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Abstract∗ 

Deployed in a hostile environment, individual nodes of 
a wireless sensor network (WSN) could be easily 
compromised by the adversary due to the constraints such as 
limited battery lifetime, memory space and computing 
capability. It is critical to detect and isolate the compromised 
nodes in order to avoid being misled by the falsified 
information injected by the adversary through compromised 
nodes. However, it is challenging to secure the flat topology 
networks efficiently because of the poor scalability and high 
communication overhead. On top of a hierarchical WSN 
architecture, in this paper we proposed a novel scheme 
based on weighted-trust evaluation to detect malicious 
nodes. The hierarchical network can reduce the 
communication overhead between sensor nodes by utilizing 
clustered topology. Through intensive simulation, we 
verified the correctness and efficiency of our detection 
scheme.  

1. INTRODUCTION 

Recent advancements in micro-electro-mechanical 
systems (MEMS) and low power and highly integrated 
electronic devices have led to the development and wide 
application of wireless sensor networks [5], [14], [16]. 
Wireless sensor networks consist of very small devices, 
called sensor nodes, that are battery powered and are 
equipped with integrated sensors, a data-processing unit, a 
small storage memory, and short-range radio communication 
[17]. Typically, these sensors are randomly deployed in the 
field. They form an unattended wireless network, collect 
data from the field, partially aggregate them, and send them 
to a sink that is responsible for data fusion. Sensor networks 
have applications in emergency-response networks, energy 
management, medical monitoring, logistics and inventory 
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management, and battlefield management. 
In contrast to traditional wireless networks, special 

security and performance issues have to be carefully 
considered for sensor networks [21]. For example, due to the 
unattended nature of sensor networks, an attacker could 
launch various attacks and even compromise sensor devices 
without being detected. Therefore, a sensor network should 
be robust against attacks, and if an attack succeeds, its 
impact should be minimized. In other words, compromising 
a single sensor node or few sensor nodes should not crash 
the entire network.  

Another concern is about energy efficiency. In a WSN, 
each sensor node may need to support multiple 
communication models including unicast, multicast, and 
broadcast. Therefore, due to the limited battery lifetime, 
security mechanisms for sensor networks must be energy 
efficient [19]. Especially, the number of message 
transmissions and the amount of expensive computation 
should be as few as possible.  

In fact, there are a numbers of attacks an attacker can 
launch against a wireless sensor network once a certain 
number of sensor nodes have been compromised. In 
literature, for instance, HELLO flooding attacks [9], sink 
hole attacks [9], Sybil attack [12], black hole attack [15], 
worm hole attacks [6], or DDoS attacks [4] are options for 
an attacker. These attacks lead to anomalies in network 
behaviors that are detectable in general. There are some 
reported solutions to detect these attacks by monitoring the 
anomalies [9]. 

In this work, we addressed an even trickier scenario. 
When an adversary has gained control over certain sensor 
node(s), he/she does not launch direct attacks against the 
network. Since once the misbehavior is detected, the 
operator may forsake these compromised nodes and turn to 
other data sources. Instead, the attacker let those 
compromised nodes behave normally but report false data to 
the data collector. The purpose of the adversary is to mislead 
the operator with falsified data. This may lead to more 
serious consequences; for instance, in the battlefield a false 
report regarding the operations of the enemy may lead to 
extra casualties. 



 

In this paper, we proposed a weighted-trust evaluation 
(WTE) based scheme to detect the compromised nodes by 
monitoring its reported data. It is a light-weighted algorithm 
that would incur little overhead. Considering the scalability 
and flexibility, hierarchical network architecture is adopted. 
Through intensive simulation, we verified that our WTE 
scheme detects misbehaved nodes accurately with very short 
delay. 

The rest of the paper is structured as follows. In section 
2, we briefly review the related malicious WSN node 
detection approaches. Section 3 describes our hierarchical 
network structure and the principle of our WTE based 
malicious node detection algorithm. The experiment setup 
and simulation results are presented in Section 4. Section 5 
wraps up this paper with a discussion about efficiency and 
implementation issues of our solution. 

2. RELATED WORK 

Wireless sensor networks are often deployed in a hostile 
environment and work without human supervision, 
individual node could be easily compromised by the 
adversary due to the constraints such as battery lifetime, 
smaller memory space and limited computing capability. 
Security in WSN has been one of the most important topics 
in the WSN research community [1], [8], [22]. Here we only 
briefly review the reported works closely related to 
malicious node detection due to the limited space.  

