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a b s t r a c t

Piezoelectric and elastic properties of multiwall boron-nitride nanotubes are studied using a classical
molecular dynamics model with an incorporated strain-dependent dipole potential energy term. The
results are applied to predict the piezoelectric and elastic properties of a boron-nitride nanotubes fiber
with experimentally obtained diameter and wall number distribution of the nanotubes synthesized by
high-temperature pressure methods. Nanotubes of (m, 0)-type (zig-zag nanotubes) of up to 10 wall layers
and up to 7 nm in diameter are simulated in tension along the tube axis. While the tensile stiffness of all
of the simulated nanotubes increases linearly with their radius and the number of wall layers, a substan-
tial difference in the piezoelectric response is found between nanotubes of even and odd number of wall
layers due to the particular stacking sequence of the boron-nitride layers. The piezoelectric polarization
per unit length of odd-layer boron-nitride nanotubes increases linearly with the tube radius, but decreases
with the number of layers. By contrast, the piezoelectric polarization of even-layer nanotubes is indepen-
dent of the radius, but increases linearly with the number of layers. Analytical expressions for the multi-
wall boron-nitride nanotubes stiffness and piezoelectric coefficients are provided for use in continuum
mechanics finite-element models.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

One attractive feature of boron nitride nanotubes (BNNTs) [1,2],
which differentiates them from their pure carbon structural coun-
terpart, carbon nanotubes (CNTs), is their intrinsic piezoelectricity
[3–7]. This is due to the partially ionic characteristic of the boron
(B)–nitrogen (N) bond, compared to the purely covalent CAC bond
in CNTs. BNNTs were also shown to possess strong electrostrictive
[8] and flexoelectric [9] properties. In combination with their high
mechanical modulus and strength matching those of CNT [10–19],
superior high-temperature oxidation resistance [2], and enhanced
radiation shielding against neutrons [8,9,20], BNNTs are very
attractive materials for multifunctional applications in extreme
environments.

Analytical and simulation studies of the piezoelectric behavior
of BNNTs have been mostly focused on single-wall BNNTs (SW-
BNNTs) [3–7,21–24], while synthesized BNNTs are predominantly
multi-wall BNNTs (MW-BNNTs)1 [1,8,25]. A comparison between
single- and double-wall BNNTs was performed in a series of molec-
ular dynamics (MD) simulations to study their vibrational behavior
[26,27], and their structural stability [28]. It is argued [1] that the
partially ionic characteristic of the BAN bond in the hexagonal boron
nitride (hBN) structure of BNNT tends to stabilize the formation of
double-wall (DW-) and MW-BNNTs by favoring an alternating B-
over-N and N-over-B placement of atoms between two adjacent
hBN layers (known as AA0-stacking) [29,30]. The alternate stacking
of the hBN layers reverses the dipole direction in each consecutive
layer. As a result, as noted in a recent MD study [31], consecutive
hBN layers polarize in opposite directions and partially cancel each
other to decrease the overall piezoelectric effect in MW-BNNTs. This
cancellation effect is more pronounced in BNNTs with even number
of layers than with odd number of layers, and is a very interesting
feature unique only for MW-BNNTs.

The goal of this work is to investigate in detail the elastic and
piezoelectric properties of MW-BNNTs utilizing a recently
ulti-wall
r, where
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proposed method [21] for incorporating piezoelectric behavior into
an empirical interatomic potential of Tersoff type for modeling
hBN structures by MD simulations. The method was shown to
accurately represent the piezoelectric properties of SW-BNNTs as
calculated by first-principle calculations [4]. At the same time,
the much lower computational cost of the MD technique allows
the simulation of large structures, such as MW-BNNTs containing
several tens of thousands of atoms. MW-BNNTs of (m, 0)-
crystallographic indices [32] (zig-zag nanotubes) are chosen for
this study. The (m, 0)-type nanotubes exhibit piezoelectric polar-
ization along their axis when stretched, which is the simplest
mode of deformation to simulate, and provides the most accurate
results. Analytical representation of the simulation results is also
given, based on the analytical expressions for the tensile stiffness
of MW-BNNTs, derived by Song et al. [33], and on the extension
of the piezoelectric model for SW-BNNTs presented earlier [21].
This analytical representation allows the prediction of the piezo-
electric behavior of MW-BNNTs of arbitrary number of layers and
of any given radius. While the study is focused on the zig-zag type
of nanotubes, which exhibits highest piezoelectric polarization
along their axis when stretched among all chiral types [4], the
results can be extended in a straightforward way to include BNNTs
of general chirality.

