
 1

Two-Stage Decomposition of SNORT Rules
towards Efficient Hardware Implementation

Hao Chen, Douglas H. Summerville, Yu Chen*
Dept. of Electrical and Computer Engineering, SUNY – Binghamton, Binghamton, NY 13902

Abstract∗– The performance gap between the execution speed of
security software and the amount of data to be processed is ever
widening. A common solution is to close the performance gap
through hardware implementation of security functions.
However, continuously expanding signature databases have
become a major impediment to achieving scalable hardware
based pattern matching. Additionally, evolutionary rule
databases have necessitated real time online updating for
reconfigurable hardware implementations. Based on the
observation that signature patterns are constructed from
combinations of a limited number of primary patterns, we
propose to decompose the Snort signature patterns. These
smaller primary pattern sets can be stored along with their
associations to allow dynamic signature pattern reconstruction.
Not only does the matching operation potentially become more
scalable, but the real time online updating task is simplified. The
approach is verified with patterns from the latest version of the
Snort rule database. The experimental results show that after
decomposition, a reduction in size of over 77% can be achieved
on Snort signature patterns.

Key Words: Network Intrusion Detection Systems (NIDS), Security,
Finite State Machine, Scalability, Decompose, FPGAs.

1. Introduction
In the past decades, the performance gap between the

processing requirements of Network Intrusion Detection
Systems (NIDS) and their software-based implementations
has been widened due to the escalation of sophisticated attack
tools and the performance limitations of sequential execution.
A common solution is to close the performance gap through
hardware implementation of security functions. The major
motivation is to pursue more powerful computing capability
for the execution of more sophisticated security functions in
real time. In addition, by exploring unique features of
hardware execution style, such as multi-threaded parallelism
and multi-stage pipeline, further improvements could be
achieved.

Packet inspection is one of the important fundamental
tasks performed by NIDS. It consists of two parts, packet
classification that focuses on the packet header and deep
packet inspection that examines the payload. Research efforts
have focused more on the later, since performing deep packet
inspection is more difficult due to the diverse formats of
packet payloads.

Pattern matching or signature detection is a fundamental
technique for deep packet inspection. By comparing input

* Manuscript∗submitted on May 1, 2009 to the 7th International Workshop on
Design of Reliable Communication Networks (DRCN 2009), October 25 – 28,
2009, Washington, D.C., USA. Corresponding author: Yu Chen, Dept. of
Electrical & Computer Eng., SUNY–Binghamton, Binghamton, NY 13902.
E-mail: ychen@binghamton.edu, Tel.: (607) 777-6133, Fax: (607) 777-4464.

data with predefined signature patterns, malicious content can
be accurately identified. Actually, more than 80% of the Snort
rules contain signature patterns and more than 80% of CPU
time is taken by pattern match operations [12].

Snort [17] is a well-known software based security
application originally designed for lightweight network
intrusion detection. Unlike commercial NIDS, in which core
parts are hidden for intellectual property protection, Snort is a
free open-source NIDS. Its rule database is used to generate
regular expressions for intrusion detection. Users are allowed
to strengthen the rule database as well as other parts of Snort,
and verified rules are collected for the update of its core rule
database. Over a ten-year evaluation time, the Snort rule
database has earned a good reputation due to its accuracy,
comprehensiveness and efficiency.

With the trend of using hardware based applications for
security protection in high speed network environments,
continuously growing rule databases have become a
significant impediment to hardware implementation.
Nowadays, hardware solutions are likely to be integrated on a
single chip with tight resource constraints. Along with many
advantages, the consequent side-effect is that hardware
implementations are more resource-sensitive. Without
deliberate design methodologies, hardware resources can be
quickly exhausted.

At the same time, it is highly desirable that a NIDS can
update its rule database in real time, so that newly emerging
attacks can be handled promptly. However, this issue is still
an open problem, since hardware design is not as flexible as
software programming. Modification in reconfigurable
hardware implies replacement and rerouting of circuits. In
addition, many realistic conditions that are seldom considered
in software implementations must be taken into account in a
hardware implementation, such as signal delay, fan-in/fan-out
and power consumption.

Therefore, it would be ideal if a NIDS could be
implemented in a lightweight manner, so that the signature
database neither occupies huge memory space nor increases
infinitely. Furthermore, the update operation should be done
in real time and online, which implies that adding new
signatures should not lead to significant replacement and
rerouting efforts.

