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Abstract—A typical method to obtain valuable information is
to extract the sentiment or opinion from a message. Machine
learning technologies are widely used in sentiment classification
because of their ability to “learn” from the training dataset to
predict or support decision making with relatively high accuracy.
However, when the dataset is large, some algorithms might not
scale up well. In this paper, we aim to evaluate the scalability of
Naı̈ve Bayes classifier (NBC) in large datasets. Instead of using a
standard library (e.g., Mahout), we implemented NBC to achieve
fine-grain control of the analysis procedure. A Big Data analyzing
system is also design for this study. The result is encouraging in
that the accuracy of NBC is improved and approaches 82% when
the dataset size increases. We have demonstrated that NBC is able
to scale up to analyze the sentiment of millions movie reviews
with increasing throughput.

Keywords—Cloud computing, Big data, Polarity mining, senti-
ment classification

I. INTRODUCTION

Data on the web has been explosively increasing in the
past few decades. The ability to automatically mine useful
information from massive data has been a common concern
for organizations who own large datasets. The MapReduce
framework [1] is commonly used to analyze extremely large
datasets such as tweets collections, online documents or large-
scale graphs [2] [3] [4]. The framework provides a simple
and powerful interface for programmers to solve large-scale
problems using a cluster of commodity computers.

A typical method to obtain valuable information is to
extract the sentiment or opinion from a message. Sentiment
classification is useful for the business consumer industry or
online recommendation systems. For example, online product
reviews are usually analyzed by manufacturers to decide what
products they will produce in the future to reduce risk. Ma-
chine learning technologies, such as Naı̈ve Bayes and support
vector machine, are widely used in sentiment classification [5]
[6] [7] [8] [9] [10] because of their ability to “learn” from
the training dataset to make decisions with on-line data, to
predict salient features, and to provide real-time analysis with
relatively high accuracy.

Naı̈ve Bayes (NB) classifiers are widely used in informa-
tion fusion. Current trends in data fusion include machine
analytics for big data [11], use of NB for cloud computing
applications of simultaneous target tracking and classification

[12], and robotics control [13]. Techniques for big data analysis
are needed imaging, text, and cyber analysis which includes
scalable and elastic learning methods [14].

When the datasets are large, some information fusion
algorithms might not scale up well. For example, if an algo-
rithm needs to load data into memory constantly, the program
may run out of memory for large datasets. One promising
approach is to utilize and adapt MapReduce for some machine
learning technologies to resolve these large-scale problems.
Apache Mahout1 is a machine learning library for clustering,
classification and filtering, implemented on top of Hadoop2,
the open source version of MapReduce. Although there are
some machine learning algorithms implemented in Mahout,
it is still helpful to study how to convert a machine learning
algorithm to a Hadoop program and to optimize the algorithm
scalability in large datasets.

In this paper, we aim to evaluate the scalability of Naı̈ve
Bayes classifier (NBC) in large-scale datasets. Instead of using
Mahout library, we implemented NBC to achieve fine-grain
control of the analysis procedure for a Hadoop implementation.
The result is encouraging in that the accuracy of NBC is
improved and approaches 82% when the dataset size increases.
We have demonstrated that NBC is able to scale up to ana-
lyze the sentiment of millions movie reviews with increasing
throughput.

The rest of this paper is organized as follows. Section II
introduces the background of this study. Section III illustrates
the system we design to analyze big datasets. The system
is built on top of Hadoop basic components. The details of
implementing Naı̈ve Bayes classifier are addressed in section
IV. Section V shows the experiment setup and results. Finally,
we conclude in Section VI.

II. BACKGROUND

A. MapReduce

The MapReduce framework has been used to process large
datasets since the original paper [1] was published. Google’s
clusters process more than 20 Petabytes of data every day by
running one hundred thousand MapReduce jobs on average
[15]. Using this framework, programmers only need to focus

1http://mahout.apache.org
2http://hadoop.apache.org/



on problem solving versus implementation. The MapReduce
runtime system will take care of the underlining parallelization,
fault tolerance, data distribution and load balance. Google file
system (GFS) is a distributed file system that MapReduce uses
for the storage of large amount of data across inexpensive
hard drives. The availability and reliability of underlining
unreliable hardware are provided by replicating file blocks and
distributing them across different nodes.