The analytical expressions derived from the MD model were
applied to predict the stiffness and the piezoelectric coefficients
of a fiber consisting of 1000 BNNTs with experimentally obtained
diameter and wall number distribution. The BNNTs were synthe-
sized by high-temperature pressure (HTP) methods [25,34] and
their structural characterization was performed using high resolu-
tion transmission electron microscopy (HRTEM) in combination
with atomic force microscopy (AFM).

This paper is constructed as follows. The simulation model for a
piezoelectric MW-BNNT is described in Section 2. Section 3 pre-
sents the results, first, for the elastic properties of MW-BNNTs,
and then for the direct and converse piezoelectric effect in MW-
BNNTs. The properties of individual BNNT fibers are considered
in Section 4. A conclusion is given in Section 5.

2. Molecular dynamics model for piezoelectric multi-wall
BNNTs

2.1. Piezoelectric energy upgrade of the Tersoff potential for a
hexagonal BN layer structure

The empirical atomistic piezoelectric model for reproducing the
elasto-mechanical properties of hBN layer structures in this study
implements a Tersoff type of interatomic potential parameterized
by Sevik et al. [35]. The potential is targeted to reproduce closely
the structural, mechanical, and vibrational properties of hBN by fit-
ting to first-principle ab initio calculations [35]. The thermome-
chanical properties of this potential are studied in detail by Singh
et al. [36].

The piezoelectric behavior of the hBN lattice is simulated [21]
by introducing a dipole moment, pBN , to each individual BAN bond.
The electrostatic potential created by the dipole moment is added
to the Tersoff potential. The direction of the dipole vector follows
the direction of the BAN bond polarity (from N to B), and the dipole
magnitude is defined as [21]

pBN ¼ p0
rBN � r0

r0
þ th

X4
i¼1

1
2
þ cos hi

� �" #
; ð1Þ

where p0 and th are fitting parameters, rBN and r0 are the current and
the equilibrium length of the BAN bond, and hi¼1;...4 are the bond
angles between the BAN bond and the four neighboring bonds in
the hBN arrangement. The suggested constitutive relation in Eq.
(1) consists of two terms that counteract each other to produce a
polarization proportional to the deviation of the crystal lattice from
the hexagonal symmetry. The rationale behind this form comes
from theoretical [3] and ab initio [5] studies, which explains the
piezoelectric effect in BNNTs as a counteraction between electronic
and ionic spontaneous polarizations that cancel exactly unless the
symmetry of the hBN lattice is broken by inter-tube interactions
or elastic distortions. It was shown [21] that Eq. (1) leads to a piezo-
electric tensor that satisfies the 3m symmetry of the hBN lattice
with coefficients expressed as

exxx ¼ �exyy ¼ �eyxy ¼ �eyyx ¼ p0

2
ffiffiffi
3

p
r20

½ð1þ AÞ � 3thð1� AÞ� ð2Þ

where the values of r0 and A are defined through the interatomic
potential and its first and second spatial derivatives at equilibrium
[33]. The constant A relates to the magnitude of a shift vector, d,
between the B and N sub-lattices of an hBN plane under strain e,
which was introduced in Ref. [33] and expressed as

dk ¼ 2
3
Aeab

X3
i¼1

nðiÞ
a nðiÞ

b nðiÞ
k ; ð3Þ

where the summation is over the three neighboring (i) atoms of
bond directions nðiÞ. The subscripts, a, b, and k, express the Cartesian
components of the vector quantities in Eq. (3).

