

Lockwood and Moscola reported their first hardware-based
implementation of a worm containment scheme in 2003 [67].
This design uses FPGA devices for worm scanning at high
speed Internet traffic rates. The system consists of three
interconnected components. The major component is the Data
Enabling Device (DED) which is deployed at key traffic aggre-
gation points for packet inspection. Content Matching Service
(CMS) updates the signature database and automatically gen-
erates the corresponding binary code for the reconfiguration
of DED circuits. Regional Transaction Processor (RTP) works
as a coordinator that manages the system to maintain proper
operation.

The Field Programmable Port Extender (FPX) card [64]
functions as the interface between network traffic and the hard-
ware device. It is the heart of DED. Through the utilization of
layered protocol wrappers [14], application-level flows can be
decomposed for further analysis. Implementing four signature
detection modules in parallel, the FPX is able to process data at
the rate of 2.4 Gbps with a single Xilinx Virtex 2000E FPGA.
At this rate, the DED module can achieve full throughput for
IP packet lengths ranging from 40 bytes to 1500 bytes. A
more detailed design can be found in another paper published
in 2003 [68].

The above design is a typical application of signature
detection. All decisions are made depending on prior attack
knowledge. However, this technology is not sufficient for un-
known attack detection. In 2004, an anomaly detection based
approach for worm containment was proposed [72]. It was
inspired by the idea that a worm detection system should keep
looking for frequently occurring contents [96]. The system
can process traffic at full line rate and was implemented on
the FPX platform. The circuit runs at a frequency of 91.5
MHz and network traffic is fetched into the device with 32
bit-width. The circuit fits well with Xilinx Virtex 2000 FPGA
device and allows the processing at OC-48 line speed on the
FPX platform. With a pipeline delay of 7 clock cycles, the
circuit introduces a delay of only 70 ns. This implies that the
system is feasible for real-time worm containment.

Due to the fact that even legitimate data packets, such
as SYN-ACK, RST or ICMP packets in TCP flows, can be
used for DDoS attacks [21], it is often difficult to discern
malicious activities via signature-based detection. However,



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 15

TABLE I
APPLICABILITY OF BASIC SECURITY APPLICATIONS

Technology Sub-category
Best Time to Apply

Category
Pre- Under- Post-

attack attack attack

Signature Packet header classification x x
detection Deep payload inspection x x

Anomaly Direct content counting x x
detection Spectral analysis x x

Knowledge x x x
update

the flooding property of DDoS attacks makes them relatively
easy to detect via anomaly detection. A recently published
DDoS detection application by Oh and Park in 2007 is based
on the inspection of network traffic rates [78]. A double token-
bucket mechanism was applied for bandwidth control.

This double token-bucket mechanism sets two essential
thresholds, one for the first bucket size and the other for
the sum of both bucket sizes. During the continuous flow
of incoming traffic, the current token level of traffic band-
width varies. If the token level exceeds the threshold of the
first bucket size but not the second one, a warning will be
issued for notification. If the token level exceeds the second
threshold, packets will be dropped due to the limitation of
throttling bandwidth. At the cost of dropping packets, valuable
bandwidth can be saved. This design has been implemented
on a security board that integrates Xilinx Vertex II Pro FPGAs
with a set of two gigabit Ethernet interfaces for evaluation. It
can serve up to 2 Gbps Ethernet on bidirectional traffic and
full 1 Gbps bidirectional traffic without loss [78].

The theory of using spectral analysis for DDoS attack de-
fense has been proposed for years [9, 25]. However, few corre-
sponding hardware-based approaches have been developed due
to the infeasibility of using hardware for implementation and
the cost of hardware devices. A Power Spectral Density (PSD)
analysis based hardware application was recently developed
[22]. The design is specifically targeted for online detection
of shrew attacks [57, 71], a type of stealthy DDoS attacks.
The idea stems from the observation that malicious shrew
attack flows are more distinguishable in the frequency domain.
With a proper DFT conversion, it is more convenient and
accurate to perform the anomaly detection in the frequency
domain [24]. The key procedure to achieve this goal is the
consecutive calculation of autocorrelation and Power Spectrum
Density (PSD) of sampled data. This application was designed
on the Xilinx ISE platform with the Virtex-4 XC4VFX12 as
the targeted device. Under extreme experimental conditions,
with a system frequency of only 5 MHz and a long TCP flow
window of 4096 packets (normal TCP-flow length is less than
1024 packets), it takes only 6.88 ms to achieve the major
processing required.

B. Technology Analysis

Defending against Internet worms or DDoS attacks is a
systematic process that integrates various technologies and

strategies. The choice of applying different security tech-
nologies and adopting corresponding strategies depends on
the specific application. Observing existing security solutions
against Internet worm and DDoS attacks, we find that many
basic technologies are shared among applications. Though we
will only focus on the defense of the two types of attacks
here, the above observation is generally applicable to most
security solutions. For convenience, Table I associates the
major technologies with their best application time. Following
this categorization, this section summarizes the technologies
adopted for reconfigurable hardware based implementations.

From the perspective of defenders, threats to the network
infrastructure can be classified into known and unknown types.
The known threats imply that these threats have been captured
and their properties have been studied. Their signatures are
usually collected and stored in a knowledge database for future
reference. On the contrary, unknown threats include all that
have not been identified.

For known threats, signature detection is the most intuitive
and straightforward technique for quick and accurate identi-
fication. It can be applied at both the pre-attack and under-
attack stages for prevention and containment. Any known
type of worm and malware containing a malicious DDoS
attack payload can be easily detected through packet header
classification and deep payload inspection. The intensive com-
puting required of signature comparison can be accomplished
on high performance hardware. An analysis of hardware-
based applications of these has been presented in the previous
sections. Anomaly detection is another option for known threat
detection, but is more popular for unknown threat detection.

