
J. Parallel Distrib. Comput. 66 (2006) 1137–1151
www.elsevier.com/locate/jpdc

Collaborative detection and filtering of shrew DDoS
attacks using spectral analysis�

Yu Chen∗, Kai Hwang
Internet and Grid Research Laboratory, University of Southern California, Los Angeles, CA 90089, USA

Received 17 December 2005; received in revised form 31 March 2006; accepted 10 April 2006
Available online 12 June 2006

Abstract

This paper presents a new spectral template-matching approach to countering shrew distributed denial-of-service (DDoS) attacks. These
attacks are stealthy, periodic, pulsing, and low-rate in attack volume, very different from the flooding type of attacks. They are launched with
high narrow spikes in very low frequency, periodically. Thus, shrew attacks may endanger the victim systems for a long time without being
detected. In other words, such attacks may reduce the quality of services unnoticeably. Our defense method calls for collaborative detection
and filtering (CDF) of shrew DDoS attacks. We detect shrew attack flows hidden in legitimate TCP/UDP streams by spectral analysis against
pre-stored template of average attack spectral characteristics. This novel scheme is suitable for either software or hardware implementation.

The CDF scheme is implemented with the NS-2 network simulator using real-life Internet background traffic mixed with attack datasets
used by established research groups. Our simulated results show high detection accuracy by merging alerts from cooperative routers. Both
theoretical modeling and simulation experimental results are reported here. The experiments achieved up to 95% successful detection of network
anomalies along with a low 10% false positive alarms. The scheme cuts off malicious flows containing shrew attacks using a newly developed
packet-filtering scheme. Our filtering scheme retained 99% of legitimate TCP flows, compared with only 20% TCP flows retained by using the
Drop Tail algorithm. The paper also considers DSP, FPGA, and network processor implementation issues and discusses limitations and further
research challenges.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Network security; Internet infrastructure; Packet filtering; DDoS attacks; Reduction of quality; Hypothesis test; Digital signal processing (DSP);
Distributed computing; Grid systems; Statistical spectral analysis

1. Introduction

Distributed denial-of-service (DDoS) attacks have been iden-
tified as a major threat to today’s Internet services. These at-
tacks can fully paralyze distributed systems such as ISP core
and community networks, collaboration Grids, and P2P sys-
tems [5,14,20,24]. A flooding DDoS attack exhausts the net-
work resources such as link bandwidth or CPU power in the
victim hosts and thus prevents legitimate users from accessing
the victim site.

Recently, a new class of DDoS attacks has been identi-
fied on the Internet2 Abilene backbone [9]. These attacks are

� This research was supported by NSF Grant 0325409.
∗ Corresponding author. Fax: +1 213 740 4418.

E-mail addresses: cheny@usc.edu (Y. Chen), kaihwang@usc.edu
(K. Hwang).

0743-7315/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2006.04.007

low-rate, periodic, pulsing type of DDoS attacks. They exploit
the transient behavior of a system and gradually reduce the
system capacity or service quality. In the literature, this kind
of DDoS attacks has been called shrew DDoS attacks [15],
pulsing DoS attacks [16], or reduction of quality (RoQ) attacks
[12]. For simplicity, we call all of them shrew attacks in the
sequel.

Shrew attacks exploit, the deficiencies in the retransmission
time-out (RTO) mechanism of TCP flows. It throttles legitimate
TCP flows by periodically sending burst pulses with high peak
rate in a low frequency. As such, the TCP flows see congestion
on the attacked link every time it recovers from RTO. Indeed,
such a shrew attack may reduce the throughput of TCP appli-
cations down to almost zero [15]. Given that more than 80%
of traffics on the Internet today are using TCP protocol, a ma-
jority of existing applications and commercial services are at
stake.

http://www.elsevier.com/locate/jpdc
mailto:cheny@usc.edu
mailto:kaihwang@usc.edu

1138 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Table 1
Notations and abbreviations used in this paper

Notations Brief definition Notations Definition

T Attack period (s) CDF Collaborative detection and filtering
R Attack burst rate (K Packets/s) RoQ Reduction of quality attacks
L Attack burst width (s) DDoS Distributed denial of Service attacks
Rd Anomaly detection rate DSP Digital signal processing
Rfp False positive alarm rate CTS Cumulative traffic spectrum
� Local detection threshold SFT Suspicious flow table
� Global detection threshold MFT Malicious flow table
� Packet filtering threshold PSD Power spectrum density
�(f) Template average distribution ASD Amplitude spectrum density
�(f) Cumulative traffic spectrum (CTS) Na Sample distribution of attack traffic streams
�(f) Cumulative amplitude spectrum (CAS) No Sample distribution of legitimate traffic streams
p Attack pivot frequency Nfa Sample traffic flow distribution of shrew attacks
y CTS spectral pivot point Nfo Sample distribution of legitimate TCP flows
z CAS spectral pivot point � Normalized TCP throughput

The low-rate shrew DDoS attacks have high peak rate, but
a low average rate to exhibit a stealthy nature. The shrew
attacks can damage the victim for a long time without be-
ing detected [12]. Countermeasures developed for flooding
DDoS attacks are not effective to combat against shrew
attacks [12,15,18]. Being masked by background traffic,
shrew attacks are very difficult to detect in the time domain,
but the situation is not necessarily true in the frequency
domain.

We consider a traffic flow as a set of packets with the same
source and destination IP addresses and port numbers, all trav-
eling in the same direction and applying the same protocol.
Each traffic flow can be uniquely identified with a 5-tuple of
identifiers. A traffic stream is formed with the set of packets
arriving at a router at the same physical port during a given
time window. Thus a traffic stream may contain multiple TCP
or UDP traffic flows.

The shrew attack packets are embedded in TCP or UDP traffic
flows. We will consider traffic streams with and without shrew
attacks. The trick is to detect the presence of shrew attacks in
traffic streams and to filter out attack packets at the refined flow
level rather at the stream level.

In this paper, we present a new approach by combining
discrete Fourier transform (DFT) and a hypothesis test frame-
work to cope with shrew attacks. By calculating the autocor-
relation sequence of sampled time series and converting them
into frequency-domain spectrum using DFT, we find that the
power spectrum density (PSD) of a traffic stream containing
shrew attacks has much higher energy in low-frequency band
than that appeared in the spectrum for legitimate TCP/UDP
traffic streams.

Based on this distinction, we develop a distributed collabo-
rative detection and filtering (CDF) scheme to detect and seg-
regate the shrew attack flows from legitimate TCP/UDP traffic
flows. In addition to software implementation, the scheme can
be implemented by network processor or reconfigurable hard-
ware [3]. The DSP hardware pushes spectral analysis down to
the lower packet-processing layer.

If the packets are processed by hardware and malicious flows
are filtered out timely, the router workload will not increase
much at the presence of shrew attacks. Notations, symbols,
and abbreviations used in this paper are summarized in Table
1. Only brief definitions are given here, details are given in
subsequent sections.

The rest of the paper is organized as follows: Section 2
reviews several directly related research works. Section 3
presents the theoretical foundation of collaborative anomaly
detection. Section 4 discusses spectral analysis techniques for
collaborative detection. Section 5 presents an adaptive filtering
algorithm for cutting off malicious shrew attack flows.

Our simulation setup and performance results are reported in
Section 6. Section 7 discusses scalability and implementation
issues. We will assess the limitations of using the CDF work to
support large-scale network security. Finally, we summarize the
research contributions and make a few suggestions for further
research.

2. Related previous work

Over the years, a plethora of research has been reported
in the area of DDoS defense and traffic control [18,21,24].
While most previous work analyzed Internet traffic patterns
in the time domain, researchers have explored the usage of
digital signal analysis technology in traffic analysis for network
security enforcement [4,7,13,22].

