| n=7 | |||||||||||||||||||||||||
| k | CRBN | ARBN | DGARBN p=4 | DGARBN p=7 | particular networks do not obey any order: different updatings can be more or less "ordered", although the averages do change | ||||||||||||||||||||
| 0 | -0.14286 | -0.14286 | -0.142857143 | -0.142857143 | high variance at the edge of chaos… (we do not exhaust all possible initial states) | ||||||||||||||||||||
| 1 | -0.12143 | -0.06393 | -0.097857143 | -0.091785714 | chaotic or ordered nets have low variance, except for chaotic determ.-asynch. | ||||||||||||||||||||
| 2 | -0.03929 | -0.03714 | -0.061428571 | -0.023214286 | ***check inflexion point for different n's (k=2..3) | ||||||||||||||||||||
| 3 | 0.077857 | 0.03 | 0.055 | 0.042857143 | as we increase n, the variances decrease, so actually we need less examples, which is good… | ||||||||||||||||||||
| 4 | 0.193929 | 0.105357 | 0.187142857 | 0.133571429 | larger nets, even for the same k, since they have more elements, can affect other elements as well, since they can do so indirectly… therefore large nets in general are less stable than smaller ones | ||||||||||||||||||||
| 5 | 0.213929 | 0.1075 | 0.207857143 | 0.156071429 | as n increases, asynchronous become more and more similar, independently of determ… not so for synch. | ||||||||||||||||||||
| 6 | 0.285 | 0.114286 | 0.254285714 | 0.2025 | larger nets with k=1 almost like k=0, very few dynamics (explains results of Mesot and Teuscher, all nets, for n=200 have behaviour almost static (k<=1), or chaotic (k>=2)) | ||||||||||||||||||||
| 7 | 0.290714 | 0.157857 | 0.241428571 | 0.238928571 | higher variance always around k=3… does this mean higher potential for diversity? (k=3 most skewed distribution of point attractors (Harvey and Bossomaier, 1997)) | ||||||||||||||||||||
| non-synch RBNs have positive delta for high n, k=2… would this still be "complex"? Transitions order/chaos smooth, since based on averages (for k=5 you still have small prob. Of finding ordered nets) | |||||||||||||||||||||||||