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Abstract - Malicious attacks against Internet infrastructure are 
one of the most damaging threats to modern society. Due to the 
inter-dependence between networks, attackers can paralyze or 
isolate the victim network without attacking it directly. Such 
kind of attacks could be a main weapon of cyber war in the 
foreseeable future, potentially detrimental to many national 
interests. Today’s network security solutions designed under 
the end-to-end paradigm cannot address the malicious 
activities inside the core network effectively. This paper 
proposed to strengthen the network infrastructure by 
developing NeuroNet, a network neural system that plays a 
critical role similar to the role of the nervous system in the 
human body. A distributed information collection and 
processing mechanism is proposed, which coordinates the 
activities of core network devices, monitor for anomalies, 
construct alerts, and initiate countermeasures. Through 
intensive experiment of a distributed detection scheme against 
the low-rate TCP-targeted DDoS attacks, the effectiveness of 
the NeuroNet architecture is verified. 
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I.  INTRODUCTION 

Information technology has revolutionized almost every 
facet of our lives. Government, commercial, and educational 
organizations depend on computers and the Internet to such 
an extent that day-to-day operations are significantly 
hindered when the networks are “down” [16]. Today’s 
“hackers” aim at attacks against the fundamental Internet 
infrastructure [8], an activity even more damaging than 
obtaining unauthorized network accesses or stealing private 
information. Attacks including DDoS (Distributed Denial-
of-Services) attacks [18] and Internet worms [29], both of 
which can lead to enormous destruction, as different 
infrastructure components of the Internet have implicit trust 
relationships with each other. Recent research pointed out 
that infrastructure attacks will be the major weapon of cyber 
wars in the predictable near future [2]. Therefore, a robust 
and intelligent infrastructure is vital to protect national 
interests. Although there are reported works that consider 
fighting against infrastructure-oriented attacks [3, 13, 23, 
29], not one of them can be considered as a comprehensive 
solution for two reasons. 

First of all, the network infrastructure does not provide 
enough resources to accommodate adequate security 
functions. When the Internet was created, the end-to-end 

principle was adopted based on the assumption that the end 
users, who were mostly engineers and researchers, were 
willing to behave cooperatively and trustfully to each other. 
Therefore, security was not considered important to the 
designers. The Internet protocols and architecture were 
designed from the perspective of functionalities. In order to 
support emerging applications, the intermediate network 
was designed as a purely transparent carrier optimized for 
best-effort packet forwarding. However, today, the Internet 
is operated in an untrustworthy world and with much more 
demanding applications [5, 19]. While the end users cannot 
be trusted, a more reliable and trustworthy network requires 
a robust and intelligent core network. In addition, end-host 
based schemes are ineffective to some new attacks patterns 
[9, 20]. It is mandatory to detect and counteract inside the 
core networks.  

Secondly, infrastructure security is fundamentally 
different from and even clashes with information security. 
Most reported information security solutions focus on 
confidentiality, integrity, and authentication. However, 
protection of network infrastructure is based mainly on the 
availability, reliability, and stability of the network services. 
It is different from information protection that can be 
achieved by stronger encryption algorithms, stricter 
authentication policies, or more complex digital signatures. 
For instance, a strongly encrypted server could be put out of 
work by a flooding DDoS attack that simply exhausts 
certain critical resources, i.e. bandwidth. The attacker does 
not even need to understand the fundamentals of encryption.  

The central motivation of our work reported here is the 
compelling need to secure network infrastructure. For this 
purpose, technologies need to be integrated into the 
infrastructure and this needs to be done in a coordinated 
manner across the core network fabric. One concern is that 
putting more functions inside the network jeopardizes the 
generality and flexibility, as well as historic patterns, of 
innovation under end-to-end paradigms. However, in fact, 
beside the security concerns, more demanding applications 
and diversified user groups have been pushing the Internet 
architecture away from the end-to-end paradigm. A new 
principle we should follow is that the implementation of 
functions invisible to the end-to-end application should be 
“in” the network in general [5].  