Due to different protocols applied, the periodicity of traffic
could be used as a signature for traffic monitoring or for attack
detection. The lack of periodicity could indicate that flooding
DoS attacks are raging on [7]. In contrast, the PSD of multi-
sourced flooding DDoS attacks are distributed in lower fre-
quency band [13]. This could be used as a signature for traffic
monitoring and attack detection.

Kuzmanovic and Knightly [15] pioneered the characteriza-
tion of TCP targeted shrew attacks. They studied the rationale
of the shrew attacks and identified the critical parameters that
affect the TCP flows. They indicated the limitation of exist-

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1139

ing DDoS defense mechanisms against shrew attacks. Chertov
et al. [8] investigated the effectiveness of shrew attacks through
simulation using NS-2 simulator and emulation experiments on
DETER testbed [10].

Taking both theoretical analysis and intensive simulation,
Luo et al. [17] explored the impact of shrew attacks against
TCP performance under different queue management schemes.
Results of both [8,17] validate that variants of shrew attacks
can still be effective, if the attack frequency is not precisely
tuned to the retransmission timeout.

Sun et al. [25] suggested detecting shrew attacks by match-
ing pattern with prestored attack signature. They use a deficit
round robin (DRR) algorithm to allocate bandwidth and pro-
tect legitimate flows. However, their method cannot distinguish
malicious from legitimate flows. Legitimate flows thus suffer
in the rate-limit packet filtering process. Previously, we have
developed a packet filtering scheme [6] to cut off malicious
shrew attack flows.

Luo and Chang [16] have proposed to detect low-rate
TCP-targeted DoS attacks using a wavelet approach. They
observed anomalies in fluctuation of incoming traffic rate
and the declining of outgoing TCP ACKs incurred by puls-
ing attacks. Previous work has revealed most time-domain
characteristics of shrew DDoS attacks [15,16,25], but no
model available to describe their properties in the fre-
quency domain. This paper intends to close up this technical
gap.

3. Characteristics of shrew DDoS attacks

Based on differences found between traffic spectrum of
normal TCP/UDP streams and that of shrew attack streams,
we propose to use the cumulative energy distribution func-
tion to detect the shrew attacks. Through NS-2 simulation
experiments over 8000 randomly generated sample traf-
fic streams, we generate the attack template to implement
the new CDF scheme for defense against shrew DDoS
attacks.

3.1. The CDF architecture and processing stages

We studied the shrew attack characteristics through inten-
sive simulation using the NS-2 simulator [19], a widely rec-
ognized packet-level discrete event simulator. Fig. 1(a) shows
the typical network environment to deploy in which our CDF
scheme is implemented. Our NS-2 simulations were carried out
with many topologies generated by the GT- ITM toolkit from
Georgia Tech. [11]. We apply each topology for at least 1000
experiments with shrew attack datasets similar to those used
by Chertov et al. [8], Kuzmanovic and Knightly [15], and Sun
et al. [25].

A shrew attack stream is modeled by three major parameters
including period of attack T, width of burst L, and the burst
rate R [15]. Specifically, we generate shrew attack flows with
a period T between 0.5 and 3.0 s, the burst period L is in
the range (30–90 ms). For single-source attacks, the burse rate
R varies in 0.5–2 MB/s. In distributed attacks from multiple

sources, R varies in 0.1–2 MB/s. The background traffic without
shrew attacks are generated from our analysis of Abilene-I trace
dataset released by the PMA Project [1]. This dataset is the first
public OC48c backbone trace. We consider routers belonging
to the same autonomous system (AS) shown by the Internet
subnet at the center of Fig. 1(a).

The routers in the same AS collaborate with each other,
cooperatively, to defend against the shrew attacks. Both le-
gitimate traffic streams and attack traffic streams are gener-
ated from the edge networks. The background traffic con-
sists of large number of TCP and UDP flows, some of
them are attack free and some are embedded with attack
packets. The victim is attached to the router market as R0.
Both legitimate users and attackers are scattered at edge
networks.

The CDF scheme is built with a training process and a testing
process in a cascade as illustrated in Fig. 1 (b). The training pro-
cess consists of a template generator and a pivoting frequency
estimator (Algorithm 1). We have collected 8000 sample traffic
streams, half of which are legitimate without attacks (So) and
the other half with shrew attacks (Sa). The template generator
generates attack template threshold parameters (�, �, �) and a
Gaussian template distribution over 4000 streams in the attack
set Sa.

This template distribution is characterized by template
average distribution denoted by �(f) in Table 1. The tem-
plate generation process will be detailed in Section 3.3. The
template spectrum of each stream in sample sets Sa and So
is characterized by two Gaussian distributions Na(�a, �

2
a)

and No(�o, �
2
o), where the subscripts, a and o correspond

to training streams with and without shrew DDoS at-
tacks. Similarly, the Gaussian distributions Nfa(�fa, �

2
fa) and

Nfo(�fo, �
2
fo) are sampling over two training sets at the flow

level.
The testing phase is built with three algorithms for deter-

mining pivoting frequency, detection of malicious streams, and
filtering of attack flows amid legitimate flows. In the testing
phase, 4000 incoming traffic streams X(i), were tested to val-
idate the effectiveness of the CDF scheme.

In a way, the complete scheme is based on template match-
ing. These traffic patterns are statistically generated to cover a
mixture of normal TCP and UDP flows with some shrew attack
streams. To detect whether shrew attack streams are embedded
in an incoming traffic stream X(i), the energy spectrum �(f)

is generated by the DFT engine.
The energy �(p) at the pivotal frequency, where the gap

between �(f) and �(f) is the maximum, is computed by the
pivoting module (Algorithm 1). The mean value of the traffic
spectrum �(f) is compared with the template average �(f) in
the detection module (Algorithm 2).

The template distributions Na(�a, �
2
a) and No(�o, �

2
o) are

used for anomaly detection. After the attack stream is de-
tected, attack alerts will be sent to the filtering module
(Algorithm 3), which segregates the shrew attack flows from
normal TCP flows. The filtering process uses an amplitude spec-
trum �(f) against two flow-level distributions (Nfa(�fa, �

2
fa)

and Nfo(�fo, �
2
fo)).

1140 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Fig. 1. The collaborative detection and filtering (CDF) architecture for defense against shrew DDoS attacks over multiple routers in the same autonomous
system: (a) the CDF implementation network environment; (b) traffic processing stages for CDF scheme.

3.2. Shrew DDoS attack characteristics

Fig. 2 compares the time series of legitimate traffic streams
(a), periodic pulsing shrew attack stream (b), and the mixture
of legitimate and attack streams (c). Fig. 2(b) presents a shrew
attack stream modeled by T , L, and R. When a legitimate
TCP stream and a shrew attack stream are both heading for the
same destination, we observe: (1) The shrew attack peak rate
remains constant while the TCP flow may increase linearly; (2)
the shrew stream arrives at the destination periodically, while
the TCP flow arrives continuously.

It is difficult to detect periodic pulses using traffic vol-
ume analysis method in the time domain. This is because the
average bandwidth consumption differs very little between
attack-free and attack streams. For higher throughput, the
TCP protocol uses a predefined value of RTO with a fixed
incrementing pattern [23].

The shrew attacks take advantage of this RTO recovery mech-
anism by adjusting its attack period and occupying the link
bandwidth. The legitimate TCP flows always see a heavily bur-
dened link, when they try to send packets. Thus legitimate TCP
flows must undergo a RTO recovery and their sending rate is
thus reduced to as low as zero.

The period T is the time interval between two consecutive
attack pulses. The burst width L indicates the time period dur-
ing which attackers send packets in high rate. The burst height
exhibits the peak rate by which attacking flow is sent. The pe-
riod T is calculated by the estimated TCP RTO timer imple-

mentation from trusted sources. During the burst with a peak
rate R, the shrew pulses create a burst and severe congestion on
the links to the victim. The legitimate TCP flows must decrease
their sending rate as governed by congestion control mecha-
nism, accordingly.