Using Eq. (2) [21], the piezoelectric coefficients per unit cell
area can be expressed in electron charges per nanometer (e/nm)
if p0 is in ðe� nmÞ, and r0 is in units of nm. To convert to the stan-
dard piezoelectric coefficients per unit volume, one has to divide
Eq. (2) by the interlayer spacing h.

The tube polarization per unit cell is given as

pcell ¼ e11es þ e14et ð4aÞ
where es and et are the strain in stretch along, and in torsion around
the tube axis, respectively. The coefficients, e11 and e14, are the nan-
otube piezoelectric coefficients in stretch and torsion, respectively,
and are related to the hBN coefficients in Eq. (2), and to the chiral
angle, u, as

e11 ¼ exxxð1þ mÞ cos 3u
e14 ¼ eyxy sin 3u

���� : ð4bÞ

Eq. (2) can be used to adjust the fitting parameters p0 and th to
reproduce the piezoelectric constants of a flat hBN sheet as calcu-
lated from first-principles for any given 3-body interatomic poten-
tial (not necessarily of Tersoff type). Eq. (2) alone is not enough to
define both of the fitting parameters. Additional condition for their
determination is to reproduce the increase of the piezoelectric
coefficient of a SW-BNNT with the decrease of the nanotube radius
due to curvature effects, as calculated from first principles [4]. A
fitting method such as the least-square fit, could be used for this
purpose. The fit, together with the values of r0 and A in Eq. (2),
depends on the choice of the interatomic potential for a neutral
BNNT. In Ref. [21], p0 and th were given for the case of two previ-
ously reported and widely used potentials: by Albe et al. [37],
and by Sekkal et al. [38]. The fitted values of p0 and th for the Sevik
et al. potential [35] used in this work are presented in Table 1,
together with r0, A, Poisson’s ratio, m, and the Young’s modulus,
Y. The fit reproduces the exxx coefficient in Eq. (2) as calculated
by Sai and Mele [4].

2.2. Lennard-Jones potential for inter-wall interactions

An essential part of the MW-BNNT model is the interwall inter-
action between the nanotube layers. This work uses a Lennard-
Jones (L-J) type of potential to model this interaction, where the
potential energy UabðrÞ between two atoms of chemical type a or



Table 1
Results for the fitting parameters p0 and th to reproduce the exxx coefficient in Eq. (2) as calculated in [4], together with the values of r0, A, B, m, and the Young modulus, Y,
calculated for the applied Tersoff interatomic potential [35].

r0 (nm) A B (eV/nm2) m Y (TPa) p0 ðe� nmÞ th exxx (2)

0.1442 �0.672 16,507 0.311 0.750 �0.054 0.5 1.63 (e/nm)
0.086 (e/Bohr) [4]
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b (a, b � B, N) is defined as a function of the distance r between the
atoms as

UabðrÞ ¼ Cab
12r

�12 � Cab
6 r�6; ða; b ¼ B;NÞ ð5Þ

The constants, Cab
12 and Cab

6 , express the strength of the nuclear
repulsion and the van der Waals attraction, respectively. Their val-
ues, given in Table 2, are chosen so that UabðrÞ reproduces closely
the potential energy of a crystalline hBN (a periodically repeating
hBN layered structure), and of a bilayer hBN as obtained through
density functional theory (DFT) calculations [29] (Fig. 1). The val-
ues of the Cab

6 term were initially taken from the van der Waals
C6 coefficients calculated by Hod [30], which ensured close repro-
duction of the van der Waals attraction, and the overall potential
curve, if the repulsive part is also reproduced correctly. Unfortu-
nately, it was found that the r�12 dependence in the L-J potential
was too steep to reproduce correctly the Pauli repulsion. To pre-
serve the attractive part of the interaction and to reproduce the
entire range of the potential energy curve, Cab

6 had to be modified

in combination with Cab
12. The resulting equilibrium interplanar

spacing h0 at T = 0 K for the L-J potential in Eq. (5), is equal to
0.333 nm for a bilayer, and 0.330 nm for a bulk hBN, which is
within the reported values between 0.33 and 0.34 nm [29,30].