NIDS signatures can vary from being as simple as
checking the value of a header field to as complex as
calculating the statistical characteristics of a connection or
conducting sophisticated protocol analysis. Essentially
signatures represent the activities an intruder has to perform
to gain access into a computer system. These activities can
include such things as launching programs, running scripts,
querying databases and following the steps of a protocol.

 2

Activities such as these can be broken down into a set of
operations, and signatures describe sequences of these
operations.

Since intruders must interface through computer, their
operation sequences should be input sequences that computer
can accept. In practice, basic input sequences are limited,
defining a finite set of allowable activities. Any sophisticated
input sequence could be disassembled to basic sequences. If
an input sequence could be mapped to a signature, a basic
sequence could be mapped to a primary pattern. Hence, no
matter how large the signature database grows, the number of
primary patterns which represent fundamental operations is
limited.

This observation implies that the total number of primary
patterns is limited if each primary pattern corresponds to an
operation. If we can represent the signatures as permutations
of these primary patterns, the memory or hardware resources
required to characterize the primary patterns appearing in the
signature database can be significantly reduced.

By analyzing signature pattern sets extracted from a
Snort database, we verified this rationale as we observed that
many primary patterns appear repeatedly within signatures.
Even when new signatures are added, many of them can be
decomposed into the existing set of primary patterns, with
infrequent additions. Practically, this implies that a smaller
amount of memory or other hardware resources could be
required to implement these primary patterns.

Since all patterns are distilled from network traffic
carrying data for common protocols and services, it is
reasonable to believe that this observation is not only
applicable to the pattern set abstracted from the Snort rule
database that we studied, but also applicable to pattern sets
from other pattern match based Network Intrusion Detection
Systems (NIDSs) as well. Though the appearance of signature
pattern sets may be different due to diverse environments, the
primary pattern sets should be similar.

The remainder of this paper is organized as follows:
Section 2 briefly introduces reported work that is closely
related to our effort. Section 3 illustrates our observation and
presents a two step approach to decompose the Snort
signature/rule database. Section 4 verifies our observation
through detailed analysis. Section 5 discusses some basic
principles of our current ongoing work based on the
decomposed Snort signatures. Section 6 summarizes this
paper.

2. Related Work
To the best of our knowledge, it was Franklin et al. who

first attempted implementing patterns from the Snort rule
database on top of reconfigurable hardware [9]. Since the
primary focus was on hardware adaptation, many other
important issues were deliberately not considered in this
design. From the perspective of pattern matching
implementation, their rationale was that hardware circuits can
be precompiled and the compiling time is not a big issue since
patterns are predefined. However, considering today’s rapidly
evolving network security requirements, this rationale is no

longer feasible. Currently, signature pattern updating is
crucial to maintaining the reliance of any signature-detection
based NIDS. As to reconfigurable hardware applications,
recompilation is one of the integrated procedures of update, so
it greatly affects the efficiency of these applications. Time is
very limited for recompilation in the case of high performance
detection. Although they mentioned the scalability issues of
patterns due to the growing size of Snort rule database, they
did not propose any meaningful solutions.

Up to now, design innovations based on a variety of
techniques have been applied to hardware-based pattern
matching approaches. However, they have generally suffered
from limited hardware resources, especially the tight budget
of memory resources to store patterns or perform pattern
comparison.

Cho et al. [6] proposed to relieve the scalability issue of
pattern comparison and to improve the performance by using
8-to-1 decoders for each byte comparator and instantiating
one decoder output for all the same output. The 8-to-1
decoder was setting the character decoder to the first stage of
the pipeline. Before conducting a comparison, input data at
the character level is decoded to a single bit level; all
comparisons are then performed based on these single bits. By
this means, they reduced the overall size of the comparators to
one-eighth. In circuit design, reducing the number of fan-in
also reduces the side effect to gate. Secondly, all the
comparators use the same data input and many decoders are
exactly the same. Instantiating one for sharing saves hardware
resources. To achieve more efficient operation, patterns are
divided into prefix and suffix part, and the prefix part was
used to index major portion of patterns contained in suffix
part. While the prefix part was kept on chip, the suffix part
was kept on off-chip ROM. It was obvious that the size of
on-chip RAM and the bandwidth in-between memories
greatly impact the system performance.

There are reported efforts that focus on the
implementation of regular expression pattern matching engine
[4], [14]. Specifically, by using Nondeterministic Finite
Automata (NFA), instead of centralizing on character decoder,
they employed the SRL 16 module [7], and they also explored
certain common prefix sharing techniques. Good
experimental results were achieved, containing 500 IDS
regular expressions from Snort in 25K logic cells. However,
the scalability issue would be prominent with larger numbers
of expressions being implemented.