Figs. 2(a) and (c) compares the sampled time series of packet
arrivals of two scenarios: Six TCP flows without any shrew
attack stream embedded (Fig. 2(a)), and the same six TCP flows
with one shrew attack streams (Fig. 2(b)), which use the attack
period T = 1 s, burst width L = 70 ms, and the burst rate
R = 120 K packets/s as shown in Fig. 2(b).

3.3. Autocorrelation spectral analysis

We take the number of packet arrivals at the router as
the discrete signal series and sample it with a period of
1 ms. We use the highest frequency of 500 Hz. Our sam-
pling effectively plays the role of low-pass filter that gets
ride of high frequency noises. Another observation is that
the sample also includes packets from legitimate flows.
These packets are not necessarily all targeting at the same
victim.

The packet arrivals in each training stream or in each incom-
ing traffic stream are modeled by a random process: {x(t), t =
n	, n ∈ N}, where 	 is a constant time interval, which we
assume 1 ms. N is a set of positive integers, and at each time
point t , x(t) is a random variable, representing the total number
of packets arrived at a router in (t − 	, t].

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1141

Fig. 2. Three traffic streams under three scenarios—the shrew DDoS attack
stream in part (b) hides in six legitimate traffic flows in part (a) to form
the traffic stream in part (c): (a) a sample traffic stream consisting of six
legitimate TCP and UDP flows without any attack packet; (b) a shrew DDoS
flow characterised by high burst rate (R), long attack period (T), and short
burst width (L); (c) six normal TCP/UDP flows in part (a) mingled with a
single shrew DDoS attack stream from part (b).

This random process was referred to as the packet process
[7]. We assume a wide sense stationary random process. We
define the autocorrelation function of the random signal x(t)

in discrete time as follows:

Rxx(m) = 1

N − m

N−m+1∑
n=0

[x(n)x(n + m)]. (1)

The Rxx(m) captures the correlation of the packet process
and itself at interval m. If there is any periodicity exist, auto-
correlation function is capable of enforcing it. The next step
is to figure out the periodicity embedded inside the autocor-
relation functions. We convert the autocorrelation time series
by discrete Fourier transform to generate the power spectrum
density (PSD) as follows:

PSD(f) = DFT (Rxx(m), f)= 1

N

N−1∑
n=0

Rxx(m)×e−j2
f n/N ,

f = 0, 1, 2, . . . , N − 1. (2)

3.4. Traffic spectrum and template distribution

A shrew attack stream escapes detection by occupying only
a small share of the bandwidth, however, its properties in

Fig. 3. Comparison of normalized traffic density (PSD) of two traffic streams
with and without shrew attacks.

Fig. 4. Comparison of the cumulative energy spectrum of two traffic streams
with and without shrew attacks.

Fig. 5. Average attack template distribution over a low frequency band for
all attack streams in training set Sa.

frequency domain cannot be hidden. After DFT, the PSD cap-
tures the periodical pattern of shrew attack stream in the fre-
quency domain.

Fig. 3 compares the traffic density (or PSD) for two traffic
stream patterns corresponding to with and without embedded
shrew attacks. It is clear that the embedded shrew attack stream
pushes the solid-line PSD curve towards the lower frequency
band, while the no-attack stream has a wider frequency range
of the traffic density in the dash-line curve in Fig. 3.

After integration of the PSD function over a given frequency
range, the resulting energy spectrum is used to determine the
ratio of energy accumulated to a given frequency point. This

1142 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Table 2
Gaussian distribution of attack template

Freq. f (Hz) 1 3 5 7 9 10 11 13 15 17 19 20

Mean �(f) 0.15 0.30 0.45 0.58 0.73 0.75 0.77 0.79 0.81 0.82 0.83 0.84
St. dev. �(f) 0.11 0.13 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.10 0.09 0.08

corresponds to the area below the PSD curve. This cumulative
traffic spectrum (CTS) �(f) is obtained below:

�(f) =
f∑

i=1

PSD(i)

/
max∑
i=1

PSD(i). (3)

As plotted in Fig. 4, the y-axis is the CTS normalized with
respect to the total energy in the whole spectrum [0,500] Hz.
For a typical attack stream, more than 90% of the energy is
distributed below 20 Hz.

In contrast, for the normal traffic streams without attacks,
only 60% the energy is located below 20 Hz. This implies that
the energy spectrum offers a sharp distinction to distinguish
whether a sampled traffic spectrum contains shrew attacks or
not.

Through intensive NS-2 simulation experiments, we obtained
4000 template CTS spectra over the attack dataset Sa. Based on
the central limit theorem [2], the template spectrum conforms
to a Gaussian distribution N(�, �), where � and � are the mean
and standard deviation.

�(f) =
n∑

i=1

�i (f) /n �(f) =
√√√√1

n

n∑
i=1

(�i (f) − �(f))2, (4)

where n = 4000 is the size of sample space of Sa, and �i (f)

is the CTS of the ith sample stream.
Fig. 5 plots the template energy distribution for the mean

value �(f) over the low-frequency range up to 20 Hz. The
template spectrum curve sits between the two traffic spectrum
curves in Fig. 4. We use this property to distinguish shrew attack
stream from regular traffic streams by checking the spectrum
gaps with the template average distribution �(f).

Table 2 presents the attack template energy distribution on
frequency band lower than 20 Hz. At each frequency f , the
mean �(f) and standard deviation �(f) are listed. These table
entries will be used to perform the CDF processes as template
references in Algorithm 2. Note, the above spectral analysis
can be o applied over both training traffic and incoming traffic
streams to be tested.

4. Collaborative anomaly detection

We developed a scheme for collaborative anomaly detection
using hypothesis test atop the spectral introduced in Section
3.4. Supported by alerts exchange among multiple routers, this
scheme detects the shrew attack streams hidden among legiti-
mate TCP/UDP flows. We start with the determination of attack
pivot frequency, and then we specify the algorithms developed
to perform the collaborative detection processes.

4.1. Pivot frequency in traffic streams

Having established the attack template database, we need
to answer a basic question: Which frequency point can re-
sult in the highest detection accuracy? This point is called
the pivot frequency, which varies with each incoming traffic
stream. To detect accurately, we must first determine the pivot
frequency p.

We develop Algorithm 1 to determine the pivot frequency p

and a spectral pivot point y = �(p) associated with each traffic
stream characterized by its CTS spectrum �(f). The pseudo-
code specification of Algorithm 1 is given below.

Algorithm 1. Determination of pivot frequency in a traffic
stream

Input: �(f): Average template CTS spectrum.
�i (f): The CTS computed from an incoming

traffic stream Si .
Output: p: Pivot frequency for the traffic stream Si .

y = �(p): Spectral pivot at pivot frequency p

Procedure:
01: Initialize the frequency window (0, 20 Hz)
02: while scan through the detection window
03: Calculate gaps at each frequency point

d(f) = �(f) − �(f)

04: endwhile
05: Find � such that d(p) = Max{d(f)|0�f �20

Hz} and compute y = �i (p)

06: return pivot frequency p and spectral pivot point
y = �i i(p)

After sampling a time series of incoming stream, we generate
its CTS �(f) through DFT. Then the gap d(f) = �(f)−�(f)

is calculated using Table 2 entries over all frequencies in a
spectral window up to 20 Hz. We obtain the pivot frequency p

that must satisfy the following at the maximum gap point:

d(p) = Max{d(f) = �(f) − �(f)|for all f �20 Hz}. (5)

The spectral pivot point y = �(p) will be used in the shrew
attack detection. Fig. 6 illustrates how to detect the pivot fre-
quency using the traffic samples shown in Figs. 2(a) and (c).
The spectrum of the shrew attack stream is indicated by the top
CTS curve. The CTS curve of the attack-free stream lies below
the template average spectrum curve at the middle.