Significant attention has been given to the ability of the L-J
potential to reproduce the energies of the AA0, AB1, and AB2 stacking
modes closely to those reported by Marom et al. [29] (Table 3).
These three modes have the common feature that the stacking lay-
Table 2
Coefficients for the Lennard-Jones potential in Eq. (5) for interwall interactions
between BAB, NAN, and BAN pairs of atoms in a MW-BNNT.

Coeff. a-b

BAB NAN BAN

Cab12 ðeV� nm12Þ 2.757E�8 1.779E�7 �1.044E�8

Cab6 ðeV� nm6Þ 5.171E�5 1.478E�5 2.612E�5

Fig. 1. Inter-layer potential energy expressed through the Lennard-Jones (L-J)
potential Eq. (5) and compared to density functional theory calculations by Marom
et al. [29].
ers are flipped at 180� with respect to each other and are exactly
overlapping, or shifted by plus or minus one bond length along
one of the BAN bond directions as given in the insets in Table 3.
The AA0 mode has the lowest potential energy and is the optimal
stacking mode, which is well reproduced by the L-J potential. The
non-trivial difference between the energies of the otherwise simi-
lar AB1 (B-B atoms overlap) and AB2 (N-N atoms overlap) modes
found through ab initio calculations [30] is also well reproduced.
This energy difference is due to the stronger Pauli repulsion
between N atoms than between B atoms.

Table 3 also gives the L-J energies of the AA and AB modes. The
AA mode is formed from two identical hBN layers overlapping
exactly with each other. The AB mode is formed by a relative shift
of one bond length of the layers along one of the BAN bond direc-
tions (see insets in Table 3). The AB mode is the optimal stacking
mode of graphite, and has also been reported to form in thin sheets
of hBN material composed of just a few layers [39]. The AA and AB
modes were not used in the fitting procedure of the L-J potential
and are not relevant to the simulations in this study, but are given
here for completeness. The AA mode, where both BAB and NAN
overlap, is expected to have the highest energy of all stacking
modes, while being close to the AB2 mode due to the dominant role
of the Pauli repulsion at the NAN overlap. The energy of the AB
mode is only slightly higher (by 0.5 meV) than the energy of the
AA0 mode, which suggests that the AB mode might exist in a mul-
tilayer hBN system. In fact, AB stacking has been observed to form
around the edges of a layered hBN structure during sonication [39].

2.3. Simulation model and nanotube configurations

Simulations were carried out on a series of SW-BNNTs and MW-
BNNTs. All BNNTs were of equal length, H ¼ 5:19 nm, and were
simulated under periodic boundary conditions imposed along the
tube axis, set as the x-axis. Free boundary conditions were imposed
on the perpendicular y- and z-directions. After equilibration at
T = 10 K, a tensile strain was applied homogeneously along the x-
axis, to prevent the initiation of shock waves. The stretching was
applied in 8 increments of 0.25% each, giving a total strain of
exx ¼ 2%, which is small enough for non-linear effects to be negli-
gible. After each increment, the tubes were equilibrated for 35 ps,
or 100,000 MD steps, during which time measurements were taken
periodically at each 100 MD steps, and the results of the last 500
measurements, during which the system is assumed to have
achieved equilibrium, were averaged to give the final
measurement.

All chosen BNNTs in the simulations were of (m, 0)-type
(zig-zag nanotubes) with m being in the range from 5 to 86 (not
all values were simulated), giving tubes of radius [32]

Rðm;0Þ ¼ mð
ffiffiffi
3

p
r0=2pÞ ð6Þ

ranging from Rð5;0Þ ¼ 0:2 nm to Rð86;0Þ ¼ 3:4 nm. Only SW-BNNTs of
m = 5, 6, 7, 8, 9, and 10 were simulated, since SW-BNNTs with
m > 10 tend to wobble and could not keep a perfect cylindrical form.