In addition to techniques developed directly for malicious-
ness detection, update techniques for the resiliency of security
applications is equally important. Knowledge update mainly
focuses on the update of all kinds of databases, especially the
signature database. Due to the complex procedure of hardware
reconfiguration, a dedicated mechanism is desired.

1) Anomaly Detection: Generally speaking, anomaly de-
tection can run faster than signature detection. Instead of
performing exact matching of a large number of signatures,
as in signature detection, modeling normal behavior and
evaluating deviation from thresholds is typically less compu-
tationally intensive. However, this benefit is achieved at the
cost of generally higher false positive rates. Anomaly detection
is widely applied for the detection of unknown malicious
activities at the pre-attack and under-attack stages. Due to
constantly changing malicious threats, it is impossible to have
all knowledge available before new threats emerge. Through
continuous observation and modeling of normal behavior,
anomaly detection offers a way to find possible threats via
deviation from the normal model without knowing signatures.
The key is to choose reasonable thresholds so the balance
between performance and false positives can be maintained.

Most Internet worms and DDoS attacks exhibit the common
characteristic of flooding during attack, with the difference
that Internet worms spread randomly while the DDoS attacks
target specific victims. Nearly all prevalent Internet worms and
DDoS attacks had not exposed themselves before they broke
out. Taking advantage of anomaly detection, these kinds of



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 16

Fig. 9. Block diagram for payload anomaly detection

threats can be effectively detected, introducing the possibility
of stopping further propagation and curtailing wider impact
on the network infrastructure. In the following subsections,
two application modules are presented. In order to explain
their operation, both are assumed to be run within single
thread. However, higher throughput can be achieved using
multi-threaded operation via multiple-module instantiation.

a) Direct Content-Counting Technique: Direct content-
counting is the most intuitive and widely used technique
for anomaly detection. Any observable features are valid for
counting, including packet payloads, addresses and port num-
bers. Regardless of the specific content counted, an anomaly
can be detected as long as the counts of inspected objects
deviate far enough from the normal range. Fig. 9 shows a block
diagram of a typical logic module for anomaly detection [72].
It focuses on the detection of anomalous packet payloads.

With a suitable data rate, all packets are expected to be
inspected. A fixed-length operating window limits the number
of packets being processed simultaneously. Specifically, a
window of only one data byte is assumed in this example.
An exemption filter works as a coarse filter excluding many
typical patterns with high frequency upfront. Through the
hash functions, data patterns are hashed into specific locations
of a counter vector, which adds one to the corresponding
counters each time. If the counter of a pattern goes beyond
the suspicious thresholds stored in the anomaly arbiter, an
anomaly is detected. A timer is employed to refresh the
count vector periodically. Proper timer length is important to
efficiently capture as many anomaly patterns as possible. An
important issue related to start-up is how to set the initial
counter values. A typical way to handle this problem is to
subtract an average value from all the counters, instead of
resetting all the counters to zeros [72].

In practice, it is not wise to make decisions only on the
result of anomaly arbitration due to its high false positive rate.
It is both desirable and necessary to reduce this uncertainty
in practice. We call the block performing this function a
knowledge analyzer, as shown in Fig. 9. The goal is to reduce
the false positive rate of suspected anomalies. The knowledge
analyzer not only contains signatures or statistic estimations
for reference, but also provides other available knowledge for
support. Instead of occupying limited on-chip memory, off-

Fig. 10. Block diagram for PSD based anomaly detection

chip memory provides a flexible space for knowledge storage.
In addition, associating with off-chip memory is convenient
due to its potential capability of sharing with other functions
and even other systems.

b) Power Spectral Density based technique: Other than
direct content-counting based anomaly detection, spectral anal-
ysis based anomaly detection has begun to emerge in recent
years. The rationale is that certain complicated processes in
the time domain may behave more concisely in the frequency
domain. A key step for spectral analysis is converting time
domain data into the frequency domain. This operation is very
expensive from the perspective of computing power, especially
for real time applications. Though many hardware devices
can provide the necessary computing power, the high cost
has prevented them from gaining widespread use. The rise
of spectral analysis based approaches benefit from advancing
hardware technologies, especially the emergence of high-
performance cost-efficient FPGA devices.

With state-of-the-art technologies, there are now more hard-
ware devices with powerful hardware cores and larger on-chip
memories than ever. The traditional processing bottleneck of
the Fourier transform and its relatively high memory access re-
quirements is being eliminated. In addition, hardware vendors
are willing to release diverse pre-designed intellectual property
(IP) cores that are optimized for these hardware devices. The
existence of IP cores offers designers great convenience. From
the perspective of hardware applications, the Power Spectral
Density (PSD) based technique is quite mature and very
suitable for hardware implementation.

Power Spectral Density (PSD) based anomaly detection
exploits the property that normal TCP flows possess a periodic
Round-Trip Time (RTT) property during transmission, while
anomalous TCP flows do not [26]. It is efficient to reveal this
phenomenon by checking the PSD of corresponding packet
flows in the frequency domain. However, network traffic is
naturally sampled in the time domain and it is necessary to
convert the sampled sequences into the frequency domain in
order to examine the PSD properties. In practice, the whole
procedure is treated as discrete signal processing; N samples
are taken within a fixed-length time interval for processing. A
detailed explanation can be found in [26] and [22].

An abstract diagram of a PSD based anomaly detection
module is given in Fig. 10. A fixed-length operating window
is set for data acceptance. At each time interval, the same



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 17

Fig. 11. Block diagram for system architecture

quantity of data will shift in and out of the window. Due
to the high operating frequency of hardware devices and low
sampling rates of real data, it is typically better to buffer
the raw data in off-chip memory so that valuable on-chip
resources can be reserved for more important tasks. After
one unit of N sampled data points is gathered they are
fetched to an autocorrelation generator. From there, the data
is processed in a high-speed DFT hardware device. After the
DFT operation, the power spectral densities of fixed length
packets are generated and ready for analysis.