For the stream containing shrew attacks, the maximum gap
between its CTS curve and the template CTS curve is located at
the pivot frequency p = 6 Hz. The spectral pivot is thus found
at a spectral pivot point denoted as ya = �(p) = �(6 Hz) =
0.7. Similarly, for the attack-free stream, the pivot frequency
p = 8 Hz and yo = �(8 Hz) = 0.19.

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1143

Fig. 6. Determination of the pivot frequency p and the two spectral pivot
points yo for the attack-free stream in Fig. 2(a) and ya for the attack stream
in Fig. 2(c).

Fig. 7. Template distribution of attack/no-attack streams at the attack pivot
frequency.

4.2. Hypothesis test for anomaly detection

We consider two hypothetic events: Ho for an attack-free
stream and H1 for a traffic stream with shrew attacks. Using Al-
gorithm 1, we obtain the template distribution �(p) by training
8000 training traffic streams. By central limiting theorem [2],
we assume two Gaussian distributions �(po) : No(�o, �

2
o) =

N(0.33, 0.272) and �(pa) : Na(�a, �
2
a) = N(0.78, 0.162) for

4000 attack-free and 4000 streams containing shrew attacks,
respectively. These two Gaussian distributions No and Na are
plotted in Fig. 7.

The solid-line distribution plotted on the right corresponds
to Na for all attack streams. The dash-line distribution plotted
on the left plots No, is resulted from all attack-free training
streams. In Fig. 7, the detection of a shrew attack stream (event
H1) is under the Na curve to the right of yo. The detection of
an attack-free traffic stream (event Ho) is under the No curve to
the left of yo. We need to choose a local detection threshold � to
maximize the anomaly detection rate Rd and to minimize the
false positive rate Rfp defined by the following two probability
functions:

Rd=Prob[H1|H1]=
∫ ∞

yo

1√
2
�a

exp

{
− (y−�a)

2

2�2
a

}
dy, (6a)

Rfp=Prob[H1|H0]=
∫ ∞

yo

1√
2
�o

exp

{
− (y−�o)

2

2�2
o

}
dy. (6b)

Essentially, Rd is the successful detection probability that a
true alarm is raised, when there is actually a shrew attack. The

Fig. 8. Variation of the likelihood function with respect to the normalized
spectral pivot value.

Rfp is the probability of raising a false alarm for the misdetec-
tion of an attack-free traffic stream.

In order to tell whether there is any shrew attack stream
embedded in a legitimate flow, we set up our hypothesis test
rule. Defined below is a likelihood ratio L(y) of the pivot point
y by the ratio of the two probability density functions, pa(y)

and po(y), of the event H1 and event Ho, respectively,

L(y)=pa(y)

po(y)
=�o

�a
exp

(
1

2

[(
y−�o

�o

)2

−
(

y−�a

�a

)2
])

, (7)

where pa(y) is the probability density of y in the Gaussian
distribution Na and po(y) is the probability density of y in the
Gaussian distribution No defined as:

pa(y) = 1√
2
�a

exp

{
(y − �a)

2

2�2
a

}
, (8a)

po(y) = 1√
2
�o

exp

{
− (y − �o)

2

2�2
o

}
. (8b)

The variation of the likelihood ratio L(y) at the spectral pivot
point is plotted in Fig. 8. The larger is the L(y), the pivot point
y is more likely to confirm to the Na distribution. This implies
that the stream is more likely to contain some shrew attack
flows.

The local detection threshold � is selected to equal certain
L(y) corresponding to a well chosen pivotal point y. In an-
other word, given desired detection rate R∗

d , the local detection
threshold � is chosen as

� = L(y) for a pivot point y such that Rd �R∗
d . (9)

As shown in Fig. 7, there is an overlapped area under the two
Gaussian distributions. To the right of a, we have the Rfp in the
overlapped area. To the left of �, we have the false negative area
corresponding to the misdetection of a real attack as No attack.
This implies that when L(y) > �, the hypothesis H1 is true.
Otherwise, the hypothesis H0 is true. Based on the template
distributions obtained from 8000 training sample streams, we
calculated Rd and Rfp using Eqs. (6a) and (6b) as plotted in
Fig. 9.

1144 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Fig. 9. Plots of the anomaly detection rate Rd and false positive rate Rfp
averaged over 8000 sample traffic streams in the template database: (a) ROC
curve of Rd vs. Rfp; (b) effects of variation in local threshold �.

Fig. 9(a) plots the receiver operating characteristic (ROC)
curve to show the tradeoff between Rd, and Rfp. Fig. 9(b) plots
the variation of Rd, and Rfp as � increase from 0 to 12 in the
range of y. For example, to achieve a successful detection rate
of 95% with � = 0.5, we need to tolerate a false positive rate
of 30%.

It is clear that Rd decreases slowly and Rfp decreases rapidly
with increasing value of �. Consequently, we need one more
threshold to keep the detection rate sufficiently high with a
small false-positive rate. This has motivated us to develop the
collaborative detection scheme.

4.3. Collaborative anomaly detection

With the hypothesis testing, we present in Algorithm 2 a
distributed detection scheme for shrew attacks by using multiple
collaborative routers. The detection measurements are deployed
in upstream routers that are a few hops away from the victim
server, because low-rate attacks may throttle legitimate TCP
flows destined to the same victim. However, before reaching
the target, the shrew attack streams may occupy only a small
bandwidth share even at its peak rate, which make it difficult
to detect correctly.

Algorithm 2. Collaborative anomaly detection.

Inputs: yi : The spectral pivot �(p) for an input stream Si

�: Local detection threshold
�: Global detection threshold
Na: Sample traffic distribution with shrew attacks
No: Sample traffic distribution without shrew

attacks
Output: Traffic stream Si contains either shrew attacks or

not
Procedure:
01: Compute L(yi) using Eq. (6).
02: Case 1: L(yi) > �
03: The stream Si contains shrew attacks
04: Send out alert to collaborative routers
05: Call packet filtering routine (Algorithm 3)
06: Case 2: � < L(yi) < �
07: Check the alerts from cooperative routers
08: if alerts come from cooperative routers, then
09: Call packet filtering routine (Algorithm 3)
10: endif
11: Case 3: L(yi) < �
12: The stream Si contains no shrew attacks

The traffic statistics collected at neighboring routers could be
used for a router to verify its detection result. Previously, to re-
duce false positive alarms, we have to tolerate some higher false
negative alarms by choosing a larger local detection threshold
�. Algorithm 2 tries to make up this deficiency by selecting
a global cooperative threshold � that is smaller than � for a
guaranteed higher detection rate.

While the likelihood ratio function L(y) is higher than the
local threshold �, the router would start the filtering mecha-
nism and multicast alert to its neighbors. Routers whose L(y)

is smaller than a but larger than � do not generate alerts. They
need to decide whether to start local filtering mechanism by an-
alyzing the resources of alerts received from their neighbors. If
L(y) is less than �, there is nothing suspicious. With distributed
shrew attacks, alerts from immediate routers are connected to
the receiver.

Consider the scenario in Fig. 10(a). Each dot stands for
a router in the AS, and the black dots are routers that have
detected shrew attack streams embedded in legitimate flows
(L(y) > �). They multicast the alerts to the cooperative neigh-
bors. The concern of the cooperative range among multiple
routers will be studied later through experimental results. To
simplify the discussions, we consider in Fig. 10 that each alert
is sent to neighbors in two-hop distance. The white dots are
routers whose likelihood ratio L(y) is lower than the local
threshold �, so they do not generate alert.

Moreover, each node is the root of a detection tree that con-
tains all of its neighbors in two-hop distance. The A, B and
E is such nodes in Fig. 10(b). These trees keep the multicast
group records that each root knows to whom its alert is sent.
Distributed attacks are launched from zombies located widely
and multiple shrew attack streams approach the victim(s) lo-
cated in the AS. Once a router detects L(y) > � (black dots
in Fig. 10), there are shrew attack streams detected. It would

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1145

Fig. 10. Collaborative detection scheme and use of detection trees: (a) dis-
tributed shrew attacks from two sides of the AS; (b) three detection trees.

multicast an alert along its detection tree and launch counter-
measure to identify malicious flows and cut them off timely.

