Five Sales \& Lipuidity:Shleifer \& Vishny (2011)
Natural buyers, specialists, high-valuation billies
Agents WTP relatively hgt proc for an arsed.
Fire sale
When you have to sell asset to others, hence must take a low p rice, eng. becarsc of a run.

Why dort natural buyers bid?
"they themselves are financially eneumberil... suffer the same a drowse indastry-wide or marketwide shrect... debt overhary problems afflicting many specialist, simal taneorsly"
What's special about natural buyers?
In many maris (e.g. Kiyotaki\& Moore, 1997; shleiferd Vishny 1992) asset is capital or lard when have lower prolnetivity when managed by non- special ists, or used intside the "industry." \& an "outsider faces a bigger agency problem of hiring a manner to ran these assets" (1192, p.1348) But what mont financial assets?

Fire sales \& Liquillty (c.ut.)
FI through coll-teralized burrowing
One form. F FI: intermediator buys
longterm or illiquid assets (i.e. loands),
user them as collateral to borrow short-term (e.g.overnight) thringh loan-with-c.llatern) or repo.
Lender won't lend FI 100% of curvent ralue of collaterrl, becurse price might frll or illiquid.
"Margin" or "hairent":
Loan $=(1-$ haircat $) \otimes$ enrrint collatior) price
Hairert/margin must be corerid by FI's

$$
\begin{aligned}
& \text { Assets }=\underbrace{(1-H) \cdot \text { Assets }}_{\text {Loanstoret }}+\text { Capital } \\
& \Rightarrow \text { Asgets }=\frac{\left.C-p i t_{n}\right)}{H}
\end{aligned}
$$

H Jepinds on expected rolatility (variance arows E[P]), perceived prtential illiquidity.

Five sales [rout.]
"Rung" through haivents

$$
A \operatorname{sscts}=\frac{\left.C-p^{i} t_{2}\right)}{H}
$$

If $H \uparrow$, $F I$ must raise capital or sell assets.
If sell assets, five sale, become in solvent.
So if lender thinks other lenders will raise hairents, lending to $F I$ is riskier (liger risk 1 mast sere collateral \& sellit), raise my own demanded H.

Margin perls
curventossat
price
Loan to $F I=(1-H) \cdot P \cdot X$ - (units of asset
If $P \downarrow$, $F I$ must post mon colladern) (move X)
or sell assets to pay back loan.
(firesale! P Falls more!

Fire sales \& (iquidity (cont.)
p. 44 "During Five sales, many ...b banks are sidelined dare to their inability to raise capidal... to increase bark lending \& real investanent..:

1) the government can lead x_{e} banks against risky collateral
2) ... purchase assets directly or provide
sr bsidies targeted at purchasers of certain assets"
This is LOLR!

Financial Intermetiation \& IS/MP: Wool ford (2010)
How can we incorporate $F I^{\prime}$ s into $15 / M P$ \& think about events like zOO\& crisis?

Recall/S/MP
Forget π^{e}, i is
"interest rad."

15 comes from:
$Y=C+I+G \quad$ defines $Y(\bar{i}, \dot{G}, \bar{T})$
$\left.\begin{array}{l}C(\bar{Y}, \bar{i}, \bar{T}) \\ I(\bar{i}, \pm\end{array}\right\}$ or $i(\bar{Y}, \dot{G}, \bar{T})<2\left(\begin{array}{l}\text { equation of } \\ I S \text { invoice }\end{array}\right.$
Why "I S^{n} ?
Savings $S=Y-T=C$
$I=S-(G-T)$ (deFicit, govt. borrowing
also defines $Y(i)$
Note $S\left(\bar{i}^{+}, Y_{Y}^{+}, \bar{T}\right)$ because $c_{i}<0$

Woilford (2010) cont.
Depiction of WIs
FI's borrow frauds From households, pay i^{s} Lead Funds on, to borrowers L~" "lending" charging i^{b}
hence $S=L=I$-any investment funds) from earnings $\omega=i^{s}-i^{6}$ what $F I^{\prime}$'s earn for each $\$$ borrowal/knt. $i^{\prime 5}$ is interest rate controlled by central bank, so

Result: "disturbances" to FI's e.g.

- drop in value of capital
-runs,ineluding haircut runs shift 15 bock (Jown.
Maybe so that you need $i^{5}<0$ to kep $y=\bar{y}$ (liquidity trap/zero bound

Woodford
Key assumption: "supply of intermediation"
$L,\left(\omega^{+}, \stackrel{+}{\omega}, \ldots\right) \quad W$ is $F I^{\prime} s$ enpital
$L-W$ is $F I^{\prime}$ s borrowing $(L-W) / W$ "Leverage ratio,"
Why? "the recept able leverage ratio is higher when the spread between the expected return on ..assets....ad the rate they mast pay on their liabilities is greater."
Expected return mast compensate for greater risk of insolvency when FI takes on more leverage.

Also, $W(\stackrel{+}{Y})$: nan increase in aggregate economic activity will generally increase the value of intermediaries' assets."
ω

$$
X S \text { Ea(shifted by } W\binom{+}{Y} \text {, }
$$

Wood Ford (2010)
Demand for intermediation

LS Supply of funds to FI's, from household savings minus deficit

$$
L S=S\left(i^{+},+\bar{T}, \bar{T}\right)-(G-T)
$$

so LS (i, $\left., \frac{+}{Y}, \neq \bar{G}\right)$
LD Demand for funds for investment, Gut investors ceralso fund I from current income, so so $L D(\bar{i}, \bar{Y}) \quad\left(\begin{array}{l}\text { but this effect is } \\ \text { relatively small }\end{array}\right.$
Determines L, as function of w, Y, call it

$$
X D(\underset{\omega}{\infty}, \pm)<\left(\begin{array}{c}
\text { because effect on } L S \\
\text { is stronger }
\end{array}\right.
$$

Woodford (2010)
S\&D for intermediation

Given Y, we have ω^{*}
Given Hand i^{s}, we have $i^{b}=j^{s}-\omega^{*}$
so we have

$$
i^{{ }^{5}}=i^{s}-\omega^{*}(\bar{Y}, \bar{W}, \ldots)
$$

15 curve
We need $Y\left(i^{s}, \ldots\right)$ or $i^{5}(Y, \ldots .$.
Investment I depends on i^{6} and $Y \ldots$.

Woolforl (2010)
(5 curve (rout.)

and $Y=C\left(Y^{+}, \bar{i}, \bar{T}\right)+I+G$
so given i^{s} yin can solve ont for Y

$$
Y\left(\bar{i},+G^{-}, T, W, \ldots . .\right)
$$

Review: why does $W \downarrow \rightarrow Y \downarrow$ girch i^{s} ?
$w \downarrow \rightarrow$ shifts $X S$ back, so $\omega^{k} \hat{\uparrow}$, so $i^{b} \uparrow$,
so $I \downarrow \rightarrow Y \downarrow$
If $W(\underset{Y}{+})$, " "financial recelerator": anything that reduces Y (like $G \downarrow$) has extra effect on Y throng ω^{*}.
Anything else that hurts FI's also shifts IS back.