It is critical to detect and isolate the compromised nodes 
in order to avoid being misled by the falsified information 
injected by the adversary. Luo et al. [11] have pointed out 
that infrastructureless ad hoc networks rarely have a real 
defense mechanism against most of the attacks, including 
both outsider and insider attacks such as compromised node 
attacks. They suggested a system design like this – if one 
node is named trusted by certain number of its neighboring 
nodes, that particular node is trusted both locally and 
globally. However, since the system uses a minimum 
number of trusted nodes it is not so applicable to sensor 
networks where the nodes are randomly spread out. In other 
words, it is possible that under certain conditions nodes 
cannot find the minimum number of neighboring nodes in 
order to be named trusted.  

One solution for locationized anomaly detection in a 
group of nodes is suggested in [4]. Every node gets the 
localization information from the neighboring nodes and 
also computes the localization information itself and 
compares these two values. If the difference is small enough, 
that node decides there is no adversary around causing the 
localization problem in its location. 

Researchers also suggested detecting malicious node 
using signal strength [7]. The idea here is to depend on 
neighborhood monitoring of the nodes. Every sensor node 

monitors its surrounding and whenever a transmission signal 
is detected by a sensor node, it would check if the signal 
strength of the transmitting node is compatible with the 
originator node's geographical position. Even though this 
approach is applicable, it is not efficient in many ways. The 
large overhead needed for transmitting data is a problem 
both for sending and processing. Also it is not energy-
efficient since all nodes are monitoring and processing data 
all the time. 

The work reported in [3] is the most close to our 
approach. They proposed to detect malicious node by 
comparing its output with an aggregation value. Inspired by 
the Byzantine problem, our approach is more 
straightforward and incurs much less overhead since there is 
no expensive calculation involved.  

Karlof and Wagner [9] suggested to construct efficient 
random sampling mechanisms and interactive proofs, then a 
user can verify that the answer given by the aggregator is a 
good approximation of the true value even when a fraction 
of the sensor nodes are compromised. Furthermore, in other 
fields Byzantine program is considered as an important 
issue. For example, in cognitive radio network, Byzantine 
problem in spectrum sensing is also investigated [2]. 

3. WEIGHTED TRUST EVALUATION TECHNOLOGY 

3.1 Network Architecture 

Figure 1 demonstrates the network architecture in which 
our weighted-trust evaluation scheme is implemented. It is a 
three-layer hierarchical network architecture, which consists 
of three types of sensor nodes similar to the architecture 
utilized in [20]: 

 Low-power “Sensor Nodes (SN)" with limited 
functionality;  

 Higher-power “Forwarding Nodes (FN)" that forward 
the data obtained form sensor nodes to upper layer;  

 “Access Points (AP)", or called “Base Stations (BS)” 
that route data between wireless networks and the 
wired infrastructure. 

In contrast to sensor nodes in flat ad hoc sensor 
networks, sensor nodes in the lowest layer of this 
hierarchical network do not offer multi-hop routing 
capability to its neighbors. A number of Sensor Nodes (SNs) 
are organized as a group and controlled by a higher layer 
node, the Forwarding Node (FN). Therefore, each sensor 
node only communicates with its FN and provides 
information such as sensor reading to its FN. FNs are 
located on the second layer atop the sensor node layer and 
offers multi-hop routing capability to SNs or other FNs. We 
assume the FNs are trustful and won’t be compromised. We 
also assume the APs are trustful, otherwise the adversary 
can inject any data without been detected.  
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Figure 1. Architecture of the hierarchical WSN. 

 

Each FN has two wireless interfaces, one communicates 
with lower layer nodes (SNs), which belong to its 
management, and the other connects to higher layer nodes – 
Access Points (APs).  

APs are located on the highest layer in a wireless 
network, and have both wireless and wired interfaces. APs 
provide multi-hop routing for packets from SNs and FNs 
within radio range, in addition to routing data to wired 
networks. APs also have the functionality of forwarding 
control information from wired networks to FNs and SNs. 

This hierarchical network can also be considered as a 
distributed information aggregation system. SNs gather 
information and report to its FN. Based on the information 
collected from SNs, FNs compute the aggregation result and 
commit the information to APs. However, since SNs may be 
compromised and report fake information, it is important for 
FNs to verify the correctness of the information collected 
from SNs. Similarly, it is also desired that APs possess the 
ability of verifying the committed information. Table 1 
summarizes the symbolic notation used throughout this 
paper.  
 