The spectrum analyzer performs anomaly analysis in the
frequency domain. It usually contains some normal frequency-
patterns of regular packet flows or specific thresholds for
decision. Additional knowledge residing in off-chip memory
is available to provide extensive support. Since this mecha-
nism exploits the periodicity of TCP flows, it is sensitive to
abnormal deviation. Low false positive rates make it possible
to eliminate the corresponding mitigation required in other
approaches.

2) System Update: Techniques for knowledge-update
mainly focus on the update of different kinds of databases,
especially those storing signatures. Through continuous up-
date, the resilience of security applications can be maintained
at a high level. Usually, the majority of the update is scheduled
routinely. However, dynamic updating during attack requires
time-efficient update to mitigate losses. In addition, corre-
sponding hardware circuits may require certain modifications
to accommodate the updated knowledge. With regards to
FPGA devices, this process is referred to as reprogramming or
reconfiguration. It is a multi-step process, including synthesis,
mapping, place-and-route and finally downloading the binary
code to the target device.

An abstract block-diagram in Fig. 11 illustrates such an
updatable architecture at the system level [67]. The system
consists of three major modules: inspector, updater and man-
ager. Each module performs specific functions. In order to em-
phasize the process of update, all the functions corresponding
to packet inspection are abstracted in the inspector module.
The manager module takes charge of the update process and
the updater module performs the hardware reconfiguration.

The manager module has two sources of knowledge update:
one is from the outside the system, such as existing knowledge
databases; the other is from the system itself, utilizing the
detection results of the system. At least two update modes
are required: by-request update and routine update. Using
these modes, a system administrator can easily manage the
update. However, both modes are relatively static. A dynamic
update mode that can update the system online, especially the

signature database and related knowledge, is highly desired.
That way, any newly detected maliciousness can be quickly
incorporated for the inspection of future packets.

Dynamically updating hardware-based applications within a
restricted time period is nontrivial, however, due to the com-
plex procedure of hardware reconfiguration. Certain tradeoffs
can be made to handle this problem. An intuitive method
is to use half of a FPGA to actively run operations leaving
the inactive half ready for reprogramming. When an update
has been made in the inactive half, it becomes active and the
previously active half is released for the next reprogramming.
This approach, however, may be na?ve for practical implemen-
tation. In general, dynamic hardware update is still an open
question.

Finally, it is the responsibility of the update module to set up
the hardware-based inspector through a reconfiguration proce-
dure. Since the detailed reconfiguration procedure depends on
specific hardware devices and software kits, it is beyond the
scope of this paper. In a security oriented system, however,
any potential vulnerability should be considered. The last
major step for reconfiguration of the FPGA is downloading the
configured bit-stream to the target device. If a remote operation
is performed through the network, some new security issues
regarding the protection of bit-streams during transmission
need to be considered.

VII. DISCUSSION

The application of hardware for network infrastructure se-
curity has become an active area of research. With the support
of powerful hardware devices, many previously infeasible
computationally intensive security tasks in software-based
applications now become feasible. At the same time, however,
hardware-based applications also face severe performance
challenges due to fiercely rising demands to handle higher
traffic rates, more intensive analysis, real-time operation and
even the collapse of Moore’s law for sequential processing
[80]. Without a carefully thought out design, valuable hard-
ware resources and powerful computing capabilities could be
quickly exhausted.

Researchers have pointed out that now is the time to rethink
the use of hardware for security applications [80]. They
presented their vision to pursue the high parallelism, stating:
”the key is devising an abstraction of parallel process that
will allow us to expose the parallelism latent in semantically
rich, stateful analysis algorithms.” [80] Their proposal includes
three major steps: 1) using high-level language to express rich
forms of network analysis; 2) executing compiled elements
of the language with a powerful parallel abstraction; and 3)
compiling the results from the abstraction to concrete hardware
implementations. Through decomposition and dispatching, the
implementation of a sophisticated parallel process can be effi-
ciently assigned to suitable devices. In addition to potentially
high system performance, the utilization of available hardware
resources can be maximized. Furthermore, an architecture
exploiting multi-core processors to parallelized Network In-
trusion Prevention (NIP) was proposed recently [81]. These
proposals have introduced certain new design concepts that



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 18

are currently not available; thus they are still open issues.
In addition to issues related to hardware implementation
of local security applications, the challenge of system-wide
collaboration lies in the global cooperation among these ap-
plications. This goes well beyond the scope of local hardware
implementation and must consider high-level issues of systems
engineering. The idea of system collaboration was proposed
in [16, 17]. System-wide collaboration offers to individual
applications a global view of dynamic security situations.
Since individual single-point-deployed security applications
can only cover limited areas of the network infrastructure, they
generally do not have global knowledge. With multi-point-
collaboration, a security shield which covers a wider area of
the network infrastructure can be established without major
modifications to the current single-point-deployed architecture.
In this manner, applications at individual nodes have more
ability to handle sophisticated security problems.

From our viewpoint, achieving system-wide collaboration
requires addressing collaboration at two levels. The first level
is collaboration between different single-point-deployed se-
curity applications within the same system. The second is
collaboration between different single-point-deployed security
applications in different systems. Then, the corresponding
hardware implementation changes should follow. Until now,
collaboration technologies have been based on the use of
an overlay network within the same security system [16].
Through effective information sharing and updating, system
performance can be improved substantially.

Collaboration at the system level can not only further
improve the performance of current security applications but
is essential to build intelligent security systems, such as
neuron-network-like security systems. The prospective benefits
stimulate research interests to develop distributed systems
[108]. However, this research is still at the initial stages.
The collaboration among different security systems is non-
trivial, and up to now there has been no reported mechanism
to effectively coordinate different security systems. In fact,
many questions regarding collaboration are open. However,
the potential benefits justify more effort.