Aldwairi et al. developed a configurable string matching
accelerator to speed up the deep packet inspection [1]. They
executed software on a general purpose processor for Finite
State Machine (FSM) operation with the support of standard
RAM. The software generates a FSM from patterns extracted
from the Snort rule database, and the FSM is in charge of
pattern matching operation. However, both the generation and
operation of the FSM for pattern matching would become
more complicated as the number of patterns increases. In
addition, although they tried to increase throughput by
increasing on-chip RAM bandwidth, there is a limit to how
much bandwidth can be increased.

 3

Instead of completely focusing on pattern comparison for
performance improvement, researchers have also proposed to
improve performance by taking advantage of some properties
in network traffic [13], [2]. They indicated that malicious
packets make up only a small share of total traffic.
Consequently, they adopted hybrid architectures in which
hardware devices handle pre-filtering and PC-based software
implements Snort for final identification. It was reported that
more than 90% of the workload of traffic processing could be
relieved from Snort software through this approach. In
addition, this design could sustain more than 10Gbps
throughput compared to 1Gbps Snort throughput. Compared
with the other approaches, this approach is more flexible and
has good scalability. However, the problem of maintaining
1Gbps throughput of software-based Snort is not trivial.

Another approach [3] that is close to our effort attracts
our attention due to its good performance on both feasibility
and scalability achieved by partitioning Snort patterns. While
many hardware-based pattern matching applications focus
more on hardware innovation, their investigation focused
more deeply into the original pattern sets. The graph-based
“min-cut” technique [10] was applied to help achieve optimal
design. The basic idea of min-cut partition is that the number
of edges between nodes within the group is maximized, and
the number of edges between different groups is minimized.
After partitioning, optimized pattern structures are
implemented in hardware for pattern matching operation. In
fact, this is the only work we know of that focuses on the
analysis of relationships concealed in Snort patterns to
improve the performance of the corresponding hardware
processing and to solve scalability issues.

3. Decomposition of SNORT Patterns
Most efforts to improve the performance of

hardware-based pattern matching implementations have
focused on the innovation of hardware architectures or
matching algorithms. However, the original source of the
complexity and scalability problems are the characteristics of
the signature pattern set. Therefore, it is more effective to gain
a deeper insight into these characteristics before investigating
hardware architectures.

Our study has revealed that the most significant factor
causing Snort signature pattern set inflation is the existence of
internal redundancies. If these concealed redundancies can be
successfully reduced the size of signature pattern set can be
well controlled, so as to relieve the complexity and scalability
issues of subsequent implementations. This section introduces
a two-step signature pattern decomposition method developed
for this purpose.

3.1 Redundancies in SNORT Patterns Sets
The signature patterns used in this work are extracted

from the Snort rule database. In addition to these patterns,
other packet information is also contained in the database for
detection and administrative support such as source/
destination addresses, source/destination ports, protocols,
flags and tags. In general, a complete Snort rule consists of

two logic sections, the rule header and the rule options [17].
Figure 1 shows a Snort signature selected from its

database. The text up to the first parenthesis is the rule header
portion, which includes basic packet header information with
specific IP addresses replaced by wildcards. The second
portion within the parentheses is the rule options, which
includes alert messages, pre-identified signature patterns, and
other support information for Snort NIDS.

Figure 1. An example of a Snort rule.

Within the rule, the data string being quoted after the
“content” is the signature pattern that is sought. “Content”
works as a keyword in the Snort rules database, introducing
the specific signature patterns for deep packet inspection [17].
An example of such a signature pattern is shown in Figure 2.
In this case, the pattern is composed of both text characters
and binary data. The binary data is represented in hex format
and enclosed within pipe characters (|).

Figure 2. A Sample of Snort signature pattern

For convenience, we take a group of signature patterns
extracted from the Snort rule database as an example to study
its properties. We call such a group of signature patterns a
signature pattern set. There are two important properties that
exist in a signature pattern set: repetition and composition.

1. Repetition: as shown in Figure 3, signature patterns
contained in 3 rules out of total 6 are the same. This
redundancy implies that increasing the number of
signatures may not necessarily lead to a
commensurate increase in the number of primary
patterns.

