Keynesian Dsge
NK I S/LM
Persistent disturbarces $\&$ interest-rate rale
Kerrew
("math trrek")

$$
\begin{aligned}
& u_{t}=e^{u_{t-1}}+\varepsilon_{t} \\
& \begin{array}{l}
E_{t} u_{t+i}=e^{i} u_{t} \\
x_{t}=z u_{t}
\end{array} \\
& E_{t} x_{t+i}=z e^{i} u_{t}=e^{i} x_{t} \\
& x_{t}=\alpha E_{t} x_{t+1}+\eta u_{t} \\
& 0<\alpha<1 \\
& \text { LRSs: } x_{\infty}=x_{\infty+1}=\ldots \text { means } x_{\infty s}=0, u_{\infty}=0 \\
& X_{\infty-1}=\eta u_{\infty-1} \\
& x_{00-2}=\alpha \eta^{u_{\infty-1}}+\eta u_{\infty-2} \\
& X_{\infty-3}=\alpha^{2} \eta^{u_{\infty-1}}+\alpha \eta^{u_{\infty-2}}+\eta^{u_{a 0-3}} \text { hence } \\
& x_{t}=\eta u_{t}+\alpha \eta E_{t} u_{t+1}+\alpha^{2} \eta E_{t} u_{t+2}+\ldots=E_{t} \eta \sum_{i=0}^{\infty} \alpha^{i} u_{t+i} \\
& =\eta \sum_{i=0}^{\infty} \alpha^{i} e^{i} u_{t}=\eta \frac{1}{1-\alpha e} u_{t}
\end{aligned}
$$

KEYNESIAN DIE

$$
\begin{aligned}
& y_{t}=y_{t+1}^{e}-s r_{t}+u_{t}^{1 s} \text { where } u_{t}^{\prime s}=p_{1 s} u_{t-1}^{1 s}+\varepsilon_{t}^{15} \\
& \pi_{t}=\pi_{t}^{\pi}+k y_{t}+u_{t}^{A s} \text { where } u_{t}^{A s}=p_{\pi} u_{t-1}^{A s}+\ldots \\
& r_{t}=\phi_{\pi} \pi_{t}+\phi_{y} y_{t}+u_{t}^{m p} \text { where... } \mathrm{emp}^{\prime} \ldots \\
& y_{j} \pi \& r \text { will be functions of } u^{1 s} u^{\pi}, u^{m p}
\end{aligned}
$$

For simplicity, $r_{t}=\varnothing \pi_{t}$
This satisfies condition for LKJS w/ stable $\hat{\pi}$: if $\pi^{e}=\hat{\pi}$ < here, zero) then $r=0$ < $\left(\begin{array}{c}\text { vent interest rate } \\ =\text { nature) rate }\end{array}\right.$ etc.
Say $u^{\prime} s=0, y_{t+1}^{e}=0 \quad \& \quad \pi_{+}=\pi_{++1}^{e}+k y_{t}$
then if $\pi^{e}=\hat{\pi}, r=0 \rightarrow \pi_{+}=\pi^{e}$
if $\pi^{e}>\hat{\pi}, r>0 \rightarrow y<0 \rightarrow \pi_{+}<\pi^{e}$
etc.
Weill take each disturbance one by ing set others to zero.
intivest-rate rule

1) Effect of $u^{1 s}$

Conjecture $y_{t+1}^{e}=C_{y} y_{t}$
 amply
hence $r_{t}=\phi k \frac{1}{1-e_{y}} y_{t}$

$$
\begin{aligned}
y_{t} & =y_{t+1}^{e}-s \phi k \frac{1}{1-e y} y_{t}+u_{t}^{1 s} \\
\Rightarrow y_{t} & =a y_{t+1}^{e}+a u^{1 s}+\text { where } a=\frac{1}{1+s \phi k \frac{1}{1-\rho_{y}}}
\end{aligned}
$$

ourly math trick

$$
\begin{aligned}
y_{t} & =a \frac{1}{1-a \rho_{y}} u_{t}^{15} \text { so } e_{y}=e_{1 s} \\
& =\frac{1}{\frac{1}{a}-e_{1 s}} u_{t}^{15} \\
\pi_{t} & =k \frac{1}{1-e_{1 s}} y_{t} \\
r_{t} & =\varnothing \pi \pi_{t} u^{15} \hat{1} \rightarrow y \uparrow, \pi \uparrow, r \uparrow
\end{aligned}
$$

2) EFFect of $u^{1 s}$ (cont.)