VIII. CONCLUSION

In this paper, we reviewed existing hardware-based tech-
niques for network infrastructure security. Through the analy-
sis of general network security, we presented the background
of network infrastructure security. Then, we introduced the
major fundamental techniques being applied for signature
detection, including packet classification and pattern matching.
Subsequently, we focused on TCP-stream based security ap-
plications, since TCP-based streams dominate network traffic.

After considering the pre-processing of TCP-streams, we
focused on security applications protecting the end-system
level of the network infrastructure, since users are more
sensitive to malicious activities at this level. This includes the
detection of Internet worms and DDoS attacks. In addition to
classical techniques for signature detection, anomaly detection
techniques were reviewed. Direct content-counting and PSD
based techniques are two useful anomaly detection approaches.

In order to maintain the resilience of security applications,
continual system update is necessary. With respect to hard-
ware, the principal challenge is how to dynamically recon-
figure hardware devices. Finally, we concluded with a brief
discussion regarding open-questions such as high-parallelism
and system collaboration.

Our ongoing research focuses on anomaly detection for
DDOS attacks using spectral analysis. This approach is based
on the Xilinx Virtex 4 FPGA platform with VHDL coding.
After achieving some encouraging simulation results, we plan
to evaluate our design remotely on the testbed of the Open
Network Laboratory (ONL) at Washington University in St.
Louis. With their newly developed FPX interface, we are
able to directly upload our configured bit-stream code for
evaluation. Based on our research results, we are also inter-
ested in more intelligent security systems. Collaboration is one
potential approach and a dedicated protocol set is the key to
achieve reliable and effective collaboration.

In short, this paper presents a survey of state-of-the-art
FPGA based implementations in the network infrastructure
security area, covering the major categories of currently ex-
isting diverse implementations. It is our hope that this survey
presents a comprehensive coverage of the current status in this
area and will inspire active research in this area.

REFERENCES

[1] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A comparative
analysis of network dependability, fault-tolerance, reliability, security,
and survivability,” IEEE Communications Surveys & Tutorials, vol. 11,
no. 2, pp. 106–124, 2009.

[2] D. Allchin, “Error types,” Perspectives on science, vol. 9, no. 1, pp.
38–58, 2001.

[3] A. Callado, C. K. G. Szab, B. P. Gero, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on internet traffic identification,” IEEE
Communications Surveys & Tutorials, vol. 11, no. 3, 2009.

[4] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results
of bloom filters for string matching,” in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Sympo-
sium on, 2004, pp. 322–323.

[5] F. Baboescu and G. Varghese, “Scalable packet classification,” Net-
working, IEEE/ACM Transactions on, vol. 13, no. 1, pp. 2–14, 2005.

[6] Z. K. Baker and V. K. Prasanna, “A methodology for synthesis of
efficient intrusion detection systems on fpgas,” in Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, 2004, pp. 135–144.

[7] Z. K. Baker and V. K. Prasanna, “High-throughput linked-pattern
matching for intrusion detection systems,” in Architecture for network-
ing and communications systems, 2005. ANCS 2005. Symposium on,
2005, pp. 193–202.

[8] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of efficient intru-
sion detection systems on fpgas,” Dependable and Secure Computing,
IEEE Transactions on, vol. 3, no. 4, pp. 289–300, 2006.

[9] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal analysis of
network traffic anomalies,” in Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment. Marseille, France: ACM, 2002,
pp. 71–82.

[10] S. M. Bellovin, D. D. Clark, A. Perrig, and D. Song, “A clean-slate
design for the next-generation secure internet,” in NSF workshop at
CMU, 2005.

[11] P. Bellows and B. Hutchings, “Jhdl-an hdl for reconfigurable systems,”
in FPGAs for Custom Computing Machines, 1998. Proceedings. IEEE
Symposium on, 1998, pp. 175–184.

[12] I. Bonesana, M. Paolieri, and M. D. Santambrogio, “An adaptable fpga-
based system for regular expression matching,” in Design, Automation
and Test in Europe, 2008. DATE ’08, 2008, pp. 1262–1267.

[13] H. Bos and K. Huang, “A network instruction detection system on
ixp1200 network processors with support for large rule sets,” in
Technical Report 2004-02. Leiden Univeristry, 2004.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 19

[14] F. Braun, J. Lockwood, and M. Waldvogel, “Protocol wrappers for
layered network packet processing in reconfigurable hardware,” Micro,
IEEE, vol. 22, no. 1, pp. 66–74, 2002.

[15] F. R. R. J. V. Z. Brown, S.D., Field-Programmable Gate Arrays, 1st ed.,
ser. The Springer International Series in Engineering and Computer
Science Ser. New York: Springer-Verlag New York, LLC, 1992, vol.
180.

[16] M. Cai, K. Hwang, Y.-K. Kwok, S. Song, and Y. Chen, “Collaborative
internet worm containment,” Security & Privacy, IEEE, vol. 3, no. 3,
pp. 25–33, 2005.

[17] M. Cai, K. Hwang, J. Pan, and C. Papadopoulos, “Wormshield:
Collaborative worm signature detection using distributed aggregation
trees,” in tech. report TR 2005-12. Univ. of Southern California, 2005.

[18] L. S. Cardoso, “Internet security and critical infrastruc-
tures,” 2004. [Online]. Available: http://www.eurescom.de/message/
messagesep2004/Internet security and critical infrastructure.asp

[19] CERT, “Overview of attack trends,” CERT? Coordination Center,
Carnegie Mellon University, Tech. Rep., 2002.