A MapReduce job consists of at least a map function and
a reduce function, called mapper and reducer respectively. The
mapper takes as input a pair of key/value and produces a set of
key/value pairs. All key/value pairs are sorted by their keys and
sent to different reducers according to the key. Each reducer
receives a key and a set of values that has the same key. This
makes MapReduce an excellent tool for computations that need
sorting or counting. The map and reduce functions are left to
the user to implement their desired functionalities to process
each key/value pair.

Hadoop is an open source implementation of the MapRe-
duce framework that is commonly used by academic and in-
dustry for Big Data analysis. In the core of Hadoop are Hadoop
MapReduce and Hadoop Distributed File System (HDFS), the
open source counterpart of GFS. There are also a bundle
of Hadoop-related projects supported by Apache Foundation,
such as HBase (database), Hive (data warehouse), Pig (high-
level data-flow), Zookeeper (high-performance coordination)
and Mahout (scalable machine learning and data mining).
Therefore, we choose Hadoop as the develop platform to study
the scalability of Naı̈ve Bayes classifier.

B. Naı̈ve Bayes Classification

Naı̈ve Bayes has proven to be a simple and effective
machine learning method in previous text classification studies.
It is even optimal in some cases [16] [17].

Suppose there are m possible classes C = {c1, c2, · · · , cm}
for a domain of documents D = {d1, d2, · · · , dn}. Let W =
{w1, w2, · · · , ws} be the set of unique words, each of which
appears at least once in one of the documents in D. The
probability of a document d being in class c can be computed
using Bayes’ rule:

P (c|d) = P (c)P (d|c)
P (d)

. (1)

Since P (d) is a constant for the known data set size, the
denominator of (1) is typically not calculated for maximum a
posteriori (MAP), common for parametric statistical problems.
A Naı̈ve Bayes model assumes that each term or word, wk, in
a document occurs independently in the document given the
class c. Therefore, equation (1) becomes:

P (c|d) ∝ P (c)

nd∏
k=1

[P (wk|c)]tk ,

where nd is the number of unique words in document d and
tk is the frequency of each word wk. To avoid floating point
underflow, we use the equivalent equation:

logP (c|d) ∝ logP (c) +

nd∑
k=1

[tk logP (wk|c)] . (2)
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Fig. 1. A simple system to process data using Naı̈ve Bayes classifier on
Hadoop.

The class of d is decided as the class, c∗, which maximizes
logP (c|d) in equation (2).

c∗ = argmaxc∈C

{
logP (c) +

nd∑
k=1

[tk logP (wk|c)]

}
(3)

When applying Naı̈ve Bayes classifier (NBC), we can
estimate P (c) and P (wk|c) as:

P̂ (c) =
Nc

N
and P̂ (wk|c) =

Nwk∑
wi∈W Nwi

where N is the total number of documents, Nc is the number
of documents in class c and Nwi is the frequency of a
word wi in class c. With these estimations, the calculation
of the right hand side of equation (3) is essentially a counting
problem. This makes MapReduce a suitable framework for the
implementation of NBC in large-scale datasets.

III. SYSTEM DESCRIPTION

On top of Hadoop MapReduce and HDFS, we designed a
Big Data analyzing system to evaluate whether Naı̈ve Bayes
classifier can scale up to classify millions of movie reviews.
This section explains the four modules of the system and
important steps of the work flow.

A. System Components

As shown in Fig. 1, the system adds four modules on top of
Hadoop: the work flow controller (WFC), the data parser, the
user terminal and the result collector. We design this system
based on our need to generate different sizes of datasets and
test the Hadoop program on them respectively. We also need
to perform ten-fold cross validation for accuracy computation
that requires calling the same program multiple times.