This paper proposed to reinforce Internet infrastructure 
by developing NeuroNet, a network neural system that plays 
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a critical role similar to the role of the nervous system in the 
human body. The NeuroNet is a distributed security system 
that is capable of monitoring the traffic fluctuation 
adaptively, detecting the traffic anomalies, and triggering 
countermeasures in the core network. To verify the 
effectiveness of the NeuroNet architecture, we also 
proposed a distributed detection mechanism against the low-
rate TCP-targeted DDoS attacks, which is one type of 
stealthy, hard-to-detect infrastructure-oriented attack [12]. It 
is also known as shrew attacks [20], periodic pulsing attacks 
[22] in literatures. For convenience, we will use the term 
shrew attacks in sequel.  

The rest of the paper is organized as follows: Section 2 
gives a brief review of related works. Section 3 introduces 
the rationale and the architecture of our NeuroNet. As a case 
study, section 4 presents the experiment results of shrew 
DDoS attack detection on top of the NeuroNet. Section 5 
concludes this paper and discusses our on-going works.  

II.  RELATED WORK 

Network security continues to be a hot topic in the 
research community. This section presents a brief survey of 
reported efforts in the areas of new network architecture 
design and shrew DDoS attack defense schemes. 

The Internet has evolved greatly in past decades. 
Researchers have recognized that new network architecture 
is needed to adapt to changes in applications and user 
groups [19]. For instance, as the majority of today’s Internet 
application is data retrieval and service access, data-oriented 
network architectures have been proposed on name-based 
routing to improve the data/service access on the Internet 
[14, 19]. Active network has been suggested to make the 
Internet infrastructure more adaptive and smart [25, 28], and 
there was reported countermeasure against DDoS attacks 
using active networks [26]. Particularly, due to the lack of 
security functions some researchers are considering a clean-
slate design for the next-generation secure Internet [4]. 
However, since the current Internet cannot be completely 
replaced by a new network infrastructure in the foreseeable 
near future, we still need to strengthen the current network 
infrastructure. 

Kuzmanovic and Knightly [20] studied the rationale of 
the shrew attacks and identified the critical parameters that 
affect the TCP flows. They indicated the limitation of 
existing DDoS defense mechanisms against shrew attacks. 
However, they did not develop specific countermeasures to 
counter the low-rate shrew attacks. Kwok, et al [21] 
proposed a HAWK algorithm by judiciously identifying 
malicious shrew packet flows. However, the HAWK scheme 
is only effective to single source attacks. Sun et al. [27] 
suggested detecting shrew attacks by matching pattern with 
prestored attack signature. However, their method cannot 
distinguish malicious from legitimate flows. Legitimate 
flows thus suffer in the rate-limit packet filtering process. 
Luo and Chang [22] have studied shrew attacks using a 
wavelet approach. Unfortunately, they did not report the 
detection accuracy achieved. Since the wavelet detection 

outcomes are largely dependent on the choice of detection 
parameters, it is difficult to find optimal parameters that are 
sensitive to detect low-rate distributed attacks while 
maintaining a low false positive alarm rate.  

III.  NEURONET: RATIONALE AND ARCHITECTURE 

The NeuroNet is a nervous system for the Internet 
infrastructure. Essentially, it is a distributed information 
collection and processing mechanism, which coordinates the 
activities of core network devices, monitors the anomalies, 
constructs senses or alert, and initiates countermeasures.  

Facing the fast growing application and attacking 
patterns, a more sophisticated and intelligent network 
infrastructure is desired. A smart Internet architecture is 
required that is capable of learning the evolution of traffic 
patterns adaptively and generating new rules and signatures 
dynamically without human interferences. Adopting 
artificial neural networks (ANNs) or other artificial 
techniques in network security is not a new idea [7, 11, 15]. 
However, built according to a simplified model of a neuron, 
the ANNs neither really possess properties of the neural 
network in neurobiology nor reflect the Internet topology or 
architecture. In fact, the physical architecture topology of 
the Internet is more similar to the biological nervous system 
as shown in Fig. 1(a).  