Limiting the study to zig-zag nanotubes only does not limit the
applicability of the presented methodology to BNNT systems of dif-
ferent chirality. The effect of chirality on the mechanical properties
of BNNTs is not pronounced and is difficult to be assessed experi-



Table 3
Stacking layer energies ELJ for a bilayer hBN, as obtained from the Lennard-Jones potential in Eq. (5). The insets indicate the corresponding stacking arrangement of the B (green),
and N (blue) atoms of the two adjacent layers.

Energy (meV/atom) Type

AA0 AB1 AB2 AA AB

ELJ �40.6 �39.2 �34.6 �34.2 �40.1
DE this work 0 1.4 6.0 6.4 0.5
DE ab initioa 0 0.875–2.0 6.5 – 12.0 – –

a Ref. [29,30] and the references therein.

Fig. 2. Cross-sectional snapshots of several of the simulated multi-wall BNNTs depicting their layered wall atomic structure which consists of boron (green) and nitrogen
(blue) atoms. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mentally. Ab initio computations [40] have shown that the elastic
constants of zig-zag (chiral angle, u ¼ 0�) and of armchair or (m,
m)-type (chiral angle, u ¼ 30�) differ slightly (�1%) only for the
thinnest nanotubes (R < 0.3 nm). The Poison ratio for the zig-zag
BNNTs converges slower to the isotropic planar value, remaining
systematically higher compared to armchair BNNTs. More recent
study by Peng et al. [41] is in agreement with these findings.

Chirality has a significant effect on the piezoelectric properties,
but this effect is well understood and can be predicted from the
results for zig-zag BNNTs using the cosine dependence with the
chiral angle, u, as expressed through Eqs. (4a) and (4b). A signifi-
cant difference from zig-zag BNNTs is that armchair BNNTs polar-
ize in torsion, instead of in stretch, as Eq. (4b) predicts for u ¼ 30�.
MD simulation studies on deformation of armchair BNNTs in tor-
sion were reported by Ansari and Ajori [23,24]. Similar torsion
deformation models can be used to study piezoelectric effects in
armchair MW-BNNTs.

MW-BNNTs of L-wall layers were built as a system of L concen-
tric SW-BNNTs of indices ðml;0Þ (the subscript, l = 1, 2, . . ., L, indi-
cates the layer number) placed inside each other in AA0 stacking
sequence. The resultant MW-BNNTs are indexed as
fðm1;0Þ . . . ðmL;0Þg with L ¼ 2;3; . . .10. Several examples are given
in Fig. 2. The indices ml follow the iterative rule, mlþ1 ¼ ml þ Dml;

ðl ¼ 1;2; . . . L� 1Þ. The first m1, and the last mL numbers define
the inner R1, and the outer RL radius of the nanotube (see Eq. (6),
and Fig. 3). The overall radius of the nanotube R is defined as the
outer radius, R ¼ RL. The values of the increments, Dml, were cho-
sen to minimize the overall potential energy of a MW-BNNT of a
given L. Geometrically, using Eq. (6), the interlayer distance
between two adjacent layers is



Fig. 3. Cross-section snapshot of a three wall BNNT of indices {(26, 0) (35, 0) (43, 0)}
defining the inner R1, and the outer RL , nanotube radii, together with the interlayer
distance h. Boron atoms are shown in green, and nitrogen atoms are shown in blue.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 4
Simulated configurations of multi-wall BNNTs from L = 1 to 10 layers given as {(m1, 0) (m2,
from Eq. (7).

L {(m1, 0) (m2, 0) . . .}

1 {(5, 0)}; {(6, 0)}; {(7, 0)}; {(8, 0)}; {(9, 0)}
2 {(8, 0) (17, 0)}; {(9, 0) (18, 0)}; {(10, 0) (19, 0)}; {(1

{(12, 0) (21, 0)}; {(13, 0) (22, 0)}; {(14, 0) (23, 0)};
{(16, 0) (25, 0)}; {(17, 0) (26, 0)}; {(18, 0) (27, 0)};
{(20, 0) (29, 0)}; {(21, 0) (30, 0)}; {(22, 0) (31, 0)};
{(24, 0) (33, 0)}; {(25, 0) (34, 0)}; {(26, 0) (35, 0)};
{(51, 0) (60, 0)}; {(60, 0) (69, 0)}; {(68, 0) (77, 0)};