2. Composition: as shown in Figure 4, each signature
can be considered as a combination of smaller pattern
fragments, or primary patterns. Thus, a signature
pattern can be decomposed into one or more primary
patterns.

Essentially, the existence of both repetition and
composition imply that redundancies exist in the pattern set.
Instead of passing these redundancies to corresponding
hardware operations or applying more sophisticated
mechanisms for redundancy mitigation at the hardware design
level, as many current approaches do, it is more effective to
remove these redundancies up front at the time when the
pattern set is generated.

Once we carefully peel off these redundancies, not only is
the complexity of the corresponding hardware design reduced,
but also the scalability of the system is improved. Then, we
can maintain the same functionality as the original design

 4

with fewer patterns implemented in real circuits. Obviously,
this approach relieves the conflict between the growing
signature databases and limited hardware storage resources.

3.2 Pattern Decomposition
Based on the above observations, we decompose the

abstracted pattern set further to remove redundancies. The
decomposition consists of two steps corresponding to the
properties of repetition and composition. The first step,
dealing with repetition in the pattern set, is straightforward. It
checks all individual signature patterns inside the pattern set
in turn and simply removes repeated patterns. The second step,
handling composition, involves further decomposing
signature patterns into primary patterns. A primary pattern is a
substring of a signature pattern. This step is more difficult
since there are many ways one can parse and decompose
individual signature patterns into primary patterns.

The most challenging issue in the second step of deep
decomposition is balancing the tradeoffs between system
performance and redundancy. Signature patterns can be
decomposed into primary patterns of various lengths, ranging
from single characters up to entire signature patterns. It is
naïve and inefficient to decompose the signature patterns
down to the character level. Although the total number of
characters used, and hence the number of primary patterns,
will never exceed the number of ASCII codes (256, with even
fewer used in practice [3]), such fine-grained decomposition
leads to tremendous overhead in system performance while
performing dynamic pattern matching since it is extremely
inefficient to reconstruct signature patterns from individual
characters.

We conduct pattern decomposition on text-based patterns
at the “word” level, which takes advantage of text-based
redundancies exhibited in signature sets, such as those shown
in Fig. 4. Although pattern decomposition could also be
performed on binary data patterns, such as those shown in Fig.
3, methods of delineating primary patterns are not as
immediately obvious. Since our primary goal is to verify the
correctness and feasibility of the proposed approach, this
preliminary analysis of decomposition biased on text
dominant patterns is enough.

For decomposition, we have chosen the following
heuristic. A string of adjacent characters not containing any
“hyphen symbol” between any two characters is considered as
a primary pattern, as are the hyphen symbols by themselves.
Taking the signature patterns in Fig. 4 for example, “dbms”,
“repcat”, “alter”, and “priority” are all considered as primary
patterns and “_” and “.” are considered as “hyphen symbols”.
In general, any symbol in between two character strings could
be considered as “hyphen symbol”; we have chosen
underscore (‘_’), hyphen (‘-‘), period (‘.’) and space (‘ ‘) and
forward slash (‘/’) characters to be hyphen symbols.
Specifically, in cases when patterns form combinations of
both text characters and binary data, any binary data string in
between pairs of “|” is considered as an individual primary
pattern. Considering the patterns in Fig. 3 for example, “|5C|”,
“PIPE”, “|5C 00 05 00 0B|” are all considered as primary
patterns. It worth noting that “|” itself is not a part of patterns
in practice. Instead, it is used only as a mark to distinguish
between text characters and binary data.

Figure 5 shows the change in the number of pattern
entities resulting from the two-step signature pattern
decomposition method for various categories of Snort rules,
while Fig. 6 shows the change in total storage size. The
signature patterns are taken from Snort V.2.3.3 and are
divided into 48 categories. To maintain a clear view, pattern
categories that contain less than 50 entities are excluded from
Fig. 5 and those that contain less than 500 characters total are
excluded from Fig. 6. The complete figures are included in
our technical report [18]. Within each category, the graphs
show the original number of signature entities values (before

Figure 3 Repetition of patterns

Figure 4 Composition of primary patterns

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

chat

exploit
ftp im

ap

m
isc

netbios
oracle
policy
pop3

rpc

sm
tp

spyw
are-put

sql

w
eb-cgi

w
eb-client

w
eb-m

isc
w

eb-php
Total

N
or

m
al

iz
ed

 p
at

te
rn

 e
nt

iti
es

Category of patterns

Original Signature Pattern Count
Signature Pattern Count After Repetition Removal
Primary Pattern Count After Deep Decomposition

Figure 5.Variation of pattern entities

 5

two-step processing), the number after redundancy removal
and the number of primary patterns after subsequent deep
decomposition. To highlight the change within each category,
rather than the variations among them, all values have been
normalized to the original count (Fig. 5) or size (Fig. 6) of the
pattern signatures in the category. Though not evident due to
the normalization, there is a wide variation in the number of
signature patterns and the total size of the individual
categories. The rightmost category in each figure provides the
normalized result for all categories combined.

