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Adaptive design of nanoscale dielectric structures for photonics
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Using adaptive algorithms, the design of nanoscale dielectric structures for photonic applications is
explored. Widths of dielectric layers in a linear array are adjusted to match target responses of
optical transmission as a function of energy. Two complementary approaches are discussed. The first
approach uses adaptive local random updates and progressively adjusts individual dielectric layer
widths. The second approach is based on global updating functions in which large subgroups of
layers are adjusted simultaneously. Both schemes are applied to obtain specific target responses of
the transmission function within selected energy windows, such as discontinuous cutoff or
power-law decay filters close to a photonic band edge. These adaptive algorithms are found to be
effective tools in the custom design of nanoscale photonic dielectric structure0® American

Institute of Physics.[DOI: 10.1063/1.1614422

I. INTRODUCTION leads to a typical response profile, Figbjl containing

In recent years, several types of optical filters, Superbound state resonances at low energies, and a photonic band
prisms, and distributed mirrors have been suggested whicdge atE=0.428 eV. The resonances are due to the finite
make use of photon propagation in nano_sca|e die|ectri§ize of the barrier structure. On the other hand, the Sl|ght|y
structures:—® While traditional approaches in the design of randomized array with(x) =bo*Ab(x) in Fig. 1(c), shows
these devices are based on spatially symmetric arrangemerft$lear overall reduction of transmission, Figd)l while still
of dielectrics? this study explores the merits of intentionally displaying remnant features of the symmetric case, such as
breaking translational symmetry to better realize desired tathe band gap. It is our objective to utilize such intentional
get response prof“eS, such as transmission or reflection ast@n5|ati0nal distortions of Symmetl’ic barrier arrays to match
function of incident light energ¥ylt is broken symmetry that ~target optical response functions, i.e., reflection and trans-
enables useful photonic functions. In this article, two proto-mission, in a given energy window. The optical response of a
type a|gorithms are discussed Wh|Ch use either |Oca| or g|osystem withN barrier pairS is determined by the contribution
bal progressive updates of dielectric layer widths to matctPf N—1 barrier poles. Desired filter functions can then be
target optical transmission functions, such as a cutoff or &enerated over a finite range of energy by adjusting the con-
power-law decay filter within a given frequency window. tribution of each pole.

To illustrate our approach, we focus on the physical
problem of one-dimensional arrays of dielectric optical
“wells” and “barriers” with alternating refractive indices
n,=1.0 andn,=1.5, respectively. Monochromatic light with !l. LOCAL UPDATES BY GUIDED RANDOM WALK
energyE=hv is incident from the left hand side, and trans-

mission is detected on the right end of the array. The propa- 1 N€ first type of adaptive algorithm to achieve this task
gation matrix method, keeping track of the boundary condi-, based on local random updates of |nd|V|d_uaI barrle_r
idths. These updates are accepted if the resulting transmis-

tions on the reflected and transmitted components of thé/ ) ) )

wave function at each individual barrier, is applied to obtain>'o" profile match_es better the target f_unct|on than the previ-

the total transmission coefficient of the array as a function ofUS On€. The basic steps of the algorithm are:

the photon energy. For the case of a symmetric.arra_y withi1) Choose target functiof(E)agerand energy windove
constant barrier widthb(x) =by=0.5 um, shown in Fig. €[Emin, Emax, €.9., cutoff function T(E) = 0(E
1(a), this —E¢) with Ece[Enin, Emaxl-

(2) Generate initial barrier array by setting length and refrac-

3Author to whom correspondence should be addressed; electronic mail: V€ mdex OT each barrier, for example in a spatially sym-
shaas@usc.edu metric fashion.
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FIG. 1. Transmission as a function of energy in one-dimensional arrays of|g. 2. Adaptive random updates on an array with-20r 30 optical bar-
ten optical wells and barriers with alternating refractive indiegs 1.0 and  rier pairs.(a) Transmission as a function of energy for the translationally
n,=1.5, respectivelya) and(b) Symmetric array with barrier widths of 0.5  symmetric case(b) Transmission as a function of energy for broken spatial

um. (c) and(d) Slightly randomized array with broken translational sym- symmetry to achieve a cutoff filter functiofic) Deviation of T(E) from
metry. The duty cycle is fixed at &Zm, whereas the widths are generated target function.(d) Corresponding strength function.

from a uniform random distribution function, centered at pr.