How do structural coefficients affect response?

$$
\begin{aligned}
& y_{t}=\frac{1}{1-\rho_{1 s}+\frac{s \phi k}{1-\rho_{1 s}}} u_{t}^{1 s} \\
& \pi_{t}=\frac{1}{\frac{\left(1-\rho_{1 s}\right)^{2}}{k}+s \phi} u_{t}^{1 s} \\
& v_{t}=\frac{1}{\frac{\left(1-\rho_{1 s}\right)^{2}}{\phi k}+s} u_{t}^{15}
\end{aligned}
$$

If $\varnothing \hat{\uparrow}$ (coeff. on π in ir is bigger), $u^{\prime s} \uparrow$ has bigger effect on r, smaller effect on $y \& \pi$,
3) EFfect of $u^{A s}$

Conjecture $\pi_{t+1}^{e}=e_{\pi} \pi_{t}$

$$
\begin{array}{r}
y_{t}=y_{t+1}^{e}-s r=y_{1}^{2}-s \phi \pi_{t+1} \\
\alpha=1 \quad y=-s \phi
\end{array}
$$

-ply math trick

$$
y_{t}=-s \phi \frac{1}{1-e_{\pi}} \pi_{t}
$$

$$
\begin{aligned}
& \text { hence } \pi_{t}^{e}=\pi_{t+1}^{e}-k s \phi \frac{1}{1-\rho \pi} \pi_{t}+u_{t}^{A s} \\
& \Rightarrow \pi_{t}=a \pi_{t+1}^{e}+a u_{t}^{A s} \text { when } a=\frac{1}{1+\operatorname{sk\phi } \frac{1}{1-e \pi}}
\end{aligned}
$$

apply math trick

$$
\begin{aligned}
\pi_{t} & =a \frac{1}{1-a e_{\pi}} u_{t}^{A s} \text { so } e_{\pi}=e_{A s} \\
& =\frac{1}{\frac{1}{a}-\rho_{A s}} u_{t}^{A s} \\
y_{t} & =-s \notin \frac{1}{1-e_{A s}} \pi_{t} \\
r_{t} & =\varnothing \pi_{t}
\end{aligned}
$$

3) Effect of ${ }^{A S}$ (orth)

$$
\pi_{t}=\frac{1}{1-\rho_{\pi}+\frac{s k \phi}{1-e_{A s}}} u_{t}^{A s}
$$

$$
y_{t}=-\frac{1}{\frac{\left(1-e_{A s}\right)^{2}}{s \phi}+\frac{k}{1-\rho_{A s}}} u_{t}^{A S}
$$

$$
r_{t}=\frac{1}{\frac{1-\rho_{\pi}}{\phi}+\frac{s k}{1-\rho_{A S}}} u_{t}^{A S}
$$

If $\phi \uparrow, u^{A S} \uparrow$ has bigger effect on r, smaller effect on π
but bigger effect on y.

KEYNESIAN DSGE
3) EFfect of $u^{m p}$

Agrin conjecture e_{y} so $\pi_{t}=k \frac{1}{1-e_{y}} y_{t}$

$$
\begin{aligned}
& \text { so } r_{t}=\phi \pi_{t}+u_{t}^{m p}=\phi k \frac{1}{1-\rho_{y}} y_{t}+u_{t}^{m p} \\
& \text { so } y_{t}=y_{t+1}^{e}-s r=y_{t+1}^{e}-\frac{s \phi k}{1-\rho_{y}} y_{t}-s u_{t}^{m p} \\
& \rightarrow y_{t}=a y_{t-1}^{e}-\operatorname{sa} u_{t}^{m p} \text { wheve } a=\frac{1}{1+\frac{s \phi k}{1-\rho y}} \\
& \frac{1}{\alpha} \text { (n) }
\end{aligned}
$$

apvly math trick

$$
\begin{aligned}
y_{t} & =-s a \frac{1}{1-a \rho_{y}} u_{t}^{m p} \text { so } \rho_{y}=e_{m p} \\
& =-\frac{s}{\frac{1}{a}-e_{m p}^{2}} u_{t}^{m p} \\
\pi_{t} & =-k \frac{1}{1-e_{m p}} y_{t} \\
r_{t} & =\varnothing \pi_{t}+u_{t}^{m p}
\end{aligned}
$$

KEYNESIAN DSGE

$$
\begin{aligned}
& y_{t}=\frac{-\frac{1}{\frac{1-\rho^{m p}}{s}+\frac{j k \phi}{1-e^{m p}}} u_{t}^{m p}}{} \\
& \pi_{t}=-\frac{1}{\frac{1-e^{m p}}{s k}+\frac{\phi}{1-\rho^{n p}}} n_{t}^{m p} \\
& v_{t}=\frac{\frac{1-e^{m p}}{s k \phi}+\frac{e^{m p}}{1-\rho^{m p}}}{\frac{1-e^{m p}}{s k \phi}+\frac{1}{1-p^{m p}}} u_{t}^{m p} \\
& u_{t}^{m p} \uparrow \rightarrow r \uparrow, y \downarrow, \pi \downarrow \\
& \text { If } \phi \hat{1} \text {, } u^{m p} \text { hos smaller effect on } y, \pi, r
\end{aligned}
$$