However, shrew attack streams do not appear evenly on all
edge routers. Algorithm 2 gives routers a clue to check whether
they are in the attacking range. For example, when L(y) < �
at node A, alerts from neighbors warn an attack going on. In
addition, the decision tree let node A has a vision of where
these alerts come from. Node A realizes that it is located at the
center of the attacking area.

If L(y) > �, node A will launch countermeasure against the
attacks. In contrast, node B receiving two alerts will not take
any further action. All its immediate neighbors have not raised
any alert, this leads to a conclusion that there are suspicious
flows entering the AS, but node B is not in the attacking range.
However, decision trees and received alerts will tell nodes C, D
and E that they are at the attacking area. If their local L(y) > �,
then they need to start flow filtering algorithm accordingly.

5. Amplitude filtering of shrew attack flows

Once a router detected there are shrew flows embedded
among incoming legitimate traffic streams, it needs take fur-
ther actions to segregate the malicious attacking flows from le-
gitimate ones and block them. In this section, we present an
effective shrew-filtering algorithm based on the flow level anal-
ysis of energy distribution over frequency band and hypothesis
test.

Essentially, this approach is same as we did in detection
mechanism. The major difference lies in the utilization of am-
plitude spectrum instead of PSD, although they both describe
the energy distribution of signal series. The reason is that we
found that amplitude spectrum can separate shrew attack flows
from TCP flows much clear at flow level.

Fig. 11. Amplitude spectral analysis at flow level for a shrew attack flow
and for a TCP flow: (a) amplitude spectrum of a shrew attack flow and of a
typical TCP flow; (b) CAS of a shrew attack flow and of a typical TCP flow .

5.1. Normalized amplitude spectral analysis

To perform flow level analysis, we treat the number of packet
arrivals for each flow as a signal series and sample it every
1 ms. Thus, for each flow time series x(i), we convert it to an
amplitude spectrum density (ASD) using DFT as follows:

ASD(f) = DFT (x(i), f) = 1

N

N−1∑
n=0

x(i) × e−j2
f n/N ,

f = 0, 1, 2, . . . , N − 1. (10)

After integration of the ASD over a given frequency range,
the resulting cumulative amplitude spectrum (CAS) determines
the ratio of energy accumulated to a given frequency point. This
is the area below the ASD curve. The normalized CAS�(f) is
defined below:

�(f) =
f∑

i=1

ASD(i)

/
max∑
i=1

ASD(i) . (11)

Fig. 11 presents the ASD and the CAS of a typical TCP flow
and of a shrew attack flow.

Comparing the normalized CAS �(f) shown in Fig. 11(b),
the distance between the two CAS curves is maximum at fre-
quency lower than 20 Hz. Almost 50% of the total energy of a
shrew attack flow is located in the major peak ending around
20 Hz in Fig. 11(a).

1146 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Fig. 12. Normalized cumulative ASD of a shrew attack flow compared with
that of a TCP flow at the pivot point.

In contrast, in the same frequency band, it is less than 15%
of the total energy located of a normal TCP flow. Similar to
the stream level template construction in Section 4, the train-
ing process generates the CAS pivot z = �(p) distribution
by executing Algorithm 1 to determine the flow-level pivot
frequency.

The obtained z assumes a Gaussian distribution according
to the central limiting theorem. Fig. 12 shows the Gaussian
distribution Nfa(�fa, �

2
fa) = N(0.50, 0.042) of a single shrew

attack flow and the Gaussian distribution Nfo(�fo, �
2
fo) =

N(0.11, 0.032) of a normal TCP flow. There is no overlap be-
tween the CAS distribution of a normal TCP flow and that of
a single shrew attack flow. Actually, the gap between the two
mean values is greater than 3.29 �. A 3� error level gives us a
confidence interval of 99.7% [2].

The same hypothesis detection method is applied at the flow
level to distinguish shrew attack flow from the normal TCP
flows. Again, we denote Ho to represent the hypothesis that
the flow is not a shrew attack flow, while H1 corresponds to a
shrew attack flow. To make flow filtering decision, we defined
a flow level likelihood ratio L(z) at the pivot point z as

L(z)=pfa(z)

pfo(z)
=�fo

�fa
exp

(
1

2

[(
z−�fo

�fo

)2

−
(

z−�fa

�fa

)2
])

,

(12)

where pfa(z) is the probability density of z in the Gaussian
distribution Nfa, and pfo(z) is the probability density of z in
Gaussian distribution Nfo.

Since there is no overlap between the Nfa and Nfo, the filter-
ing threshold � is chosen at z = 0.28 where � = L(z) = 1.9.
Table 3 shows the probability of cutting off a normal TCP flow
as a shrew attack flow lower than 0.1% with this � value. This
indicates that the CAS-based flow filtering achieved an accu-
racy of 99.9%.

With such high filtering accuracy, our CDF scheme can tol-
erant relatively high false positive rate. When Algorithm 2
raises a false alarm, the router depends on the flow level hy-
pothesis testing to determine whether a flow should be cut
off. As indicated by Table 3, the probability that a legitimate
TCP flow is filtered off is lower than 0.1%. A high false pos-
itive rate Rfp actually causes routers to call for unnecessary
filtering.

Table 3
Error levels of filtering at flow level

Error level Prob. of error (%) TCP error level Shrew error level

±� 68 0.1311 ± 0.026 0.4985 ± 0.038
±1.65� 90 0.1311 ± 0.043 0.4985 ± 0.046
±1.96� 95 0.1311 ± 0.051 0.4985 ± 0.074
±3� 99.7 0.1311 ± 0.078 0.4985 ± 0.114
±3.29� 99.9 0.1311 ± 0.086 0.4985 ± 0.125

5.2. Flow filtering atop amplitude hypothesis testing

Based on the above hypothesis test framework, we proposed
Algorithm 3 to cut off flows with amplitude spectrum value
at the pivot frequency higher than the detection threshold �. A
flow chart is given in Fig. 13 to help our readers follow the
shrew filtering process.

Although the source IP addresses are generally spoofed in
attack packets, it is safe to use the 5-tuple {Source IP, Source
Port, Destination IP, Destination Port, protocol as flow labels.
Our filtering algorithm handles the incoming packets according
to records in the Malicious Flow Table (MFT), Suspicious Flow
Table (SFT) and Legitimate Flow Table (LFT).

Algorithm 3. Amplitude filtering of shrew attacks at flow
level.

Input: �i (p): The amplitude spectrum of an incoming
traffic flow Fi identified by the 5-tuple identifier.
�: The amplitude filtering threshold obtained

from the training process
Output: Enable packet dropping in flow Fi

Procedure:
01: while flow filtering is called by algorithm 2 on

detecting shrew attacks
02: Check flow Fi for membership in various tables
03: Case 1: Fi is in LFT
04: Route the flow normally
05: Case 2: Fi is in MFT
06: Drop all packets in flow Fi

07: Case 3: Fi is in SFT
08: if �i (p) = �� Then
09: Mark Fi as legitimate, move it into LFT
10: else
11: Fi contains shrew attacks, move it to MFT
12: Drop all the packets in flow Fi

12: end If
13: Case 4: Fi is not in any of the three tables
14: Add Fi flow into SFT
15: endwhile

If the router has initiated the amplitude filtering algorithm
while confirmed the alert, it start checking incoming packets. If
a packet label is in the set LFT, this packet is routed normally.
If it is in the set MFT, this packet is dropped. If it is in the
set SFT, we continue sampling until time out. If there is no
matching in any table, this packet belongs to a new flow and it
would be added into the SFT, then sampling begins and timer
starts.