_ o _ ~ target cutoff filter function of the shap&(E)g.= 0(E
3 petermlneT(E) for initial array,'and compute its devia- —E,) within a given energy window, which we choose as
tion from the target function by evaluatingd  Ec[0.35 eV, 0.45 eY. The result of 150 successful updates
= [ e dET(E) ~ T(B)arged > is displayed in Fig. 2.
(4) Perform a trial random updatehange of width of one In Fig. 2(@) the transmission function for the translation-
barrier (or sets of barrieps and determine\ for the fol-  ally symmetric array with equal barrier widtig is shown.
lowing configuration. Additional physical constraints, It displays characteristic resonances that increase close to the

such as inversion symmetry about the array center, caRand edgee.. Comparing this response wilf(E) after the
be enforced in this step. application of the adaptive local random update algorithm,

(5) Accept the update i has decreased with respect to the shown in Fig. 2b), one observes that in both cases the band
previous configuration. edge is the dominant feature. However, after convergence to

(6) Repeat random updates of all barriers until acceptabléhe target filter function, the oscillations I(E) are largely

convergence has been reached. suppressed within the chosen energy window. The deviation

of T(E) from T(E)arge:iS plotted in Fig. 2c) as a function of

In principle, this annealing approach can be further im-accepted updates. From a fit to the foly=A exp(—j/x;),
proved by (1) implementing a Metropolis criterion that wherej is the label of successful updates, it is found that this
avoids local minima in the phase space of barrier widths, andlgorithm converges exponentially fast on a scalg of27
(2) choosing more updates close to the array boundariesipdates. After approximately 100 successful updates this
which affectT(E) the most, than in the vicinity of the center function is essentially flat ak,,=0.004\,, and convergence
of the structure. In practice, however, the convergence of thikas been reached. The strength function of the final configu-
algorithm proves to be sufficiently fast. To illustrate this ration of barrier widths is displayed in Fig(d@. This quan-
point, let us examine an array of 3@+ 30=62 barriers tity is defined bys(x) =2w(x)/d, wherew(x) is the barrier
with alternating refractive indices;=1.0 andn,=1.5. Per-  width at positionx, andd=1 um is the dielectric barrier
fect inversion symmetry of the barrier widths about the arraypair width. From this last figure it is obvious that the final
center is enforced, and the four central barriers are kept ureonfiguration does not have the simplest spatial symmetry,
changed at their initial duty cycles. The reason for this addi-although inversion symmetry about the array center has been
tional constraint is the physical motivation to create an arrayenforced. The barrier widths in the array center remain al-
of adjustable optical barriers that smoothly modulates an inmost unchanged, whereas they decay rapidly towards the ar-
coming free light wave into a crystal Bloch wave through anray extremities. Therefore, adjustments in these boundary re-
intermediate layer. gions prove to be most effective in achieving a target optical

For the symmetric case with a dielectric barrier pairresponse. Moreover, from this example of multiple indepen-
width d=1um and an individual barrier width ob, dently adjustable barriefsvith wells)® it is evident that there
=0.5um, this array exhibits a band edge d&. are several sets of possible solutiohg(x),x=1,N} for a
=0.43251 eV. This is a natural point in energy to center agiven finite tolerancé. This number of local minima can be



J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Chen et al. 6067

reduced by enforcing lower symmetries, such as the inver- 15— 71 7710020
sion about the array center that was used in the above ex L (a) { <f (b 1
ample. However, for more complicated target functions such « ] g et e Lo
symmetries may not exist or are not obvious. Furthermore, if.§ ' F e 2102 e
fewer symmetries are enforced by hand, there are more ad‘g 18 3,=98 |7 = 0010
justable parameters, and the deviation from the target func-g os|- - g
tion can be reduced more efficiently. Finally, often practical L 1%
applications do not require tolerances below the 1% level P T BT U - 0000
that is reached by this local random update algorithm. T 036 0'13z§. 04 042 044 2 30 32 0 34 7
ergy, E(eV) Expansion coefficient a,
] L N N B B L B I B e e R

I1l. GLOBAL UPDATES USING PHYSICAL L (©) 1 L (@
CONSTRAINTS g ” g .