[20] A. Chakrabarti and G. Manimaran, “Internet infrastructure security: a
taxonomy,” Network, IEEE, vol. 16, no. 6, pp. 13–21, 2002.

[21] R. K. C. Chang, “Defending against flooding-based distributed denial-
of-service attacks: a tutorial,” Communications Magazine, IEEE,
vol. 40, no. 10, pp. 42–51, 2002.

[22] H. Chen and Y. Chen, “A novel embedded accelerator for online
detection of shrew ddos attacks,” in Networking, Architecture, and
Storage, 2008. NAS ’08. International Conference on, 2008, pp. 365–
372.

[23] Y. Chen and H. Chen, “Neuronet: An adaptive infrastructure for
network security,” Journal of Information, Intelligence and Knowledge,
vol. 1, no. 2, pp. 143–168, 2009.

[24] Y. Chen and K. Hwang, “Collaborative change detection of ddos attacks
on community and isp networks,” in Collaborative Technologies and
Systems, 2006. CTS 2006. International Symposium on, 2006, pp. 401–
410.

[25] Y. Chen, K. Hwang, and Y.-K. Kwok, “Filtering of shrew ddos
attacks in frequency domain,” in Local Computer Networks, 2005. 30th
Anniversary. The IEEE Conference on, 2005, pp. 8 pp.–793.

[26] C.-M. Cheng, H. T. Kung, and K.-S. Tan, “Use of spectral analysis
in defense against dos attacks,” in Global Telecommunications Confer-
ence, 2002. GLOBECOM ’02. IEEE, vol. 3, 2002, pp. 2143–2148.

[27] Y. H. Cho and W. H. Mangione-Smith, “Deep packet filter with
dedicated logic and read only memories,” in Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on, 2004, pp. 125–134.

[28] Y. H. Cho and W. H. Mangione-Smith, “Deep network packet filter
design for reconfigurable devices,” Trans. on Embedded Computing
Sys., vol. 7, no. 2, pp. 1–26, 2008.

[29] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuits
for matching complex network intrusion detection patterns,” in Proc.
11th ACM/SIGDA Int. Conf. Field-Program. Logic Appl. (FPL), 2003,
p. 956.

[30] C. R. Clark and D. E. Schimmel, “Scalable pattern matching for
high speed networks,” in Field-Programmable Custom Computing
Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, 2004,
pp. 249–257.

[31] M. Colajanni, D. Gozzi, and M. Marchetti, “Enhancing interoperability
and stateful analysis of cooperative network intrusion detection sys-
tems,” in Proceedings of the 3rd ACM/IEEE Symposium on Architecture
for networking and communications systems. Orlando, Florida, USA:
ACM, 2007, pp. 165–174.

[32] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
understanding, detecting, and disrupting botnets,” in Proceedings of
the Steps to Reducing Unwanted Traffic on the Internet on Steps to
Reducing Unwanted Traffic on the Internet Workshop. Cambridge,
MA: USENIX Association, 2005, pp. 6–6.

[33] D. E. Culler, A. Gupta, and J. P. Singh, Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann Publishers Inc.,
1997.

[34] A. Das, D. Nguyen, J. Zambreno, G. Memik, and A. Choudhary,
“An fpga-based network intrusion detection architecture,” Information
Forensics and Security, IEEE Transactions on, vol. 3, no. 1, pp. 118–
132, 2008.

[35] S. Dharmapurikar, “Design and implementation of a string matching
system for network intrusion detection using fpga-based bloom filters,”
in Proc. of 12 th Annual IEEE Symposium on FieldProgrammable
Custom Computing Machines, 2004.

[36] S. Dharmapurikar and J. W. Lockwood, “Deep packet inspection using
parallel bloom filters,” Micro, IEEE, vol. 24, no. 1, pp. 52–61, 2004.

[37] S. Dharmapurikar and J. W. Lockwood, “Fast and scalable pattern
matching for network intrusion detection systems,” Selected Areas in
Communications, IEEE Journal on, vol. 24, no. 10, pp. 1781–1792,
2006.

[38] S. Egorov and G. Savchuk, “Snortran: An optimizing compiler for snort
rules,” Fidelis Security Systems, Inc., Tech. Rep., 2002.

[39] S. G. Eick, J. W. Lockwood, R. Loui, J. Moscola, and D. J. Weishar,
“Transformation algorithms for data streams,” in Aerospace Confer-
ence, 2005 IEEE, 2005, pp. 1–10.

[40] W. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda,
“Performance characterization of a 10-gigabit ethernet toe,” in High
Performance Interconnects, 2005. Proceedings. 13th Symposium on,
2005, pp. 58–63.

[41] P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu, “An
overview of reconfigurable hardware in embedded systems,” EURASIP
J. Embedded Syst., vol. 2006, no. 1, pp. 13–13, 2006, 1288236.

[42] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and
V. Hogsett, “Granidt: Towards gigabit rate network intrusion detection
technology,” in Proceedings of the Reconfigurable Computing Is Going
Mainstream, 12th International Conference on Field-Programmable
Logic and Applications. Springer-Verlag, 2002, pp. 404–413.

[43] L. A. Gordon and I. Computer Security, “2004 csi/fbi computer
crime and security survey,” 2004, (San Francisco, Calif.). [Online].
Available: http://i.cmpnet.com/gocsi/db%5Farea/pdfs/fbi/FBI2004.pdf

[44] T. Grandison and M. Sloman, “A survey of trust in internet applica-
tions,” IEEE Communications Surveys & Tutorials, vol. 3, no. 4, pp.
2–16, 2000.

[45] S. Guccione, D. Levi, and D. Downs, “A reconfigurable content
addressable memory,” in Proceedings of the 15 IPDPS 2000 Workshops
on Parallel and Distributed Processing. Springer-Verlag, 2000, pp.
882–889.