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1147

Fig. 13. Control flow in the amplitude-filtering Algorithm 3 (LFT: Legitimate
Flow Table, SFT: Suspicious Flow Table, MFT: Malicious Flow Table, �(p):
Cumulative Amplitude Spectrum).

Once a timer is expired for a flow, we compare its amplitude
spectrum likelihood ratio L(z) at pivot point with the threshold
�. If L(z) value is lower than the threshold, we move its record
into LFT. All packets in this flow will be routed normally. If
L(z) value is higher than the threshold �, we move it into the
MFT and cut this flow. The pseudo-code of amplitude spectral
filtering process is specified in Algorithm 3. For flow filtering,
we adopt data structures SFT, LFT and MFT tables to track per
flow status.

We identify a flow using the 5-tuple {Source IP, Source Port,
Destination IP, Destination Port, protocol}. Routers generally
cannot afford to store 13 bytes for each flow for security pur-
pose. To minimize the storage overhead incurred by the 3 large
tables needed to implement the algorithm, we store only the
output of a hash function with the label as the input.

6. Simulation experiments and performance results

In this section, we evaluate the performance results obtained
with NS-2 simulation experiments performed. The simulation
assumed a default network parameters in link capacity of
2 MB/s. The RTT of TCP flows are uniformly distributed over
60–240 ms. The shrew attack dataset specified in Section 3.1
are applied here.

While TCP-Tahoe, TCP-Reno and others present similar
vulnerability under shrew attacks [15], we adopt the TCP-
Reno standards in our experiments. We compare the results of
our shrew-filtering algorithm with the well-known Drop Tail
scheme. We examine the overhead in our CDF algorithms to
assess the penalties paid and limitations of our scheme.

Fig. 14. ROC curve showing the tradeoffs between anomaly detection rate and
false positive rate under collaborative detection of shrew attacks, compared
with the result of using an isolated router.

6.1. Anomaly detection and false alarm rates

By anomaly, we mean an abnormal network condition caused
by shrew attacks. We calculate the actual anomaly detection
rate Rd as the ratio of detected attack streams over the total
number of such traffic streams processed. The false positive rate
Rfp is the ratio of normal traffic flows being wrongly detected
as having shrew attacks over total number of legitimate traffic
streams.

Besides these two performance metrics, we study the per-
formance of our collaborative detection scheme (Algorithm 2)
over several collaborative ranges. A single router works inde-
pendently is considered no collaboration with its neighbors.
Collaborating with 1-hop routers involves 2 to 4 routers at im-
mediate neighbors. The 2-hop neighbors involve 4 to 16 routers
within distance 2 from a given router. Finally, we limit to 8 to
40 routers in a 3-hop neighborhood.

The ROC curves shown in Fig. 14 report the performance
of Algorithm 2, which is upper bounded by the template ROC
performance reported in Fig. 9(a). Three curves are plotted
for using 1 router independently and up to 4 and 40 routers,
respectively in 1-hop and 3-hop neighborhoods. The lower
curve shows the poor detection performance in using a sin-
gle isolated router. The detection results in using neighboring
routers are shown in the top two curves. The neighborhood
range has resulted in very little differences. When the false
alarm is required to be very low, say below 0.05%, the 3-hop
group performs slightly better than the 1-hop group.

This ROC plots clearly shows that almost 98% sucessful
detections can be expected, if one can tolerate 30% false alarms.
When the false positive rate exceeds 20% the Rd difference in
using large collaborative routers diminishes. Of course, more
routers used may enhance the detection accuracy.

However, enlarging the collaborative range may trigger also
lot more alert messages to propagate among all the routers in-
volved. The message being conveyed here is that using 2–4
router within a 1-hop distance will serve the purpose, suffi-
ciently, based on checking 4000 traffic streams in our experi-
ments.

1148 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Fig. 15. Shrew attack detection results from testing 4000 traffic streams over
2 to 40 routers under the independent and two collaborative modes: (a) effect
of � variation on average detection rate; (b) effect of � variation on false
positive rate.

6.2. Effects of local detection threshold �

Fig. 15 presents the variation of the average detection rate
Rd and false positive rate Rfp with different values of the local
threshold �. The � magnitude is related to the selection of
the CTS pivot point y = �(p). We compare the performance
of independent detection by a single router with collaborative
detection using multiple routers. With collaborative ranges in
1, 2 and 3 hops, we find the more routers can results in higher
detection rate. For example at � = 4, we can achieve the average
Rd = 0.75 and 0.82, respectively, in using 4 and 40 routers.

As the value of � increase, the average detection rate de-
creases steadily towards zero. The message is that once should
adopt small �, if high detection rate is the major concern. On
the other hand, we need to apply larger � to reduce the false
positive rate Rfp to a reasonably low level as illustrated in Fig.
9(b). For example, to yield Rfp = 10%, corresponding � should
be set at 8. The use of independent routers results in an Rfp =
20%, doubling that of using 16–40 routers in 3-hop distance in
the AS.

Obviously, there exists a tradeoff between Rd and Rfp seen
by both Figs. 14 and 15. In the next section, we will reveal the
effect of the global threshold �, which provides more options
to maximize the detection rate and minimize the false alarms.
Achieving a 90% detection rate with 25% false alarms by no

Fig. 16. Effects of global threshold (�) on collaborative detection of shrew
DDoS attacks using three cooperative ranges of routers.

means imply that these false alarms will block 25% legitimate
flows. We use Algorithm 3 to cope with this filtering problem.

6.3. Effects of global detection threshold �

Based on our template database, we realized that we have to
choose the global threshold � as such to satisfy the inequali-
ties 0 < � < � < 12. The propose choice of � can increase
the average detection rate by another 10% over the use of in-
dependent detection. The reason to use two thresholds lies in
the effective reduction of false positive rate with increase of the
Rd. The rule of the thumb is that one should choose � slightly
lower than �. This results in good preservation of high detec-
tion rate with low false alarms.

Fig. 16 reports the effects of variation of � on the detection
rate and false alarm rate, while fixed � = 4.42. In case of 3-hop
collaboration, a detection rate of 79% is achieved with a false
positive rate of 21% by changing the value �. In contrast, a
false positive rate of 27% is incurred if the same detection rate
of 79% is desired by changing � to 1.92 as shown in Fig. 15.

These results also show that, on the average, both perfor-
mance metrics are less sensitive to the variations in � or in the
collaborative range size. The Rd stays between 0.65 and 0.79
and the Rfp is restricted between 0.2 and 0.15. As � decreases,
the advantage of collaborating with more than 3 hops shows
only a small gain. Actually, the global threshold � plays a vi-
tal role in fine-tuning, after local threshold � is constrained by
keeping the false positive rate low.

6.4. Normalized throughput after packet filtering

Our shrew-filtering Algorithm 3 is triggered by the detection
results of Algorithm 2. We compare below the TCP throughput
(K packets/s) achieved by Algorithm 3 with that by using the
Drop Tail algorithm.

This normalized throughput is a scalar ratio of the average
throughput of TCP flows containing shrew DDoS attacks to that
of the maximum TCP throughput without any attacks. The met-

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1149

Fig. 17. Normalized TCP throughput of 5 TCP flows after filtering of suspected
malicious flows by drop-tail and by our amplitude-filtering algorithm.

ric � indicates the damage degree the regular TCP traffic suffer
from shrew attacks. The lower is the normalized throughput,
the greater is the suffer of legitimate TCP flows.

Fig. 17 compares the throughputs of legitimate TCP flows
under attack from multiple distributed shrew streams using the
Drop Tail scheme and using our amplitude filtering Algorithm 3.
The x-axis is the attack period and the y-axis is the normalized
throughput TCP flow retained.

Using the Drop Tail algorithm, the throughput of legitimate
TCP flow is reduced to 20% below the attainable throughput.
With Algorithm 3, above 95% of the TCP throughput is pre-
served. Our hypothesis filtering model is effective to cut off
malicious shrew attack flows with less than 1% loss of the le-
gitimate TCP flows on the average.