Based on this observation, we propose to explore the 
approach to enable network infrastructure to work 
coordinately as the human body with a nervous system: 
which is a real distributed sensing and information 
processing system. The architecture of the proposed 
NeuroNet is shown in Fig. 1(b). NeuroNet allows multiple 
ISP networks or autonomous systems (AS) to work 
collaboratively. Each router works as a neuron, and there is 
a server in each network that acts as the brain.  

Adapting such a model, the basic idea is that NeuroNet 
plays two roles as neurons do in biological systems: sensing 
and control. As the brain of the system, the servers located 
in each ISP network have two responsibilities. Aside from 
performing complex computing and data analysis work, the 
servers are also in charge of issuing commands to executors. 
Similarly, on one hand, routers function as distributed 
sensors in the procedure of information collection when 
monitoring the network status. On the other hand, routers 
also function as distributed executors to make the whole  

  
(a). Biologically based Neural 

Networks [5] 
(b). Proposed NeuroNet 

Architecture 

Figure 1. Illustration of NeuroNet Architecture 
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Figure 2. Three levels of communication in using the IFSec between two 

servers in two ASes. 

network act correspondently when they are asked to trigger 
countermeasures against certain on-going attacks. 

To provide a secure communication platform for the 
nervous system, we proposed IFSec, a novel infrastructure 
security protocol. This protocol is allocated at the network 
layer (layer 3) and specifies the data format and encryption 
mechanism for secure information exchange among neurons 
and between neurons and the server (brain) in the domain.  

The IFSec is not an IP multicast protocol in the traditional 
sense because of two reasons. In the vertical direction of 
network layer model, it sits on top of the IP layer and it is 
transparent to transport layer protocols. From the 
perspective of deployment, IFSec holds its responsibility as 
limited in layer 3 devices of a physical network. No end 
hosts or servers are involved. As illustrated by Figure 2, the 
protocol possesses a three level communication model. 

The lowest level enables routers in the same domain to 
share information for status monitoring. The second level is 
the communication between the routers and server in each 
domain. Routers periodically report local traffic detection 
results to the domain server. At the inter-domain level, the 
server communicates with its peers located in other ASes. 
However, due to privacy and security concerns, ISPs are 
often reluctant to reveal inside information to competitors. 
Hence, aside from managing the information exchange, 
servers are also in charge of trust negotiation. 

IV. COLLABORATIVE SHREW DDOS ATTACK 
DETECTION 

To verify the effectiveness of the NeuroNet, we 
developed a collaborative shrew DDoS attack detection 
mechanism on top of IFSec and studied its performance 
through intensive experiment.  

A. Overview of Shrew DDoS Attacks 
The earliest case of shrew DDoS attack was reported in 

2001 [12]. But it had not been studied thoroughly until 
Kuzmanovic and Knight [20] identified and characterized 
such type of attacks in 2003. They studied the rationale of 
the shrew attack and analyzed the critical parameters that 
affect the efficiency on TCP flows. A single source shrew 
attack could be modeled as a square waveform packet 
stream with an attack period T, length of the burst L, and the 
burst rate R. The period T is calculated by the estimated 
TCP RTO timer implementations at legitimate sources. The 

shrew attacks take advantage of the RTO recovery feature 
by adjusting the attack period to match with the RTO 
period. Attacking pulse streams occupy the link bandwidth 
periodically and make legitimate TCP flows always “see” 
busy links when they go through the RTO process. In worst 
cases, the shrew attack can bring down the throughput of 
legitimate TCP flows lower than 10% of the throughput in 
normal situation. 