Table 1. Symbolic notations 

Symbol Meaning 
SN Sensor Node 
FN Forwarding node 
AP Access point 
BS Base station 
Wn Weight range 
E Aggregation result 
Un A sensor node’s output 
θ Weight penalty ratio 
rn The ratio of sensor nodes in a cluster 

sending different report to the FN 
 

3.2 Malicious Nodes Detection 
As mentioned earlier, sensor nodes in sensor networks 

are usually deployed in hostile environments such as 
battlefields. Consequently a sensor node may be 
compromised or out of function and then provides wrong 
information that may mislead the whole network. This 
problem is called as the Byzantine problem. For example, a 
compromised sensor node (malicious node) can constantly 
report incorrect information to higher layers. The aggregator 
(FN or AP) in higher layer may make a wrong aggregation 
result due to the effect of the malicious node. It is therefore 
an important issue in sensor networks to detect malicious 
nodes in spite of such Byzantine problem. 

 
 

 
Figure 2. A weight based network for  

hierarchical sensor network. 

As the first step toward the solution to the problem, we 
model it into a weight-based network as shown in Figure 2. 
The network is adapted in the architecture between a group 
of sensor nodes and their forwarding node. As shown in the 
figure, a weight W is assigned to each sensor node. The FN 
collects all information provided by SNs and calculates an 
aggregation result using the weight assigned to each SN: 

∑
=

×=
N

n
nn UWE

1                                                (1) 

Where E is the aggregation result and Wn is the weight 
ranging from 0 to 1. An essential concern is about the 
definition of sensor node’s output Un. In practice, the output 
information Un may be “false” or “true” information or 
continues numbers such as temperature reading. Thus the 
definition of output Un is usually depending on the 
application where the sensor network is used. 

The following issue is to update the weight of each 
sensor node based on the correctness of information 
reported. Updating the weight of each sensor node has two 
purposes. First, if a sensor node is compromised (becomes a 
malicious node) and frequently sends its report inconsistent 
with the final decision, its weight is likely to be decreased. 
Then if a sensor node’s weight is lower than a specific 



 

threshold, we can identify it as a malicious node. Second, 
the weight also decides how much a report may contribute to 
the final decision. This is reasonable since if the report from 
a sensor node tends to be incorrect, it should be counted less 
in the final decision. 

This logic is reflected in the following equation. 

⎩
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=
elsewiseW
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                  (2) 

Where θ is a weighted penalty ratio. When the output of 
a sensor node s is not consistent with the final result, its 
weight is reduced by the weight penalty θ multiplying rn. 
The number rn is defined as:  

smrn =                                                       (3) 

Where m is the number of nodes in the cluster sending 
different report to the FN, and s is the total number of nodes 
in the cluster under the same FN.  

An optimal θ value is essential in our WTE mechanism 
since it affects the detection time and the accuracy of the 
algorithm. In addition, due to various definitions of output 
information (Un) as mentioned above, the consistence 
determination, which decides whether a node’s output is 
consistent with the final result, is also application-
dependent. For example, it is easy to determine the 
consistence for a “false” or “true” output. However, for a 
continuous number of Un like temperature reading, the 
probability distribution function could be used to determine 
the consistency of the output information from all sensor 
nodes.  

Furthermore, a normalization operation as described in 
the following equation is used to guarantee the weight kept 
in the range from 0 to 1. 

)max(/ ,1 Nnn WWWW L=                              (4) 

Based on updated weights, the forwarding node is able 
to detect a node as a malicious node if its weight is lower 
than a specific threshold. 

This detection algorithm can be widely used in different 
types of sensor networks. For example, the number of sensor 
nodes can vary in the algorithm, which makes it suitable for 
very large and very small networks. However, the 
description of sensor node output and updating scaling 
factor which are dependent on the applied application need 
to be determined carefully in order to achieve efficient and 
high accuracy detection. 

4. SIMULATION EXPERIMENTAL RESULTS 

4.1 Simulation Setups 

Intensive simulation experiments using MatLab were 
conducted to evaluate the effectiveness of our WTE based 
malicious nodes detection algorithm. In the simulation, the 
detection algorithm is deployed at a forwarding node to 
monitor all sensor nodes under the control of the forwarding 
node, and the detection is performed every cycle, which is a 
basic time unit of the simulation. For convenience, the 
output of sensor node are either as “1” (alarm) or “0” (no 
alarm). All simulation results were recorded after the system 
model reached steady state.  