For nearly every signature pattern category in Fig. 5,
there is a significant reduction in the number of signature
patterns after redundancy removal, which suggest a high rate
of reuse of entire signature pattern entities. One of the
extreme cases in Fig. 5 is the netbios rule category, for which
the original number of signature entities (20,087) is reduced
to 148 after repetition removal. The Oracle and web-client
rule sets have the lowest redundancy of the pattern categories.
The cumulative results for the entire data set show that there
are a total of 25,802 signature pattern entities in the database,
only 4076 are unique. However, the number decreases to 164
entities and 1355 bytes after deep pattern decomposition,
respectively. In Fig. 6 one observes a decrease in size due to
repetition removal that is based on the amount of reuse and
size of the patterns. The aggregate reduction in size for all
pattern categories is from 145,348 bytes down to 72,315 bytes,
a reduction of just over 50%.

After subsequent deep decomposition, the pattern entity
count represents the number of unique primary patterns
present; thus, one would expect the count to increase since
each pattern is broken down into substrings and, since each
pattern is itself unique, one would expect each to contribute
something new to the total. In the case of the oracle and
web-cgi categories, there is a decrease in the number of
pattern entities. This suggests the signature patterns are
formed from permutations of a smaller set of primary patterns.
Even more important than entity count is the size of the
resulting primary pattern set (32,898 bytes), which represents
a further decrease of 55% after repetition removal, resulting in

a total decrease of over 77% for the two step processing
method. Normalized pattern sizes

4. Further Analysis and Verification
The fundamental motivation of deep decomposition is

that signature patterns are correlated to activities that an
intruder must to perform in order to gain access to a computer
system. An activity may consist of multiple atomic operations
that are mapped to certain primary patterns contained in a
signature pattern. Depending on the service being attacked,
the activities of an intruder may exhibit a wide range of
diverse data formats and/or functionalities; yet for each
service, the atomic operations should be limited in practice to
the set of operations (inputs) that are recognized by the
computer software implementing the service. This set is
further limited by the activities that will benefit the attacker.
Since the number of services running on a practical machine
is expected to be finite, the total number of primary patterns
should not exceed a finite upper bound. After reaching some
practical size, the number of primary patterns is unlikely to
increase significantly with incremental increases in the
number of signature patterns in the database.

Assuming that it is feasible to reconstruct signature
patterns from a limited number of primary patterns, the end
result should be smaller, more efficient hardware
implementations. We consider issues related to recomposing
signature patterns in section 4.1. To verify the premise that the
number of primary patterns is bounded in practice and that
this bound is not based on signature database size, we analyze
the incremental growth in primary patterns in section 4.2.

4.1 Signature Pattern Reconstruction
To benefit from the reduced size of the primary pattern

set, it is critical to find an efficient approach to express and
reconstruct the original signature patterns from primary
patterns. Such an approach can overcome the conflict between
the growing size of signature databases and limited hardware
resources, since newly added signature patterns can be
decomposed to and reconstructed from existing primary
patterns. In another words, the implementation achieves
scalability with respect to the number of signature patterns.

Compared to approaches that require more memory space
to store new patterns [9], [4], [14], [1], our novel approach
has the potential to achieve much better scalability. Compared
to approaches that require complex hash functions for pattern
condensing [8], [15], our approach is much simpler and more
feasible for on-board application.

The problem of efficiently reconstructing signature
patterns based on primary patterns resulting from our two-step
decomposition procedure is an area of further research.
Considering each primary pattern as a single graph node,
reconstructing a signature pattern is simply a process of
forming a directed graph for each signature. As illustrated in
Fig. 7, “dbms”, “repcat”, “alter”, “site” and “priority” are five
primary patterns obtained from examples of Fig. 4.