Our raw data comes from large sets of movie reviews
collected by research communities. The data parser is re-
sponsible to produce the desired data format to assist the
program to efficiently process each review. The user submits
jobs through the user terminal. Experiment results are also
accessible through the user terminal after the result collector
finishes collection. The work flow controller manages the work
flow of the whole system, which includes:



1) Instruct data parser of the format of input data and
the desired output;

2) Transmit source code to the name node and execute
Hadoop jobs; and

3) Trigger the result collector to collect computing re-
sults once they are available on Hadoop Distributed
File System (HDFS).

B. Dataset

In our experiments, we use two datasets: the Cornell
University movie review dataset3 and Stanford SNAP Amazon
movie review dataset4. The Cornell dataset has 1000 positive
and 1000 negative reviews, which makes P (c) in equation (3)
0.5 for both class. A review’s class is then decided by the
frequency of each word that appears in the model obtained
from training dataset.

The Amazon movie review dataset is organized into eight
lines for each review, with additional information such product
identification (ID), user ID, profileName, score, summary etc.
Since it is a 5 points rating system, we simply divide all
reviews into positive and negative subset using 3.0 as a
threshold. We consider unigrams only for the Naı̈ve Bayes
model.

C. Overall Work Flow

1) Pre-processing Raw Dataset: The data parser first pre-
processes all reviews into a common format. After the process-
ing, each review is one line in the dataset, with document ID
and sentiment (positive or negative) prefixed. This is useful
because by default MapReduce splits the input files by line
and passes each line to a mapper. To pre-process a raw review
from the dataset, we simply delete unwanted context such
as punctuation, special symbols and numbers. We did not
introduce a lexicon or vocabulary to filter out meaningless
words.

Table I lists four sample reviews after pre-processing. Each
review is one line in the dataset file. We use two prefixed
tags: sentiment of either positive or negative and document
ID, which is a number. The two tags are both surrounded by
colons to help the program differentiate them from review text.
Note that there are some isolated single letters resulting from
the remove of punctuation. For example, the “p.s.” in review
ID 41 becomes “p s ” after removing the two dots. The pre-
processing procedure didn’t remove these meaningless letters.
All pre-processed reviews are stored in the name node as a
repository, waiting for further sampling.

2) Preparing Input Datasets: The WFC and the data parser
work together to prepare input datasets for all test trials. When
the WFC requests a dataset with certain size, the data parser
extracts from the repository the desired number of positive
reviews, as well as the same amount of negative reviews. The
result is an input dataset of two equal-size classes of movie
reviews. After a dataset is generated, the data parser divides it
into 10 subsets for the convenience of ten-fold cross validation.
The WFC then moves them to the right locations in HDFS for
every trial and calls the Hadoop NBC program.

3http://www.cs.cornell.edu/people/pabo/movie-review-data/
4http://snap.stanford.edu/data/web-Amazon.html

TABLE I. SAMPLE REVIEWS AFTER PRE-PROCESSING.

:POS: :41: i disagree with the reviewers who said the movie was predictable and
drawn out it was a movie with heart and you could feel the main characters plight
when he lost his companion being an animal lover i was pulling for the happy
ending of course i am disney s biggest fan and i love this movie right along with
the others p s i am a grandmother to eleven thank heavens for disney movies

:POS: :85: sit back and enjoy the interesting and exciting story of the count of
monte cristo great rainy day movie

:POS: :95: a very well done film and an excellent cast i d put it right up with the
three and four musketeers movies york reed chamberlain heston etc

:POS: :96: this is an excellent movie and i never read the book the acting and the
plot was very nice done it is one of my favorite movies
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Fig. 2. Job sequence of Naı̈ve Bayes Classifier on Hadoop.

3) Sentiment Classification Using Hadoop: The sentiment
classification is the key step in the work flow. Fig. 2 shows the
job sequence of this step. Once the training data and test data
are ready in HDFS, the WFC starts the training job to build
a model. The combining job then combines test data with the
model, resulting an intermediate table. Finally, the classify job
simultaneously computes the probabilities of each review in
the two classes respectively and makes a decision about the
sentiment of this review. The statistics of true positive, true
negative, false positive and false negative are also recorded.