3 {(8, 0) (17, 0) (25, 0); {(17, 0) (26, 0) (34, 0)}; {(26
{(35, 0) (44, 0) (52, 0)}; {(44, 0) (53, 0) (61, 0)}; {(5
{(62, 0) (71, 0) (79, 0)}; {(71, 0) (80, 0) (88, 0)}

4 {(8, 0) (17, 0) (26, 0) (34, 0)}; {(17, 0) (26, 0) (34, 0
{(26, 0) (34, 0) (43, 0) (51, 0)}; {(35, 0) (43, 0) (52,
{(44, 0) (52, 0) (61, 0) (70, 0)}; {(53, 0) (61, 0) (70,
{(62, 0) (70, 0) (79, 0) (87, 0)}

5 {(8, 0) (17, 0) (26, 0) (34, 0) (43, 0)}; {(17, 0) (25, 0
{(26, 0) (34, 0) (42, 0) (51, 0) (59, 0)}; {(35, 0) (43,
{(44, 0) (52, 0) (60, 0) (69, 0) (77, 0)}; {(53, 0) (61,

6 {(8, 0) (17, 0) (26, 0) (35, 0) (43, 0) (52, 0)}
{(17, 0) (25, 0) (33, 0) (42, 0) (50, 0) (59, 0)}
{(26, 0) (34, 0) (42, 0) (51, 0) (59, 0) (68, 0)}
{(35, 0) (43, 0) (51, 0) (60, 0) (68, 0) (77, 0)}
{(44, 0) (52, 0) (60, 0) (69, 0) (77, 0) (86, 0)}

7 {(8, 0) (17, 0) (26, 0) (35, 0) (44, 0) (52, 0) (61, 0)}
{(17, 0) (25, 0) (33, 0) (41, 0) (50, 0) (58, 0) (67, 0)
{(26, 0) (34, 0) (42, 0) (50, 0) (59, 0) (67, 0) (76, 0)
{(35, 0) (43, 0) (51, 0) (59, 0) (68, 0) (76, 0) (85, 0)

8 {(8, 0) (16, 0) (24, 0) (32, 0) (40, 0) (49, 0) (57, 0)
{(17, 0) (25, 0) (33, 0) (41, 0) (49, 0) (58, 0) (66, 0)
{(26, 0) (34, 0) (42, 0) (50, 0) (58, 0) (67, 0) (75, 0)

9 {(8, 0) (16, 0) (24, 0) (32, 0) (40, 0) (48, 0) (57, 0)
{(17, 0) (25, 0) (33, 0) (41, 0) (49, 0) (57, 0) (66, 0)

10 {(8, 0) (16, 0) (24, 0) (32, 0) (40, 0) (48, 0) (56, 0)
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hlðDmlÞ ¼ Dmlð
ffiffiffi
3

p
r0=2pÞ; Dml ¼ mlþ1 �ml; ðl ¼ 1;2; . . . L� 1Þ:

ð7Þ
The two closest hl to the equilibrium hBN interplanar distance

of h0 ¼ 0:333 nm are obtained for Dml ¼ 8 and 9, equal to
hl ¼ 0:318 nm, and hl ¼ 0:358 nm, respectively. Thus, Dml for each
l is varied to be either 8 or 9, producing 2L�1 different nanotubes for
each given L and m1. After equilibration at T = 10 K, the nanotube
with the lowest potential energy is selected and used for this
study. All of the selected nanotubes are listed in Table 4, including
the five simulated as isolated SW-BNNTs (L = 1). It was found that
the lowest energy configuration for DW-BNNTs (L = 2) is always
obtained when Dm1 ¼ 9, while Dml for higher order MW-BNNTs
(L > 2) varies between 8 and 9. Several of the nanotube configura-
tions selected for simulation are shown in Fig. 2, including the
smallest (Fig. 2(a)) and the largest (Fig. 2(f)) configurations. An
interesting observation is that nanotubes of large radius but low
number of layers, such as the one in Fig. 2e, tend to form a faceted
cross-section of an equilateral polygon, rather than circular. The
reason is that the polygon configuration minimizes the curvature
induced strain energy of the nanotube layers, while seeking a bal-
ance with the increased bond bending energy localized at the
kinks. In addition, the polygon shaped layers can better follow
the lowest energy AA0 stacking sequence than the more circular
layers, which, due to their different radii, cannot maintain the
AA0 stacking everywhere. The result is consistent with prior find-
ings that BNNTs of larger tube diameters and smaller number of
walls are more simple structures in their transverse directions
[42,43]. It is noted that the polygon effect is likely more pro-
0) . . .}, and as {Dm1, Dm2, . . .} for L > 1, where Dml ¼ mlþ1 �ml , with ðl ¼ 1;2; . . . L� 1Þ