Fig. 17 presents the case where shrew attack streams are
distributed in space but synchronized. Four shrew attack
streams are from four sources with the same attacking peri-
ods and the same burst lengths. However, their peak rate is
only 0.25R, where R is the attack burst rate. This means their
average traffic rate is only 25% of that from a single-source
attack.

This shows a major advantage of using spectral analysis over
bandwidth volume analysis. Even if the shrew attack flows were
launched from many zombies to lower the bandwidth utiliza-
tion, the frequency spectrum assumes the same properties. Al-
though the average detection rate was shown around 82%, this
result shows that the TCP flows can retain almost 99.9% of the
TCP throughput.

7. Scalability, deployment and limitations

The intensive NS-2 simulation experiments verified that
our shrew attack defense mechanism is very promising to
cur off low-rate TCP-targeted DDoS attacks. The CDF works
by integrating DSP, hypothesis testing, and statistical analy-
sis. It will be more useful to further verify the effectiveness
by testing with larger scale enchmark experiments in real-
life network environments. We discuss below the scalability,
overhead, and accuracy issues and limitations of our defense
scheme.

Fig. 18. Block diagram of a shrew attack filter designed for FPGA imple-
mentation.

7.1. Scalability and hardware implementation

To deploy a distributed security scheme in core network, the
scalability issue is related to the network size, data rate, link
capacity, or router number involved. The collaborative shrew
attack detection process (Algorithm 2) must count all incoming
packets at the network interface. The shrew-filtering process
(Algorithm 3) demands storage space and computing power to
perform the filtering at flow level.

We have experimented on 4000 traffic streams. Each stream
has 8–20 flows. Thus, more than 50,000 flows were process
in the simulation experiments. One major obstacle in deploy-
ing DDoS defense schemes into the core network routers is
the conflict between limited resources in routers and high data
rate demanded [21]. It was suggested to implement intrusion
detection system (IDS) on a FPGA platform, which can process
32,768 complex rules at a data rate as high as 10 Gbps [3].

Our sampling and packets filtering rules are not more com-
plex than those IDS rules. The most time-consuming part is to
perform DFT on every traffic stream. This can be solved by us-
ing the Xilinx Virtex-4 FPGA, which calculates 512 DSP slices
to execute in parallel with a 500 MHz clock. It has been esti-
mated that these hardware implementations may have a speed
gain of two orders of magnitude, compared with the software
implementations.

Fig. 18 presents a high-level schematic block diagram
of the FPGA-based shrew filtering system architecture. The
header-processing unit monitors the sampling process and the
temporal series are transformed into frequency domain us-
ing DSP technique. The packet-marking unit determines the
operation against malicious packets as the DSP signature is
generated.

Another constraint on scalability lies in the storage demand
for sampled spectrum of each traffic flow processed. Per each
flow, if we sample for 5 s with a period of 1 ms, then 5000 data
points must be processed. If we consider using 8 bits for each
spectral line, then 5 kB is needed. This can be easily supported
by today’s FPGA devices, for example, the Xilinx Virtex-4’s
SmartRam hierarchy supports up to 10 MB of embedded block
RAM.

1150 Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151

Table 4
Error levels in filtering with different sampling times

Error level Traffic types Sample time periods ()
1 s 2 s 3 s 4 s 5 s

±1.96�/95% TCP flow 0.16 ± 0.18 0.14 ± 0.09 0.13 ± 0.07 0.13 ± 0.08 0.11 ± 0.05
Shrew attack 0.50 ± 0.05 0.47 ± 0.06 0.45 ± 0.07 0.45 ± 0.07 0.50 ± 0.07

±3�/99.7% TCP flow 0.16 ± 0.27 0.14 ± 0.14 0.13 ± 0.10 0.13 ± 0.12 0.11 ± 0.08
Shrew attack 0.50 ± 0.08 0.47 ± 0.09 0.45 ± 0.10 0.45 ± 0.11 0.50 ± 0.11

±3.29�/99.9% TCP flow 0.16 ± 0.30 0.14 ± 0.16 0.13 ± 0.11 0.13 ± 0.13 0.11 ± 0.09
Shrew attack 0.50 ± 0.08 0.47 ± 0.10 0.45 ± 0.11 0.45 ± 0.12 0.50 ± 0.13

7.2. Overheads and accuracy analysis

The overhead is another critical parameter to evaluate the
performance of our amplitude-filtering algorithm. It is defined
by the time interval from the moment a shrew attack is detected
to the moment the countermeasure responses effectively. This
time interval is often varied according to the traffic load on the
link. However, the load on the link does not affect the response
time of our amplitude-filtering algorithm.

In Table 4, we observe different error levels of the normal
TCP and of the shrew attack streams. The confidence level of
detecting and filtering shrew flows is very high (99.9%) while
�2 s. With = 1 second, we observed an overlap in ±3�
and ±3.29� error ranges, but no overlap at ±1.96� error level.
This implies that the filtering accuracy is not sensitive to the
sampling period.

7.3. Impacts of IP spoofing and table overflows

As long as the attack stream presents similar periodicity, we
can detect the shrew DDoS attacks accurately. However, the
performance of shrew filtering algorithm may suffer from the
dynamics of source IP spoofing.

In a flow-level sampling and filtering procedure, we uniquely
identify each flow using the 5-tuple {Source IP, Source Port,
Destination IP, Destination Port, protocol}. This may add some
flow labeling overhead, if the attacker spoof the source IP dy-
namically. If the spoofing source IP set is very large, attacker
may cause the MFT to overflow.

The MFT overflow may decrease the performance of shrew
filtering process. It could be worse if the attacker use different
source IP in sending every pulse. One possible solution to solve
this dynamic spoofing problem is to perform also rate limiting
at network interfaces, when we detect the existence of shrew
attack streams.

Another issue is that short-lived burst traffic flows may be
mistakenly marked as low-rate shrew attacks. Although they are
marked as malicious flow, they have already passed the filter
and thus do not affect the legitimate TCP flow. Meanwhile,
short-lived burst traffic may waste space in the MFT.

In addition, long-lived pulsing nature traffic can bring down
the throughput of TCP flows sharing links with them. Therefore,
when TCP flows are throttled heavily, it is reasonable to block
these pulsing streams, even they are not generated purposely to
impair the normal TCP flows.

8. Conclusions and further research

Our research contributions are summarized below in five
technical aspects. Some of the identified topics deserve contin-
ued effort to mature the defense technology:

A. Stream-level detection and flow-level filtering: Leverag-
ing spectral analysis, our hypothesis testing model makes
the spectral template matching effective in detecting shrew
DDoS attacks at traffic streaming level and in cutting off
malicious flows at a refined flow level.

B. Spectral modeling of Internet traffic patterns: Our CDF
model offers a theoretical foundation on defense not only
against shrew DDoS attacks but also extensible to cope
with flooding type of DDoS attacks. This area demands
further research and experiments to prove the idea.

C. Detection accuracy versus false alarms: Through exten-
sive NS-2 simulation experiments, we report encourag-
ing results on successful anomaly detection with low false
positive alarms. This implies possible tradeoffs between
anomaly detection and false alarms.

D. Appealing to Hardware implementations: Our CDF
scheme appeals to both DSP software and FPGA hardware
implementation. The scheme can be also implemented
on network processors. One can push frequency-domain
monitoring down to a lower level in packet processing
hierarchy. The DSP chips, FGPA, and network processors
will all reduce packet-processing time on routers.

E. Protecting legitimate TCP/UDP flows: The shrew-filtering
process (Algorithm 3) drops all packets in malicious flows
detected. Our simulation results show almost a complete
cutoff of the malicious shrew attack flows with less than
0.1% loss of the legitimate TCP flows. This avoids the loss
of legitimate TCP/UDP packets, as often found in using
rate-limiting algorithms.