Figure 7 also illustrates the pattern reconstruction phase,

 0

 0.2

 0.4

 0.6

 0.8

 1

chat

exploit
m

isc

netbios
oracle
policy

rpc

shellcode
sm

tp

spyw
are-put

sql

w
eb-cgi

w
eb-client

w
eb-iis

w
eb-m

isc
w

eb-php
Total

N
or

m
al

iz
ed

 p
at

te
rn

 s
iz

e

Category of Patterns

Original Signature Pattern Set Size(Bytes)
Signature Pattern Set Size after Repetition Removal(Bytes)
Primary Pattern Set Size after Deep Decomposition(Bytes)

Figure 6. Variation of pattern sizes

 6

in which these primary patterns could be used to recover
original signature patterns. Figure 7(a-c) shows how original
signature patterns are reconstructed, while Fig. 7(d) shows
how a new signature pattern can be reconstructed from the
same set of primary patterns. This is the essential feature that
we are pursuing: increasing the variation of edges between
nodes rather than increasing the number of nodes, allowing
different signature patterns to be easily reconstructed.
Efficient methods for implementing this reconstruction in
hardware are an area of further study.

4.2 Statistical Verification
In order to verify our premise that the number of primary

patterns increases at a much slower rate compared to the rapid
growth of signature pattern databases, we extended our
analysis of pattern decomposition to determine the variations
across multiple versions of the Snort rule database. Since
these versions represent the evolution of the Snort database
over a period of several years, this experiment presents us a
clear view on the relationship between growth in the number
of signature patterns and growth in primary patterns.

We have analyzed the series of signature pattern sets
currently available, representing seven major public versions
of Snort rule databases. They include V2.1 to V2.4 and V2.6
to V2.8, which were released over a period from April 2005 to
October 2008. Although new types of rules were added to rule
databases to accommodate the continuous evolution of
network intrusion patterns, major parts of Snort rule databases
still follow an accumulating update policy. From V2.1 to V2.2,
V2.3 to V2.4 and V2.6 to V2.8, the corresponding types of
Snort rules were increased from 48 to 50, and later to 52.
However, the sizes of rule database inflated from 935Kb to
8.86Mb.

The number of pattern entities and the size of pattern sets
are two key parameters that we are interested in. With these,

we are better able to determine the growth relationship
between signature patters and primary patterns. By extracting
the “content” signature pattern rules from the databases, we
obtain the original signature pattern sets, summarized in Table
1. The size of the signature patterns grows from 31.1kB in
version 2.1 to 164.2kB in version 2.8. We then further
decomposed each set of original signature patterns down to
primary pattern sets following the two-step decomposition
procedure presented in Section 3.

Table 1. Summary of parameters of signature pattern set and
primary pattern set in different versions

Signature Pattern Set Primary Pattern Set
Version

Entities Size Entities Size
2.1 2,739 31.1 kB 2,432 11.7 KB
2.2 3,442 33.0 kB 2,501 11.7 KB
2.3 25,802 145.3 kB 5,856 32.9 KB
2.4 26,936 147.9 kB 5,867 32.9 KB
2.6 31,103 164.1 kB 6,482 37.0 KB
2.7 31,097 163.9 kB 6,525 36.9 KB
2.8 31,156 164.2 kB 6,523 37.0 KB

The plot in Figure 8 illustrates the incremental increase in
the size of the decomposed database as the number of
signature pattern entities increases. From the most recent set
of rules tested (version 2.8), the netbios content signature rule
set was selected, since it is the largest set of rules.

Because the rules do not contain a timestamp indicating
when they were added to the database, the rules were
randomized to minimize the effect of grouping within the file.
To generate the plot, one additional rule was added to the
database at each step, and the size of the database after
two-step decomposition was recorded. Thus, the graph shows
the incremental growth in the primary pattern set size as the
signature set size increases.

Clearly, as the number of signatures increases the growth
of the primary pattern set size appears to be decreasing rapidly.
The individual points on the plot show where the netbios
(signature pattern set size, primary pattern set size) pairs fall
on this plot.

Note that except for version 2.8, the points do not exactly
fall on this curve since the rules were incrementally added in
random order and some rules may differ between versions.
However, the points do show good agreement, justifying the
sampling procedure used to generate the plot.

While Figure 8 supports our premise that after reaching
some practical size, the number of primary patterns saturates
and is unlikely to increase significantly with incremental
increases in the number of signature patterns in the database,
we cannot say for certainty that this is indeed the case. Many
of the signature pattern sets in the snort database are too small
to have reached the point of saturation and the database as a
whole, being composed of many types of traffic, also have not
yet reached the point of saturation.