We next turn to an alternative approach to the adaptiveg ) g i
design of barrier arrays that is based on global updates of theg, ;
strength functiors(x). More specifically, the strength func- g ®3[ 1 § 193
tion is expanded in a set of basis functiofigx), s(x) T 1
=3 ,af;(x), which are subject to the constrairts s(x) 00 1'0-2'0-310-4'0-5'0-60-70 ()"' 110-2'0-3'0-4’0'5'0-6"0-700.0

=s'(x)=0 at the system boundariegii) s(L)=1 and Position, xjm) Position, x(jim)

s’(L)=0 at or close to the array center; afid) s(x) is , ] _ _

forced to be inversion-symmetric about the array center TthG. 3. Adaptive global updates on an array with+30+ 30 optical barrier

. ; . ’ airs.(a) Transmission as a function of energy for broken spatial symmetry

first two constraints are used to determine the lowest fouf, achieve cutoff fiter functiontb) optimization ofA(as); (c) correspond-

coefficients in the expansion &fx), i.e.,ag up toaz. The ing strength function(d) comparison of strength functions for random local

remaining coefficients, up to a, are then determined nu- (solid ling) and global(dashed lingupdate algorithms.

merically, optimizing the overlap of the transmission in a

given energy window with the target function by tuning ) ]

A(a;) with i=4, ... n. This approach is only partially nu- smoother over the entire energy window, but shows some

merical. The algorithmic steps can be summarized a&eviations from the target function in the vicinity & . It

follows: should be noted that in the global update algorithm only two
) ) adjustable parametersf and as) are considered, whereas

(1) Choose target functioll(E)arget and energy window there are 30 free parameters widths in the local random

[Emin:Emax- . . scheme. Figure(8) shows the search for a minimuf(as)
(2) Generate initial barrier array by setting length and refracat an optimum fixeda,. For the given expansion, one finds
tive index of each barrier. the optimal normalized expansion coefficierts=32.475

(3) DetermineT(E) for initial array, and compute its devia- anda2= —10.600(dotted ling, with a minimum total error
tionE from the target function by evaluatingd  (~0.002) comparable to the local algorithm. The resulting
=fE:::dE[T(E)—T(E)targe£|2- globally adapted strength function is displayed in Fi¢g)3

(4) Expand strength function in a finite basis, e.g., polyno-and in Fig. 3d) it is compared with the strength function of

mials, and determine lowest four coefficients fromthe local random update algorithm. While these strength

boundary conditions. functions share the qualitative similarity of a monotonic de-
(5) Find minimum of strength function as a function of cay of the barrier widths as the boundaries of the system are

higher coefficients by numerically minimizing approached, obvious differences are tiethe global update