{Dm1, Dm2, . . .}

_
1, 0) (20, 0)} All {Dm1 = 9}
{(15, 0) (24, 0)}
{(19, 0) (28, 0)}
{(23, 0) (32, 0)}
{(34, 0) (43, 0)}
{(77, 0) (86, 0)}
, 0) (35, 0) (43, 0)} {9, 8}; {9, 8}; {9, 8}
3, 0) (62, 0) (70, 0)} {9, 8}; {9, 8}; {9, 8}

{9, 8}; {9, 8}
) (43, 0)} {9, 9, 8}; {9, 8, 9}
0) (60, 0)} {8, 9, 8}; {8, 9, 8}
0) (78, 0)} {8, 9, 9}; {8, 9, 8}

{8, 9, 9}
) (33, 0) (42, 0) (50, 0)} {9, 9, 8, 9}; {8, 8, 9, 8}
0) (51, 0) (60, 0) (68, 0)} {8, 8, 9, 8}; {8, 8, 9, 8}
0) (69, 0) (78, 0) (86, 0)} {8, 8, 9, 8}; {8, 8, 9, 8}

{9, 9, 9, 8, 9}
{8, 8, 9, 8, 9}
{8, 8, 9, 8, 9}
{8, 8, 9, 8, 9}
{8, 8, 9, 8, 9}
{9, 9, 9, 9, 8, 9}

} {8, 8, 8, 9, 8, 9}
} {8, 8, 8, 9, 8, 9}
} {8, 8, 8, 9, 8, 9}
(66, 0)} {8, 8, 8, 8, 9, 8, 9}
(75, 0)} {8, 8, 8, 8, 9, 8, 9}
(84, 0)} {8, 8, 8, 8, 9, 8, 9}

(65, 0) (74, 0)} {8, 8, 8, 8, 8, 9, 8, 9}
(74, 0) (83, 0)} {8, 8, 8, 8, 8, 9, 8, 9}

(65, 0) (73, 0) (82, 0)} {8, 8, 8, 8, 8, 8, 9, 8, 9}
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nounced in BNNTs than in comparable CNTs because BNNTs
reportedly possess lower transverse rigidity with ionic interaction
between layers [43–45].

The simulations, conducted at T = 10 K, are addressing the min-
imum energy state of the system under a fixed strain. The reason
for choosing low-T simulations is twofold: (i) the work substan-
tially builds on and compares to first-principle T = 0 K calculations
[4], as well as on the previous MD study on SW-BNNTs [21], which
was also performed at T = 10 K; (ii) thermal effects lead to more
complex behavior and would require a separate investigation,
which is out of the scope of this research. Nevertheless, the imple-
mentation of the Sevik et al. [35] interatomic potential, which is
shown to reproduce very well the phonon spectrum [35] and the
thermomechanical properties [36] of a single hBN sheet, provides
the possibility for applying the described simulation model also
at elevated temperatures.
Fig. 5. Tube radius ranges for HTP-synthesized BNNTs of one to four walls (filled
color symbols indicate individual measurements; the data are reproduced from
[42]) plotted together with the range between the corresponding transition radii,
obtained from the intersection points in Fig. 4 (large open symbols). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
3. Simulation results

3.1. Equilibrium properties of multi-wall BNNTs

3.1.1. Potential energy of a multi-wall BNNT
A comparison of the potential energies between MW-BNNTs of

different number of wall layers and tube diameters is essential in
studying their relative distribution during synthesis. Fig. 4 com-
pares the potential energies of all of the simulated BNNTs after
relaxation at no load. The potential energies are given relative to
the potential energy of a flat single sheet hBN, which for the Sevik
et al. potential [35] is equal to �7.507 eV/atom.