Despite this, the signature pattern sets all exhibited
sub-linear incremental growth when analyzed. Furthermore,

Figure 7. Signature Pattern Reconstruction

 7

even if the database never reaches the saturation point given
changes in service types, the overall reduction in size
achieved by our two-step decomposition procedure still
justifies the use of static signature pattern decomposition and
dynamic reconstruction.

5. Discussion
The main advantage of adopting the proposed

decomposition and reconstruction based pattern processing
technology is able to achieve a good scalability. As we have
successfully demonstrated a scalable way to reduce the
redundancy in signature pattern sets, the natural extension is
to investigate scalable approaches for real-time dynamic
updating and high-speed online signature matching. However,
as this is ongoing work, only some basic principles are
discussed in this section.

5.1 Scalable Pattern Update
Static update refers to the update mode that is

pre-scheduled. Due to its easy operation, static update is the
most conventional and popular mode used for the update of
signature patterns. However, static update is not conducive to
dynamic update requirements. Although manual operations
could provide certain flexibility, their impact is limited. Hence,
the efficiency of static update is questionable due the
increasing possibility of inaccurate results. Increasing the
frequency of update is not an ideal solution. If the update is
conducted too often, it causes unnecessary overhead to the
system since there is not new pattern to be added. In contrast,
it may be still not fast enough to handle a burst of signature
update. A more flexible and intelligent update scheme is
expected to overcome these drawbacks. Consequently, events
driven dynamic update is desired.

As illustrated in previous sections, we have relieved the
pressure on storage space requirements by decomposing the
signature into primary patterns. When a new signature has
been caught, the update operation is correspondingly
decomposed into two sub-tasks: i) adding new entry into the

primary pattern set if new primary pattern appears; and ii)
storing the relationships among primary patterns into the
relation database. Since new signature patterns do not
necessarily lead to the increase of primary patterns,
particularly when the set of primary patterns become “large”.
A new signature more likely implies a new relation among
existing primary patterns.

Unfortunately, it is non-trivial to describe the complex
association relations concisely and completely. We are
considering simplify the associated relations through graph
clustering algorithms, which cluster nodes according to
specific sharing features [11]. Hierarchical Dirichlet Process
with Hidden Markov State [16] is a possible solution for
further processing of these relations.

It is also a critical mission to develop a non-disruptive
updating strategy, since the normal operation of an intrusion
detection system should not be interrupted for signature
updating. A delayed write strategy could be an option. While a
new primary pattern is detected, the system only updates the
record of the bloom filter [5]. The pattern will be stored
temporarily in a buffer, and written into the database later
when the system is not so busy.

5.2 Dynamic Signature Matching
One advantage of our dynamic matching scheme is that

we do not need to conduct the “matching” operation bit-by-bit
as the current technologies. Once the incoming pattern has
been decomposed, the existence of the primary patterns is
detected through the Bloom Filters in parallel. Indexing by the
Bloom Filters, a set of “links” will be identified, which is
corresponding to association relationships among those
primary patterns.

Treating the Snort signature database as a complex graph,
we can re-model the problem as a path-finding problem. A
signature matching is finding an existing directional path
going through numbers of nodes in the graph.

Based on the above principle, we are designing a
two-phase fast parallel dynamic signature matching scheme
that takes advantage of the decomposition operation. Similar
to the dynamic scalable pattern update operation, first phase
will decompose the investigating patterns into primary
patterns. Then the Bloom Filters [5] checks whether these
patterns match the signature primaries in the Snort signature
sets. If the result indicates there are multiple attack/intrusion
primary patterns, we will try to walk though those nodes in
the graph to detect the existence of a path.

6. Conclusion

In this paper, we proposed a novel two-step pattern
decomposition scheme to remove hidden redundancies in the
Snort signature database. Signature patterns are decomposed
into primary patterns that can be stored along with their
association relationships. Our approach has been validated
through detailed analysis of multiple versions of the Snort
signature database. In particular, our results suggest that
increases in the number of signature patterns do not
necessarily lead to commensurate increases in the number of

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5000 10000 15000 20000 25000

P
rim

ar
y

P
at

te
rn

 S
et

 S
iz

e
(B

yt
es

)

Number of Signature Patterns

Primary Pattern Set Size
Netbios Rules Releases

Figure 8. The growing trends of pattern entities between

different versions.

 8

primary patterns. This technique relieves the resource
demands on hardware implementations. In addition, it is
promising towards a self-adaptive network infrastructure.