[46] P. Gupta and N. McKeown, “Packet classification on multiple fields,”
Cambridge, Massachusetts, United States, pp. 147–160, 1999.

[47] S. Hauck, “The roles of fpgas in reprogrammable systems,” Proceed-
ings of the IEEE, vol. 86, no. 4, pp. 615–638, 1998.

[48] P. Hunter, “Hardware-based security: Fpga-based devices,” Computer
Fraud & Security, vol. 2004, no. 2, pp. 11–12, 2004.

[49] B. L. Hutchings, R. Franklin, and D. Carver, “Assisting network intru-
sion detection with reconfigurable hardware,” in Field-Programmable
Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE
Symposium on, 2002, pp. 111–120.

[50] V. M. Igure and R. D. Williams, “Taxonomies of attacks and vulnerabil-
ities in computer systems,” IEEE Communications Surveys & Tutorials,
vol. 10, no. 1, pp. 6–19, 2008.

[51] H.-J. Jung, Z. K. Baker, and V. K. Prasanna, “Performance of fpga im-
plementation of bit-split architecture for intrusion detection systems,”
in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International, 2006, p. 8 pp.

[52] C. Kaufman, R. Perlman, and M. Speciner, Network security : private
communication in a public world, 2nd ed., ser. Prentice Hall series in
computer networking and distributed systems. Upper Saddle River,
N.J.: Prentice Hall PTR, 2002.

[53] G. Keizer, “Mydoom dos attack on microsoft falters,” February 03
2004. [Online]. Available: http://www.crn.com/security/18831398

[54] S. Kent and K. Seo, “Rfc 4301:security architecture for the internet
protocol,” 2005. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc4301.txt

[55] T. Kojm, “Clamav.” [Online]. Available: http://www.clamav.net.
[56] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach

Featuring the Internet. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[57] A. Kuzmanovic and E. W. Knightly, “Low-rate tcp-targeted denial of
service attacks: the shrew vs. the mice and elephants,” in Proceedings
of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications. Karlsruhe, Germany:
ACM, 2003, pp. 75–86.

[58] T. V. Lakshman and D. Stiliadis, “High-speed policy-based packet
forwarding using efficient multi-dimensional range matching,” 1998,
285283 203-214.

[59] M. V. Lawson, Finite Automata. Boca Raton: Chapman & Hall/CRC,
2004.

[60] S. Li, J. Torresen, and O. Soraasen, “Improving a network security sys-
tem by reconfigurable hardware,” in proc. of 22nd Norchip Conference,
Oslo, Norway, 2004.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 20

[61] S. Li, J. Torresen, and O. Sorasen, “Exploiting stateful inspection of
network security in reconfigurable hardware,” in Field-Programmable
Logic and Applications. Springer Berlin / Heidelberg, 2003, vol.
2778/2003, pp. 1153–1157.

[62] P.-C. Lin, Y.-D. Lin, T.-H. Lee, and Y.-C. Lai, “Using string matching
for deep packet inspection,” Computer, vol. 41, no. 4, pp. 23–28, 2008.

[63] C.-T. D. Lo, Y.-G. Tai, and K. Psarris, “Hardware implementation
for network intrusion detection rules with regular expression support,”
in Proceedings of the 2008 ACM symposium on Applied computing.
Fortaleza, Ceara, Brazil: ACM, 2008, pp. 1535–1539.

[64] J. Lockwood, N. Naufel, J. Turner, and D. Taylor, “Reprogrammable
network packet processing on the field programmable port extender
(fpx),” in FPGA, 2001, pp. 87–93.

[65] J. W. Lockwood, “An open platform for development of network pro-
cessing modules in reprogrammable hardware,” pp. WB–19, January
2001.

[66] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and L. Jianying, “Netfpga–an open platform
for gigabit-rate network switching and routing,” in Microelectronic
Systems Education, 2007. MSE ’07. IEEE International Conference
on, 2007, pp. 160–161.

[67] J. W. Lockwood, J. Moscola, M. Kulig, D. Reddick, and T. Brooks,
“Internet worm and virus protection in dynamically reconfigurable
hardware,” in Military and Aerospace Programmable Logic Device
(MAPLD), 2003, p. 10.

[68] J. W. Lockwood, J. Moscola, D. Reddick, M. Kulig, and T. Brooks,
“Application of hardware accelerated extensible network nodes for
internet worm and virus protection,” pp. 44–57, 2003.

[69] J. Loinig, J. Wolkerstorfer, and A. Szekely, “Packet filtering in gigabit
networks using fpgas,” in Austrochip 2007 - Proceedings of the 15th
Austrian Workshop on Microelectronics (2007), 2007, pp. 53 – 60.

[70] S. Low and J. Walrand, Transmission Control Protocol. San Rafael:
Morgan & Claypool Publishers, 2007.

[71] X. Luo and R. K. C. Chang, “On a new class of pulsing denial-of-
service attacks and the defense,” in Network and Distributed System
Security Symp. (NDSS), 2005, pp. 61–79.

[72] B. Madhusudan and J. Lockwood, “Design of a system for real-time
worm detection,” in Proceedings of the High Performance Intercon-
nects, 2004. on Proceedings. 12th Annual IEEE Symposium. IEEE
Computer Society, 2004, pp. 77–83.

[73] J. P. Mermet, Fundamentals and Standards in Hardware Description
Languages: Proceedings of the NATO Advanced Study Institute, in
Ciocco, Barga, Italy, April 16-26, 1993. Kluwer Academic Publishers,
1993.

[74] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling pcre to fpga for accel-
erating snort ids,” in Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for networking and communications systems. Orlando,
Florida, USA: ACM, 2007, pp. 127–136.

[75] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation
of a content-scanning module for an internet firewall,” in Field-
Programmable Custom Computing Machines, 2003. FCCM 2003. 11th
Annual IEEE Symposium on, 2003, pp. 31–38.