Aay, ....a). naturally results in a smoother strength functigin) this

global strength function decays more rapidly at the bound-

Assuming that the expansion is about a global minimumaries; and(iii) it vanishes exactly at the boundaries. These
of A(a,), the minimization can be performed sequentially,last two features are due to the particular choice of basis
i.e., by first finding the optimum value @f; for the expan-  functions (polynomialg, and the boundary conditions ap-
sion ton=4, and then optimizing\(ay, . . . ,as) for fixed  plied tos(x).
ay, etc. Furthermore, this scheme is improved by adjusting Let us conclude the discussion of these two prototype
the precise position of the cutoff energy in the target functioradaptive design algorithms by applying them to less trivial
according to the location of the band edge after each optimitarget functions, such as filters with linearly and paraboli-
zation step. In Fig. 3 results for the cutoff target function arecally decaying transmission within given small energy win-
shown. The strength function is expanded in a polynomiadows. In Figs. 4a) and 4b) we compare the results of the
basis up tok®, and boundary conditions are applied to deter-global and the local update algorithm. The decay from
mine the lowest expansion coefficients. The initial param-T(E)=1 (perfect transmissigrto 0 (no transmissiohin the
eters are chosen to be identical to the previous discussion ¢dirget functiongsolid line) occurs in a small energy window
the local random update algorithm. Ee[0.42251 eV, 0.44251 €V It can be seen that for these

In Fig. 3@ the transmission function of the globally more complex target responses, the local random update al-
adjusted barrier array is shown. Compared with the result ofjorithm generally converges better than the global one, be-
the local random update algorithm, the function lookscause the number of adaptive parameters is much larger for
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tions by intentionally breaking translational symmetry. The
global update algorithm is based on an analytical expansion
of the strength function of barrier widths in terms of a basis,
fixing the leading order expansion coefficients by boundary
conditions, and adjusting the remaining ones by numerical
optimization. In contrast, the local random update approach
uses each barrier width as an adjustable parameter. Sequen-
tial updates of barrier widths are performed at random, and
the updates are accepted when the resulting transmission
profile matches better the target function than the previous

one. Refinements of these prototype algorithms are presently
FIG. 4 Comparison of the_ adaptive globalh update _and Ioca_\l random UpdatBeing investigated, including combinations of simultaneous
algorithms in a system with 152+ 15 optical barriers(a) linear target local and global updates and enforcement of lesser symme-
filter function and(b) parabolic target filter function. An offset of 0.2 has . L . . .
been introduced to simplify the comparison. tries, such as point inversion. The broader aim be_hmd these
schemes is to develop algorithms that are helpful in design-
ing tools for emerging nanotechnologies.
the local method. The present implementation of the global
update algorithm is restricted to a two-dimensional search,
optimizing the coefficienta, and as. For the target step
function filter this method gives better results because her

the coefficients a,—as decrease rapidly, and “therefore . The authors are grateful to T. Roscilde for useful discus-
h|gher—9rder terms are not needed. In contrast, smqo_thersions’ and acknowledge financial support by DARPA, and
target filter functions require a larger number of coefficientsy, Department of Energy, Grant No. DE-FG03-01ER45908.
to converge. Therefore, in these cases the results for the glo-
bal updates are not as good as for the guided random walk
because of the restriction to a two-dimensional search. By
increasing the number of coefficients in the global update'H. Kosaka, T. Kawashima, A. Tomita, N. Notomi, T. Tamamura, T. Sato,

algorithm a solution much closer to the target filter function Zg”dGS-IK;‘“éakémi' rl?hysd FéeV-Tm 30392(1?98& ANLTALO12(2000
. . Gralak, 5. Enocn, an . layen, J. Opt. S0C. s .
can be achieved. Naturally, the local random update algos gapa and M. Nakamura, IEEE J Quantum Electi.909 (2002,

rithm is much less sensitive to these differences in thesk. ontaka, Phys. Rev. B9, 5057(1979.
smoothness of the target function, and typically converges’M. Skorobogatiy and J. D. Joannopoulos, Phys. Re§1B15554(2000.

fast to an optimal symmetry-breaking configuration within 5The total number of dielectric layers is 124. The widths of the four layers
100-200 updates in the center of the system are fixed at their initial vallgs Since

inversion symmetry about the array center is enforced in this example,
there remain 60 adjustable widths. Moreover, there is an additional con-
straint that each pair of barriers satisfies(x)+w,(x)=d, where the
. . w;'s are the respective widths of the on- and off-phasgdndn,), andd

In summary, we have discussed numerical approaches t0s the overall constant width of each dielectric pair. These constraints lead
design arrays of nanodielectrics to match desired target func-to a reduction of the number of free parameters to 30.
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