For continued effort, we are porting and testing the CDF
defense schemes on the DETER testbed [10], jointed developed
by University of California at Berkeley and USC Information
Science Institute. More benchmark results will be reported later
to further verify the effectiveness of the CDF scheme.

We are also exploring the use of FPGA and network pro-
cessors to solve the security problems in hardware. We aim to
relieve the burdens of end users, core ISP gateways, and edge
network routers by speeding up the defense process with DSP
technologies. The ultimate goal is to achieve automated intru-
sion detection and responses in real-time.

Y. Chen, K. Hwang / J. Parallel Distrib. Comput. 66 (2006) 1137–1151 1151

Acknowledgments

We would like to acknowledge the support of this work by
NSF ITR Grant 0325409. This work extends from our prelim-
inary filtering results reported in [6]. Both theoretical model-
ing and experimental results are newly reported here. We thank
Dr. Yu-Kwong Kwok of the University of Hong Kong for his
earlier contributions to frequency-domain filtering techniques
for cutting off shrew DDoS attacks.

References

[1] Abilene-I data set, the Passive Measurement and Analysis (PMA) project,
〈http://pma.nlanr.net/traces/long/ipls1.html〉.

[2] R. Allen, D. Mills, Signal analysis: Time, Frequency, Scale, and Structure,
Wiley, New York, 2004.

[3] M. Attig, J. Lockwood, A framework for rule processing in reconfigurable
network systems, in: Proceedings of IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), Napa, CA, 17–20
April, 2005.

[4] P. Barford, J. Kline, D. Plonka, A. Ron, A signal analysis of network
traffic anomalies, in: Proceedings of ACM Internet Measurement
Workshop, Marseille, France, 6–8 November, 2002.

[5] Y. Chen, K. Hwang, Collaborative change detection of DDoS attacks
on community and ISP networks, in: IEEE International Symposium
on Collaboration Technologies and Systems (CTS’06), Las Vegas, NV,
15–17 May, 2006.

[6] Y. Chen, K. Hwang, Y.K. Kwok, Filtering of shrew DDoS attacks in
frequency domain, in: The First IEEE LCN Workshop on Network
Security (WoNS), Sydney, Australia, 15–17 November, 2005.

[7] C.M. Cheng, H.T. Kung, K.S. Tan, Use of spectral analysis in defense
against DoS attacks, Proceedings of 2002 IEEE GLOBECOM, Taipei,
China.

[8] R. Chertov, S. Fahmy, and N. Shroff, Emulation versus simulation: a
case study of TCP-Targeted denial of service attack, in: Proceedings
of Second International IEEE CreateNet Conference on Testbeds and
Research Infrastructures, March 2006.

[9] M. Delio, New Breed of Attack Zombies Lurk, 〈http://www.wired.com/
news/technology/0,1282,43697,00.html〉, 31 October, 2005.

[10] DETER and EMIST Network Project, Cyber defense technology
networking and evaluation, Comm. ACM, 47(3) (2004).

[11] GT-ITM: Georgia Tech Internet Topology Models, 〈http://www.cc.gatech.
edu/projects/gtitm/〉, 3 November, 2005.

[12] M. Guirguis, A. Bestavros, I. Matta, Y. Zhang, Reduction of quality
(RoQ) attacks on internet and systems, in: IEEE INFOCOM, Miami,
FL, March 2005.

[13] A. Hussain, J. Heidemann, C. Papadopoulos, A framework for classifying
denial of service attacks, ACM SIGCOMM, Karlsruhe, Germany, August
2003.

[14] K. Hwang, Y.-K. Kwok, S. Song, M. Cai, Y. Chen, Y. Chen, Security
binding and worm/DDoS defense for trusted grid computing, Internat.
J. Critical Infrastructures 2 (4) (2005).

[15] A. Kuzmanovic, E. Knightly, Low-rate TCP-targeted denial of service
attacks—the shrew vs. the mice and elephants, in: Proceedings of 2003
ACM SIGCOMM, Karlsruhe, Germany, 25–29 August, 2003.

[16] X. Luo, R. Chang, On a new class of pulsing denial-of-service attacks
and the defense, in: Proceedings of Network and Distributed System
Security Symposium (NDSS’05), San Diego, CA., 2–5 February, 2005.

[17] X. Luo, R. Chang, E. Chan, Performance analysis of TCP/AQM under
denial-of-service attacks, in: Proceedings of IEEE MASCOTS, Atlanta,
GA, September 2005.

[18] R. Mahajan, S. Floyd, D. Wetherall, Controlling high-bandwidth flows
at the congested router, in: Proceedings of ACM Ninth International
Conference on Network Protocols (ICNP), Riverside, CA, 11–14
November, 2001.

[19] S. McCanne, S. Floyd, NS-2 Network Simulator, 〈http://www.isi.edu/
nsnam/ns/〉, 1997.

[20] D. Moore, G. Voelker, S. Savage, Inferring Internet denial-of-service
activity, in: Proceedings of 10th USENIX Security Symposium,
Washington, DC, August 2001.

[21] C. Papadopoulos, R. Lindell, J. Mehringer, A. Hussain, R. Govindan,
COSSACK: coordinated suppression of simultaneous attacks, in:
Proceedings of DISCEX III, 2003.

[22] C. Partridge, D. Cousins, A. Jackson, R. Krishnan, T. Saxena, W. Strayer,
Using signal processing to analyze wireless data traffic, Proceedings of
ACM Workshop on Wireless Security, Atlanta, GA, 28–28 September,
2002.

[23] V. Paxson, M. Allman, Computing TCP’s retransmission timer, Internet
RFC 2988, November 2000.

[24] S. Specht, R. Lee, Distributed denial of service: taxonomies of
attacks, tools and countermeasures, in: Proceedings of 2004 PDCS, San
Francisco, CA, 15–17 September, 2004.

[25] H. Sun, J. Lui, D. Yau, Defending against low-rate TCP attacks: dynamic
detection and protection, in: Proceedings of 2004 IEEE International
Conference on Network Protocols (ICNP), Berlin, Germany, 5–8 October,
2004.

Yu Chen received the B.S. degree from
Chongqing University, China in 1994. He
earned the M.S. degree in Computer Engineer-
ing from the University of Southern California
(USC) in 2002. He is currently a Ph.D. can-
didate in Computer Engineering and works at
USC Internet and Grid Research Laboratory.
His research interest includes Internet infras-
tructure security, DDoS attack detection and
defense, Internet traffic analysis and distributed
security infrastructure. He can be reached at
cheny@usc.edu.

Kai Hwang is a Professor of Computer Engi-
neering and Director of Internet and Grid Re-
search Laboratory at the University of Southern
California (USC). He received the Ph.D. degree
from the University of California, Berkeley in
1972. An IEEE Fellow, he specializes in com-
puter architecture, parallel processing, Internet
security, and Grid and distributed systems.
Dr. Hwang has published over 190 original
scientific papers and four popular textbooks.
His latest books, Scalable Parallel Comput-
ing and Advanced Computer Architecture, are

being adopted worldwide and translated into four languages. He has also
edited a number of advanced research books, including the series of Annual
Reviews in Scalable Computing (World Scientific Publisher. Presently, he
leads a NSF-supported GridSec project in developing security binding and
distributed defense systems against network worms and DDoS attacks for
trusted Grid, P2P, and Internet computing. Contact him via kaihwang@usc.edu
or http://GridSec.usc.edu/Hwang.html.

http://pma.nlanr.net/traces/long/ipls1.html
http://www.wired.com/news/technology/0,1282,43697,00.html
http://www.wired.com/news/technology/0,1282,43697,00.html
http://www.cc.gatech.edu/projects/gtitm/
http://www.cc.gatech.edu/projects/gtitm/
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://GridSec.usc.edu/Hwang.html