4) Result Collection: After the classify job finished, the
result collector retrieves the model, intermediate table, classi-
fication results and statistics of the test from HDFS.

D. Automatic Scheduling

The WFC coordinates the automation of the whole system.
For the Amazon dataset, we conducted 120 test trials in total
on twelve sizes of datasets. All test trials are automatically
scheduled by the WFC without supervision. The only pa-
rameters that need to be decided by human is the sizes of
experiment datasets. This automatic scheduling method can
be easily applied to other programs with minor change of the
parameters.

IV. IMPLEMENTATION OF NAÏVE BAYES IN HADOOP

A. Defining the Problem

We first define our task as to classify the sentiment of a
movie review, “positive” or “negative”. Hence, we only have
two classes of documents. To simplify the problem, we choose
the same number of positive and negative reviews, which
makes the P (c) in equation (3) a constant. The estimation
of P (wk|c) is computed by the relative frequency of wk in all
documents in c. The classification problem is then converted
to a counting problem on the training and test datasets.



Algorithm 1 Training Job
Input: The training reviews.
Output: Model.

1: function MAPPER(key, value)
2: s = parseSentiment(value)
3: for all w ∈ d do
4: emit(w, 1 : s)
5: end for
6: end function
7: function REDUCER(key, values)
8: posSum = 0;negSum = 0;
9: for all value ∈ values do

10: [s, count] = parse(value)
11: if s == positive then
12: posSum+ = count;
13: else
14: negSum+ = count;
15: end if
16: end for
17: emit(key, posSum, negSum)
18: end function

Algorithm 2 Combining Job
Input: The test reviews and the model.
Output: Intermediate results for classify job input.

1: function MAPPER(key, value)
2: if value ∈ model then
3: [word, possum, negsum] = parse(value)
4: emit(word, possum, negsum)
5: else
6: [docid, sentiment] = parse(value)
7: for all word ∈ value do
8: emit(word,1,docid,sentiment)
9: end for

10: end if
11: end function
12: function REDUCER(key, values)
13: for all value ∈ values do
14: if value ∈ model then
15: outstr.append(value)
16: else
17: [count, docid] = parse(value)
18: docs[docid].add(count)
19: end if
20: end for
21: for all docid ∈ docs do
22: outstr.append(count,docid)
23: end for
24: emit(word, outstr)
25: end function

B. Algorithms

After the simplification of the problem, the task can be
divided into three sequential jobs as follows.

1) Training job (Algorithm 1). All training reviews are
fed into this job to produce a model for all unique
words with their their frequency in positive and
negative review documents respectively.

2) Combining job (Algorithm 2). In this job, the model
and the test reviews are combined to a intermediate
table with all necessary information for the final
classification.

3) Classify job (Algorithm 3). This job classifies all
reviews simultaneously and writes the classification
results to HDFS.

Algorithm 1-3 are the pseudo-codes for the three jobs. These
jobs are executed in sequence because the dependencies be-
tween them, as shown in Fig. 2. The training job produces a
model that is used to compute the probability of each word
in the two classes. The combining job then associates the test
data with the model, excluding the words that appear in test
data but not in the model. The intermediate table produced by
the combining job is then fed to the classify job. By the end of
classify job, all reviews are classified into positive or negative
classes.

The actual Hadoop code we develop is less than five
hundred programming lines, including comments and package
import statements. With such a simple program, the results
are surprisingly good, considering the difficulties of mining
sentiment using computer programs.

Algorithm 3 Classify Job
Input: The intermediate results.
Output: Classification results and accuracy.