B. Collaborative Shrew Attack Detection Scheme 
Our previous research [9] discovered that the Power 

Spectral Density (PSD) of traffic with shrew streams 
embedded has much higher energy statistically located in 
low frequency band (< 20 Hz) while comparing to traffic 
flows without such low-rate attack streams. Based on 
observing the normalized cumulative PSD at 20 Hz, each 
router detects whether there is shrew stream(s) embedded in 
flows going through. It is non-trivial for attacker to hide the 
statistic property in frequency domain, 

However, there is a tradeoff because the detection 
accuracy is related to the false positive rate. If we want to 
avoid high false positive rate by choosing a higher alert 
threshold, the detection accuracy is sacrificed. A lower 
threshold brings a higher detection rate but also a higher 
false positive rate. With the support of IFSec protocol, we 
proposed a collaborative distributed detection scheme that 
solved this dilemma.  

The rationale of our algorithm is that routers may detect 
anomalies more effectively if a wider vision of traffic 
pattern is available. Two thresholds are adopted. The local 
threshold γL is set to a higher value to obtain lower false 
positive rate, while the cooperative threshold γC is set to 
lower value to make up the sacrificed detection accuracy.  

Figure 3 illustrates the operation of the algorithm. 
Distributed attack is launched from zombies located widely 
on the Internet and multiple shrew streams are approaching 
to victim connected to a router in the AS. Due to the random 
distribution nature of shrew streams, their strengths are not 
even to each edge router. This mechanism gives routers a 
clue to check whether they are in the attacking range.  

 
Figure 3. Principle of distributed detection algorithm  

against shrew attack streams 
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Edge routers who detected the normalized cumulative 
PSD L(x) > γL would multicast an alert and start the shrew 
filtering mechanism [9] to identify malicious flows and cut 
off them completely. However, as shown in Fig. 3, when 
L(x) < γL happens at node A, alerts from neighbors tell that 
there is attack going on. Additionally, the alerts from peers 
let node A realize that it is located inside the attacking area. 
Then node A checks the second threshold to see whether 
L(x) > γc, if that is true, node A starts the local shrew 
filtering mechanism.  

In contrast, node B, who also received alerts, will not 
trigger further action. As all its immediate neighbors have 
not raised alert, the received alert just leads to a conclusion 
that there are suspicious flows coming into the AS, but node 
B is not in the attacked area. However, the location and 
distribution of the received alerts would tell nodes C that it 
is at the edge of attacking area. If there exists L(x) > γc, then 
node C starts the local shrew filtering mechanism. 

C. Experiment Result 
To verify the effectiveness of the NeuroNet architecture 

supported distributed detection mechanism against shrew 
DDoS attacks, we carried out intensive experiments using 
the NS-2 simulator [24], a widely recognized packet-level 
discrete event simulator. Our NS-2 simulations were carried 
out with many topologies generated by the GT- ITM toolkit 
from Georgia Tech. [17]. We apply each topology for at 
least 1000 experiments with shrew attack datasets similar to 
those used by Chertov et al. [10], Kuzmanovic and Knightly 
[20], and Sun et al. [27]. 

The simulation assumed default network parameters in 
link capacity of 2 Mb/s. The RTT of TCP flows are 
uniformly distributed over 60 ms to 240 ms. Since TCP-
Tahoe, TCP-Reno and others present similar vulnerability 
under shrew attacks [20], we adopt the TCP-Reno standards 
in our experiments.  

We generate shrew attack flows with a period T between 
0.5 and 3.0 s, the burst period L is in the range (30–90 ms). 
For single-source attacks, the burse rate R varies in 0.5–2 
MB/s. In distributed attacks from multiple sources, R varies 
in 0.1–2 MB/s. The background traffic without shrew 
attacks are generated from our analysis of Abilene-I trace 
dataset released by the PMA Project [1]. This dataset is the 
first public OC48c backbone trace.  