Currently we are extending our work to a real hardware
application – a scalable dynamic pattern update and pattern
matching for real time distributed intrusion detection
application. Section 5 has presented the rationale of our
ongoing efforts. One of the major challenges is how to handle
the complex association relationship in a concise but accurate
manner. Successful solution of this problem would not only
benefit signature pattern based network intrusion detection, it
will also benefit general complex pattern matching/updating
applications.

Reference
[1] M. Aldwairi, T. Conte, and P. Franzon, "Configurable string

matching hardware for speeding up intrusion detection,"
SIGARCH Comput. Archit. News 33, 1, Mar. 2005.

[2] M. Attig and J. W. Lockwood, “SIFT: Snort Intrusion Filter for
TCP,” 13th Annual Proceedings of Hot Interconnects (HotI-13),
Stanford, CA, August 17-19, 2005.

[3] Z. Baker and V. Prasanna, "A Methodology for the Synthesis of
Efficient Intrusion Detection Systems on FPGAs," In
Proceedings of the Twelfth Annual IEEE Symposium on Field
Programmable Custom Computing Machines 2004 (FCCM '04),
2004

[4] J. C. Bispo, I. Sourdis, J. M. Cardoso, and S. Vassiliadis,
“Regular Expression Matching for Reconfigurable Packet
Inspection,” in Proc. IEEE Int’l Conference on Field
Programmable Technology (FPT’06), Bangkok, Thailand, Dec.
13-15, pp. 119–126, 2006.

[5] A. Broder and M. Mitzenmacher, "Network Applications of
Bloom Filters: A Survey," Internet Mathematics 1 (4): 485–501,
2005.

[6] Y. H. Cho and W.H. Mangione-Smith, “Programmable
hardware for deep packet filtering on a large signature set,”
Workshop on Architectural Support for Security and Anti-Virus,
2004

[7] C. R. Clark and D. E. Schimmel, “Scalable Parallel
Pattern-Matching on High-Speed Networks,” in IEEE
Symposium on Field-Programmable Custom Computing
Machines, 2004.

[8] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J.W.
Lockwood, "Deep Packet Inspection using Parallel Bloom
Filters," IEEE Micro, Vol. 24, No. 1, Jan 2004, pp. 52-61.

[9] R. Franklin , D. Carver, B. L. Hutchings , “Assisting Network
Intrusion Detection with Reconfigurable Hardware,”
Proceedings of the 10th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, p.111,
September 22-24, 2002.

[10] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs, 1970. Bell System Tech.

[11] B. Long, Z. Zhang, P. S. Yu and T. B. Xu, "Clustering on
Complex Graphs," Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago,
Illinois, USA, July 13-17,2008.

[12] E. P. Markatos, S. Antonatos, M. Polychronakis, and K. G.

Anagnostakis, “Exclusion-based signature matching for
intrusion detection,” in IASTED International Conference on
Communication and Computer Network (CCN’02), 2002.

[13] H. Song, T. Sproull, M. Attig, and J. Lockwood, "Snort
offloader: A reconfigurable hardware NIDS filter," In
Proceedings of 15th International Conference on Field
Programmable Logic and Applications (FPL), Tampere,
Finland, Aug. 2005.

[14] I. Sourdis, J. Bispo, J. M. Cardoso, and S. Vassiliadis, "Regular
Expression Matching in Reconfigurable Hardware," J. Signal
Process. Syst. 51, 1 (Apr. 2008), 99-121, 2008

[15] D. C. Suresh, Z. Guo, B. Buyukkurt and W.A. Najjar,
“Automatic compilation framework for Bloom filter based
intrusion detection,” Int. Workshop On Applied Reconfigurable
Computing (ARC 2006) Delft, The Netherlands, March 1-3,
2006.

[16] T. Xu, Z. Zhang, P. Yu, and B. Long, “Evolutionary Clustering
by Hierarchical Dirichlet Process with Hidden Markov State,”
IEEE International Conference on Data Mining (ICMD 2008),
Pisa, Itali, Dec. 15 – 19, 2008.

[17] Snort Team, “Snort Users Manual 2.8.3,"
http://www.snort.org/docs/snort_manual/, 2008

[18] H. Chen, D. H. Summerville, and Y. Chen, “Two-Stage
Decomposition of IDS Rules towards Efficient Hardware
Implementation,” Technical Report, Dept. of Electrical &
Computer Engineering, SUNY - Binghamton, Jan. 2009.