1: function MAPPER(key, value)
2: for all item ∈ value do
3: [docid, count, possum, negsum] = parse(value)
4: emit(docid, count, possum, negsum)
5: end for
6: end function
7: function REDUCER(key, values)
8: [docid, trueSentiment]=parse(key)
9: for all value ∈ values do

10: calculate pos prob
11: calculate neg prob
12: end for
13: predict = (pos prob > neg prob) ? pos : neg
14: if predict = trueSentiment then
15: correct = true
16: correct count++
17: else
18: correct = false
19: end if
20: emit(docid, predict, correct)
21: end function

V. EXPERIMENTAL STUDY

A. Cloud Infrastructure

Virtual Hadoop cluster is a fast and easy way to test a
Hadoop program in the Cloud, although the performance might
be weaker compared to a physical Hadoop cluster. Our cloud
infrastructure is built on a Dell server with 12 Intel Xeon E5-
2630 2.3GHz cores and 32G memory. We use Xen Cloud
Platform (XCP) 1.6 as the hypervisor. On top of XCP 1.6,
we built a virtual Hadoop cluster of seven nodes. There is one
special node, the manager, that we use to manage the Hadoop
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cluster. The rest of six nodes form the actual Hadoop cluster,
with one name node and six data nodes. We allocate each VM
two virtual CPU and 4GB of memory to provide sufficient
computing resources for each Hadoop node.

B. Experiment Setup

First we tested our code on Cornell dataset and resulted in a
80.85% average accuracy. Without changing the Hadoop code,
our program was able to classify different subsets of Amazon
movie review dataset with comparable accuracy. To test the
scalability of Naı̈ve Bayes classifier, the size of dataset in our
experiment varies from one thousand to one million reviews
in each class.

C. Results

The result statistics include the classification accuracy, the
computation time and the throughput of the system.

Fig. 3 shows the average accuracy of our NBC program
on various sizes of datasets. Each accuracy number is the
average of ten trials. When the dataset is relatively small,
the accuracy is unstable because the training data are not
big enough for the model to learn enough knowledge about
each class. As the dataset size increases above 400K, the
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TABLE II. PROCESSING TIME (SECOND) EVERY 1000 REVIEWS.

Dataset size (K) 2 20 200 400 600 800

Second/10K reviews 455.1 48.15 6.57 4.24 3.47 3.11

Dataset size (K) 1000 1200 1400 1600 1800 2000

Second/10K reviews 2.88 2.77 2.47 2.4 2.37 2.33

accuracy gradually climbs above 80% and approaching 82%.
This demonstrates that the accuracy of NBC is stable when the
dataset increases. To further examine the classification results,
we plot in Fig. 4 the breakdown of accuracy into true positive
and true negative, accompanied by false positive and false
negative. As we expected, the true positive and true negative
increase with respect to the dataset size, while the false positive
and false negative decrease.

Table II shows that the processing time for every ten
thousand reviews in our Hadoop NBC program decreases when
the dataset size increases. A dataset of 2K reviews did not
benefit from the parallelization of Hadoop because the input
data is smaller than the size of one block in HDFS. Although
three replicas are distributed in different nodes, there are at
most three nodes in the Hadoop cluster that can access the
input data locally. After the input data increasing to a certain
size, the advantage of Hadoop starts to appear in that the
processing time for the same amount of reviews is drastically
reduced compare to the 2K case.

To observe the resutls in another dimension, Fig. 5 shows
the throughput of the system with respect to the size of dataset.
The number of reviews that the system can processes in one
second increases from 22 (2K case) to 4304 (2000K case).

Overall, our implementation of NBC is able to scale up to
two million reviews sampled from the Amazon dataset. The
accuracy tends to stable when the dataset size increases. These
results are based on the simple processing of review texts.
Further filtering of the input data might be able to increase the
accuracy.

VI. CONCLUSION

In this paper, we presented a simple and complete system
for sentiment mining on large datasets using a Naı̈ve Bayes
classifier with the Hadoop framework. We implemented the
NBC on top of Hadoop framework, with additional modules to
automate the experiment. We also provide the implementation



details for converting a classifier to Hadoop program, of which
any machine learning algorithm could be replaced for the NBC.

Our results show that NB classifier can scale up easily,
even without a database. Because of our simplified setup, the
average accuracy stays below 82% in all cases. An intelligent
filter might be helpful to increase the accuracy.

We believe that our work is just a beginning of employing
machine learning technologies in large-scale datasets. Future
work will include using our framework for information fusion
over imagery and text, distributed robotics applications, and
cyber analysis using cloud computing.
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