[76] M. Necker, D. Contis, and D. Schimmel, “Tcp-stream reassembly and
state tracking in hardware,” in Field-Programmable Custom Computing
Machines, 2002. Proceedings. 10th Annual IEEE Symposium on, 2002,
pp. 286–287.

[77] J. Ni, C. Lin, Z. Chen, and P. Ungsunan, “A fast multi-pattern matching
algorithm for deep packet inspection on a network processor,” in
Parallel Processing, 2007. ICPP 2007. International Conference on,
2007, pp. 16–16.

[78] J.-T. Oh, S.-K. Park, J.-S. Jang, and Y.-H. Jeon, “Detection of ddos
and ids evasion attacks in a high-speed networks environment,” Inter-
national Journal of Computer Science and Network Security, vol. 7,
no. 6, pp. 124–131, 2007.

[79] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
in Computer Networks, 1999, pp. 2435–2463.

[80] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R. Pang,
R. Sommer, and N. Weaver, “Rethinking hardware support for network
analysis and intrusion prevention,” in Proceedings of the 1st USENIX
Workshop on Hot Topics in Security. Vancouver, B.C., Canada:
USENIX Association, 2006, pp. 11–11.

[81] V. Paxson, R. Sommer, and N. Weaver, “An architecture for exploiting
multi-core processors to parallelize network intrusion prevention,” in
Sarnoff Symposium, 2007 IEEE, 2007, pp. 1–7.

[82] P. Li, M. Salour, and X. Su, “A survey of internet worn detection
and containment,” IEEE Communications Surveys & Tutorials, vol. 10,
no. 1, pp. 20–35, 2008.

[83] M. Peng and S. Azgomi, “Content-addressable memory (cam) and
its network applications,” in International IC Taipei Conference
Proceedings, Taipei, 2001. [Online]. Available: www.eetasia.com/
ARTICLES/2000MAY/2000MAY03 MEM NTEK TAC.PDF

[84] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based
defense mechanisms countering the dos and ddos problems,” ACM
Comput. Surv., vol. 39, no. 1, p. 3, 2007.

[85] J. Pescatore, M. Reynolds, and A. Hallawell, “How to limit damage
from the mydoom worm,” Gartner, Inc., Tech. Rep., 2004.

[86] P.-C. Lin, Z.-X. Li, Y.-D. Lin, Y.-C. Lai, and F. C. Lin, “Profiling
and accelerating string matching algorithms in three network content
security applications,” IEEE Communications Surveys & Tutorials,
vol. 8, no. 2, pp. 24–37, 2006.

[87] T. H. Ptacek and T. N. Newsham, “Insertion, evasion, and denial
of service: Eluding network intrusion detection,” Secure Networks
Inc, Tech. Rep., 1998. [Online]. Available: http://handle.dtic.mil/100.
2/ADA391565

[88] R. L. Richardson and I. Computer Security, CSI survey 2007 : the 12th
annual computer crime and security survey. [San Francisco, Calif.]:
Computer Security Institute, 2007, (San Francisco, Calif.).

[89] M. Roesch, “Snort - lightweight intrusion detection for networks,” in
Proceedings of the 13th USENIX conference on System administration.
Seattle, Washington: USENIX Association, 1999, pp. 229–238.

[90] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps),” National Institute of Standards and Technology,
Tech. Rep., 2007. [Online]. Available: http://csrc.nist.gov/publications/
nistpubs/800-94/SP800-94.pdf

[91] D. V. Schuehler and J. Lockwood, “Tcp-splitter: A tcp/ip flow monitor
in reconfigurable hardware,” in High Performance Interconnects, 2002.
Proceedings. 10th Symposium on, 2002, pp. 127–131.

[92] D. V. Schuehler and J. W. Lockwood, “A modular system for fpga-
based tcp flow processing in high-speed networks,” in 14th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2004, pp. 301–310.

[93] D. V. Schuehler, J. Moscola, and J. Lockwood, “Architecture for a
hardware based, tcp/ip content scanning system,” in High Performance
Interconnects, 2003. Proceedings. 11th Symposium on, 2003, pp. 89–
94.

[94] S. Shalunov and B. Teitelbaum, “Tcp use and performance on in-
ternet2,” in ACM SIGCOMM Internet Measurement Workshop, San
Francisco, USA, 2001.

[95] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
fpgas,” in Field-Programmable Custom Computing Machines, 2001.
FCCM ’01. The 9th Annual IEEE Symposium on, 2001, pp. 227–238.

[96] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proceedings of the 6th conference on Symposium
on Opearting Systems Design & Implementation - Volume 6. San
Francisco, CA: USENIX Association, 2004, pp. 4–4.

[97] M. Sipser, Introduction to the Theory of Computation. International
Thomson Publishing, 1996.

[98] H. Song and J. W. Lockwood, “Efficient packet classification for
network intrusion detection using fpga,” in Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable
gate arrays. Monterey, California, USA: ACM, 2005, pp. 238–245.

[99] I. Sourdis and D. Pneumatikatos, “Fast, large-scale string match for
a 10gbps fpga-based network intrusion detection system,” in Lecture
notes in computer science. Berlin; New York: Springer Berlin /
Heidelberg, 2003, vol. Volume 2778/2003, pp. 880–889.

[100] I. Sourdis and D. Pnevmatikatos, “Pre-decoded cams for efficient and
high-speed nids pattern matching,” in Field-Programmable Custom
Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Sympo-
sium on, 2004, pp. 258–267.

[101] A. Sperotto, G. Schaffrath, R. Sadre, C. Morariu, A. Pras, and B. Stiller,
“An overview of ip flow-based intrusion detection,” IEEE Communi-
cations Surveys & Tutorials, vol. 12, no. 3, 2010.