We assume that a sensor node is compromised 
randomly by the attacker at a specific probability every 
cycle, referred to as the attack probability, and then this 
malicious node keeps reporting the opposite information 
after compromised. For example, a malicious node always 
sends “alarm” while the aggregation result computed from 
other sensor nodes is “no alarm”. Meanwhile, a normal 
sensor node may also send alarm when real alarm occurs. 
This case also occurs randomly at a different alarm 
probability. 
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Figure 3. An example of sensor nodes deployment 

 in the simulation. 
 
Under the assumption that sensor nodes are densely 

deployed to monitor certain target. In contrast to malicious 
nodes, if a normal node started sending alarm, its neighbor 
nodes would also start to send alarm after a short delay time. 
Furthermore, normal alarming nodes will stop sending 
alarms after a certain cycles. The node, which is detected or 
misdetected as a malicious node, is inactivated from the 
whole processing. The detection is terminated after 200 
cycles or more than 25% of all nodes are detected as 
malicious nodes. Each result is calculated form an average 
over 1000 independent simulations. 

Figure 3 shows an example of sensor nodes deployment 
in the simulation environment. Sensor nodes are uniformly 
deployed in a square plane. A sensor node may be a 
malicious node, a normal node, or a normal node that 



 

generating alarms. 
Three metrics are defined to evaluate the performance 

of the detection algorithm. The response time, which is the 
average detection cycles of correctly detected malicious 
nodes shows how fast malicious nodes can be detected. The 
Detection rate, which is the ratio of the number of detected 
malicious nodes and the number of total malicious nodes, 
indicates the effectiveness of our scheme. The third measure 
is misdetection ratio, which is the ratio of misdetected nodes 
to all detected nodes including correctly detected and 
misdetected nodes. 

Actually these misdetected nodes consist of two parts: 
the number of normal nodes being treated as malicious ones 
and the number of malicious node being treated as normal 
nodes. For such a malicious node detection scheme, short 
response time, high detection rates are desired as well as a 
low misdetection ration. We studied the three metrics 
through simulation using different parameters. 

4.2 Weight Penalty 
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(a) Response Time vs. Penalty Weights 
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(b) Detection Accuracy vs. Penalty Weights 

Figure 4. Impact of various Penalty Weights  
on system performance. 

The first simulation is to find an optimal weight penalty 
for the detection algorithm. The attack probability and alarm 

probability are both 0.04. The number of cycles that normal 
nodes send alarms and wait to stop alarms is 10 cycles. A 
threshold (0.4) is also set for detection determination as 
mentioned earlier. 

Figure 4 illustrates the results with weight penalties 
varying from 0.02 to 1.0 the number of sensor nodes are 
change from 100 nodes to 400 nodes. The increasing weight 
penalty reaches a shorter response time, and improves the 
detection ratio. Intuitively the penalty value reveals the 
sensitivity of our detection results against the variation in 
reported data. However, the misdetection ratio also increases 
as weight penalty increasing, especially after the penalty 
ratio becomes 0.08 and greater. Considering the tradeoffs 
among response time, detection rate and misdetection rate 
comprehensively, it is reasonable to set the weight penalties 
values in the range of (0.04-0.1). 

4.3 Scalability 

Using weight penalties 0.1 and 0.05, we further 
evaluated the algorithm with various numbers of nodes as 
shown in Figure 5. The parameters for this experiment are 
the same as the first experiment.  
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(a) Response Time vs. Number of Nodes 
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(b) Detection Accuracy vs. Number of Nodes 

Figure 5. Illustration of the system scalability.  



 

The response time, detection, and misdetection ratios 
are pretty stable while we increased the number of nodes 
from 9 to 900, particularly when the number of nodes is 
greater than 64. This result implies that our WTE based 
detection algorithm has very nice scalability as it works well 
under variant network sizes without losing much 
performance. Especially if the size of network becomes 
large enough, for example, greater than 64, the network size 
almost has no influence on the performance. 

Figure 5 also demonstrates the impact of the selection 
of penalty weight θ. When a larger value is chosen (θ = 0.1), 
the system can detect malicious node faster and more 
accurately comparing to using smaller value (θ = 0.05) as 
shown in Fig. 5(a) and the upper two curves in Fig. 5(b).  

However, such a faster response is achieved with the 
cost of higher misdetection rate as shown by the lower two 
curves in Fig. 5(b). This verifies the tradeoff among 
detection performance and misdetection ratio, and shows 
that the system operator can adjust the sensitivity of the 
penalty weight parameter θ according to the requirements in 
different applications. 