The anomaly detection rate Rd is the ratio of detected 
attack streams over the total number of such traffic streams 
processed. The false positive rate Rfp is the ratio of normal 
traffic flows being wrongly detected as having shrew attacks 
over total number of legitimate traffic streams. The ROC 
(Receiver Operating Characteristics) curves shown in Fig. 4 
present the improvement in performance of cooperative 
detection on top of the NeuroNet.  

The lower curve shows the detection performance when 
each router works independently. We have to tolerant a false 
positive rate of 37% for a detection rate of 90%. The 
detection results in cooperating with neighboring routers are 
shown in the top two curves. When cooperating with 
immediately connected neighbors, where distance is 1 hop,  

 
Figure 4. ROC curve illustrating the improvement  

of detection rate 

a detection rate of 98% is achieved with a false positive rate 
of 30%.  

Note that the false alarm rate does not imply 30% of the 
legitimate traffic will be cut off or filtered. It could be 
interpreted as system overhead. The false alarms will 
unnecessarily launch further countermeasures to investigate 
which part of the traffic belongs to a malicious attack.  

When the false alarm is required to be very low, say 
below 0.05%, the 3-hop group performs slightly better than 
the 1-hop group. When the false positive rate exceeds 20% 
the Rd difference in using large collaborative routers 
diminishes. However, enlarging the collaborative range may 
trigger lot more alert messages to propagate among all the 
routers involved. The neighborhood range has resulted in 
very little differences. 

V. CONCLUSIONS AND DISCUSSIONS 

Protecting the Internet infrastructure from malicious 
attacks has been a compelling task. As tremendous damages 
may be caused before the end hosts realize, end hosts based 
defense systems cannot response to anomalies inside the 
network effectively. To address the malicious activities 
inside the core networks, we propose to develop a nervous 
system for the network infrastructure. To support the 
collaborative operation between neurons, a layer 3 IFSec 
protocol enables intermediate network devices to 
communicate with each other safely.  

We verified the effectiveness of the NeuroNet 
architecture and the IFSec protocol through intensive 
experiment on a distributed cooperative DDoS attack 
detection scheme. Implemented on top of IFSec, our 
distributed detection algorithm effectively improved the 
detection accuracy against low-rate DDoS attack streams. 
The experiment on NS-2 revealed that NeuroNet is a 
promising idea based on that network infrastructure security 
scheme can be implemented. 

Essentially, NeuroNet architecture provides a distributed 
information collecting and processing framework. Inspired 
by the form of biological nervous system in human body, it 
is different from ANNs. There is no training phase, instead, 
the intelligence is achieved by the adaptive information 
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processing algorithm and updating the attack signature 
database in a real time manner. 

Actually, this paper merely verified the concept of 
NeuroNet by presenting some preliminary results of a case 
study. Our ultimate goal is to really achieve an intelligent 
Internet infrastructure and to understand the impact of 
applying a nervous system model to the next generation 
Internet infrastructure. There are still considerable works 
and multiple open problems to be addressed.  

The first challenge is to identify the metrics, parameters, 
and data format each individual neuron (a network layer 
device, i.e. a router) uses to monitor the traffic and describe 
what it observed. As both new applications and attack 
patterns keep merging quickly, it is mandatory to have a 
systematic way to describe the status of traffic and an 
adaptive approach to abstract the common characteristics to 
distinguish “legal” and “illegal” activities.  

The second challenge is the development of mathematical 
application models. To describe the profile of network 
traffic in a more precise manner, a quantitative abstraction 
of data is needed. Such a data set is critical for automatic 
data processing.  

Thirdly, we will investigate the mechanism to coordinate 
network activities. Particularly, this is difficult when certain 
actions involve multiple domains. To enable different ISP 
networks to work seamlessly for security purposes, one 
major obstacle are trust and privacy concerns. Therefore, a 
trust negotiation scheme will be investigated.  
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