[102] E. Spitznagel, D. Taylor, and J. Turner, “Packet classification using
extended tcams,” in Proceedings of the 11th IEEE International Con-
ference on Network Protocols. IEEE Computer Society, 2003, p. 120.

[103] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using
tuple space search,” in Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer communication.
Cambridge, Massachusetts, United States: ACM, 1999, pp. 135–146.

[104] D. C. Suresh, Z. Guo, B. Buyukkurt, and W. A. Najjar, “Automatic
compilation framework for bloom filter based intrusion detection,” in
Lecture notes in computer science. Berlin; New York: Springer-Verlag,
2006, pp. 413–418.



IEEE COMMUNICATIONS SURVEYS & TUTORIALS, 2010 21

[105] D. E. Taylor, “Survey and taxonomy of packet classification tech-
niques,” ACM Comput. Surv., vol. 37, no. 3, pp. 238–275, 2005.

[106] D. E. Taylor and J. S. Turner, “Scalable packet classification using
distributed crossproducting of field labels,” in IEEE INFOCOM 2005,
24th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, 2005, pp. 269–280.

[107] S. M. Trimberger, Field-Programmable Gate Array Technology.
Kluwer Academic Publishers, 1994.

[108] A. K. Tummala and P. Patel, “Distributed ids using reconfigurable
hardware,” in Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International, 2007, pp. 1–6.

[109] G. Vigna, W. Robertson, K. Vishal, and R. A. Kemmerer, “A stateful
intrusion detection system for world-wide web servers,” in Computer
Security Applications Conference, 2003. Proceedings. 19th Annual,
2003, pp. 34–43.

[110] D. v. Vuuren, “Death, taxes and worms white paper,”
Dimension Data Holdings plc, Tech. Rep., 2004. [Online]. Avail-
able: http://www.dimensiondata.com/DocumentLibrary/WhitePapers/
SecuritySolutions/DeathTaxesWormsWhitePaper.htm

[111] N. H. E. Weste and K. Eshragian, Principles of Cmos Vlsi Design: A
Systems Perspective, 2nd ed. Addison-Wesley, 1993.

[112] T. Wilson, “Targeted attacks on the rise,” DarkReading.com, Apr
18 2007. [Online]. Available: http://www.darkreading.com/security/
perimeter/showArticle.jhtml?articleID=208804471

[113] S. Wong, S. Vassiliadis, and S. Cotofana, “Future directions of (pro-
grammable and reconfigurable) embedded processors,” in In Embedded
Processor Design Challenges, Workshop on Systems, Architectures,
Modeling, and Simulation - SAMOS. Marcel Dekker, Inc, 2002.

[114] Y.-D. Lin, H.-Y. Wei, and S.-T. Yu, “Building an integrated security
gateway: Mechanisms, performance evaluations, implementations, and
research issues,” IEEE Communications Surveys & Tutorials, vol. 4,
no. 1, pp. 2–15, 2002.

[115] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-
matching using tcam,” in Network Protocols, 2004. ICNP 2004. Pro-
ceedings of the 12th IEEE International Conference on, 2004, pp. 174–
183.

[116] S. Yusuf and W. Luk, “Bitwise optimised cam for network intrusion
detection systems,” in Field Programmable Logic and Applications,
2005. International Conference on, 2005, pp. 444–449.

[117] S. Yusuf, W. Luk, M. Sloman, N. Dulay, and E. Lupu, “A combined
hardware-software architecture for network flow analysis,” in IEEE
International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA’05), Las Vegas, USA, 2005.

[118] S. Yusuf, W. Luk, M. Sloman, N. Dulay, E. C. Lupu, and G. Brown,
“Reconfigurable architecture for network flow analysis,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 1,
pp. 57–65, 2008.

Hao Chen is a Ph.D. student majoring in Electrical
Engineering at the State University of New York
(SUNY) at Binghamton. He received his B.S. degree
from Zhejiang University, China in 2003. He earned
his M.S. degree in Electrical Engineering from
SUNY - Binghamton in 2007. His current research is
focusing on the Network Security, Novel Infrastruc-
ture for the Internet, Reconfigurable Hardware-based
Internet Infrastructure Security. Mr. Hao Chen could
be reached at hchen8@binghamton.edu.

Dr. Yu Chen is an Assistant Professor of Electrical
and Computer Engineering at the State University
of New York - Binghamton. He received the Ph.D.
in Electrical Engineering from the University of
Southern California (USC) in 2006 under the super-
vision of Professor Kai Hwang. His current research
interest lies in Network Security, Distributed/Grid
Computing, and Reconfigurable/Embedded Com-
puter Architectures. Particularly, his work covers
security in networks and large distributed/Grid com-
puting systems; Internet security protocols; infras-

tructure security; trust, security and privacy in wireless, embedded and
pervasive computing. He has authored or coauthored more than 40 scientific
papers in refereed journals, conferences, and book chapters. He is a member
of ACM, IEEE and SPIE.

Dr. Douglas H. Summerville is an Associate Pro-
fessor in the Department of Electrical and Computer
Engineering at the State University of New York at
Binghamton. He was formerly an Assistant Professor
in the Department of Electrical Engineering at the
University of Hawaii at Manoa. He received the B.E.
Degree in Electrical Engineering in 1991 from the
Cooper Union for the Advancement of Science and
Art, and the M.S. and the Ph.D. degrees in Electrical
Engineering from the State University of New York
at Binghamton in 1994 and 1997, respectively. He

has authored over 35 journal and conference papers and two textbooks
on embedded systems design. He is a senior member of the IEEE and
a member of the ASEE. He received the State University of New York
Chancellor’s Award for Excellence in Faculty Service and two teaching
excellence awards. His research and teaching interests include microcontroller
systems design, digital systems design and computer and network security, and
tamper detection.