4.4 Attack Probability 

Finally, the performance at various attack probabilities 
is evaluated with weight penalty 0.05 for 100 nodes and 400 
nodes cases. The attacking probability is defined as the ratio 
of malicious nodes among total number of sensor nodes in 
the network that is assumed could be compromised. It 
describes the intensity of false data that the adversary injects 
into the network.  

As indicated in the research of Byzantine General 
Problem [10], when the number of malicious nodes is larger 
than the number of legitimate nodes, the loyalty generals 
cannot figure out who is the rebelled one; Furthermore, 
when there is not any authentication mechanism applied, the 
number of rebel generals has to be less than 1/3 of the total 
number of generals if the loyal generals want to reach an 
agreement on correct activity.  

In our problem, similarly, if the number of 
compromised nodes is larger than 25% of the total nodes, 
we may not be able to detect the “bad guys” accurately. The 
upper bond of the amount of compromised nodes in our 
simulation is 30% of the total number of nodes. Therefore, 
the attack probability of 1 implies that there are 25% of the 
sensor nodes have been compromised.  

We evaluated the performance using the response time, 
detection, and misdetection ratios as shown in Figure 6. The 
increasing attack probability means that there are more 
nodes being compromised and falsified data are inserted.  

As illustrated in Fig. 6(a), the response time slightly 
increases with attack probability increasing. This makes 

sense that as more malicious nodes appear, the aggregated 
data is affected more by the falsified data. While there are 
only small changes observed in detection ratios, the 
misdetection ratio decreases largely as the growth of the 
attack probabilities, as shown in Fig. 6(b). This is partially 
due to the increasing number of malicious nodes that makes 
the false positive rate smaller.  

Based on the results reported above, the response time, 
detection, and misdetection ratios are stable in the cases 
large number of nodes and high compromise probability. It 
demonstrates that the proposed detection algorithm is 
efficient for both large networks and high attack probability 
conditions. The experiment results also show that the 
performance of the detection algorithm is largely dependent 
on parameters studied above. 
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(a) Response Time vs. Compromise Probability 
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(b) Detection Accuracy vs. Compromise Probability 

Figure 6. System performance under different 
compromise probabilities.  

5. CONCLUSIONS 
In this paper, we proposed a novel weighted-trust 

evaluation based scheme to detect compromised or 
misbehaved nodes in wireless sensor networks. The basic 
idea is that FNs give trust values to each of the nodes in the 



 

cluster, if a node sends meaningless/wrong information 
which implies that a node has been compromised or out is of 
function, the FN directly lowers that node’s trust level. It is 
much easier and less complex to keep track of the nodes and 
it is harder to compromise most of the node unless an 
attacker compromises the base stations.  

With a very good scalability, our approach is applicable 
to both small size WSNs and WSNs with larger number of 
nodes. The only difference to apply it to larger size WSNs is 
to increase the number of FNs. Essentially, it could be 
treated as a node-clustering problem. 

Although there are couples of research works reported 
addressing the malicious node detection problem in WSNs, 
it is difficult to compare the performance between each 
other. As introduced in section 2, the design assumptions 
and the experiments environments are very different. 
Particularly, lack of a comparable benchmark makes it 
meaningless to compare the results, i.e. detection rate.  

Our approach is based on the assumption that base 
stations are trusted. In fact, if the adversary can gain control 
over the base stations, he/she can do any possible attack 
against the WSN. This is an interesting open problem, 
however it is beyond the scope of this paper. Another 
critical assumption is that the majority of the sensor nodes 
are working properly. If the number of compromised nodes 
is more than the number of normal nodes, the legal nodes 
will be reported as malicious one and being isolated. 

Actually, in this paper we have reported merely some 
preliminary results, which verified the correctness and 
effectiveness of our solution. More detailed analysis 
regarding the performance of our scheme will be studied in 
the ongoing research and more questions to be answered. 
For instance, how is the impact of distribution of the 25% 
malicious nodes against the performance of weighted-trust 
evaluation? What is the behavior of our detection scheme if 
the ratio of malicious nodes beyond 1/3 of the sensor nodes? 

In our progressive efforts, we are studying the 
deployment of FNs and the influence of different densities 
of FNs on the performance. In addition, we are setting up a 
testbed consisting of more than 64 sensor nodes. That may 
allow us to investigate the differences between the 
simulation experiments and what happens in real world 
when real physical nodes are in use. 
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