The potential energies of SW-BNNTs (L = 1) include only the
Tersoff potential and represent the strain energy of a folded hBN
layer, which is positive and scales as 1=R2. Similar results for
ðm;mÞ SW-BNNTs were also reported by Singh et al. [36]. In addi-
tion to the strain energy, the potential energies of MW-BNNTs
include the interwall interaction energy defined by the L-J poten-
tial in Eq. (5). Being attractive, this interaction adds a negative
(compared to an isolated single hBN sheet) term to the potential
energy. As a result, for a MW-BNNT of a radius above a certain
crossover value, the potential energy will decrease when an addi-
tional wall-layer is added. As shown in Fig. 4, this happens at
R ¼ 0:65 nm for DW-BNNTs vs. SW-BNNTs, at R ¼ 1 nm for 3W-
BNNTs vs. DW-BNNTs, and at R ¼ 1:6 nm for 4W-BNNTs vs. 3W-
BNNTs, etc. Since BNNTs of lowest energy would be favored during
synthesis, these crossing points of the potential lines of nanotubes
Fig. 4. Excess potential energy per atom, DE, as a function of the nanotube radius, R,
of all of the simulated BNNTs of a given number of layers, L. E ¼ 0 corresponds to a
single flat hBN plane. The values at 1=R2 ¼ 0 correspond to crystalline h-BN
structures of L number of flat layers in equilibrium.
of the same L indicate the crossover radius between nanotubes of
different number of layers. Thus, a nanotube of certain number
of walls L, should have an energy-minimized radius between the
crossing points corresponding to the transition from L�1 to L,
and from L to L + 1.

A comparison of the predicted range of radii of transition, with
the data from a set of HTP synthesized BNNTs [42], is given in
Fig. 5. The details of the experimental setup and measurement
are given in Section 4.1. The figure shows that while the MD results
are not too far off from the experimental data, they tend to under-
predict the radius range of the MW-BNNTs of a given number of
walls. A possible reason for this is that the potential energy based
analysis (at T = 10 K) does not account for the entropy at ambient
temperatures and the kinematics of the growth mechanism under
specific synthesis conditions. In addition, the prediction of the
exact radius of transition relies also on the accuracy of the empir-
ical potential used in the model.

3.1.2. Interlayer distances of multi-wall BNNTs
Interlayer distances have a substantial influence on the internal

potential energy of MW-BNNTs. Because of the discrete atomic
structure, the radius of an unstrained SW-BNNT can be only a dis-
crete number of values, expressed through Eq. (6) for the ðm;0Þ-
type nanotubes. Consequently, the geometrical interlayer distance
hl between two adjacent layers l, and lþ 1, of indices ðml;0Þ and
ðmlþ1;0Þ in a MW-BNNT is expressed through Eq. (7). The van der
Waals forces acting between the layers dictate that hl must be
close to the equilibrium interplanar distance of an hBN crystal,
h0 ¼ 0:333 nm. As discussed in Section 2.3, this is achieved for
Dml ¼ 8 or 9, giving two possible values for hl in Eq. (7), as:
hl ¼ 0:318 nm, and hl ¼ 0:358 nm, respectively. Fig. 6 is a plot of
the hl values vs. the radius of the l-th layer, Rl ¼ Rðml ;0Þ for all
fðml;0Þ; l ¼ 1;2; . . . L� 1g combinations of nanotubes for L P 2
listed in Table 4. One can see that a split of hl towards 0.32 and
0:35 nm occurs at small Rl < 1 nm, which disappears at
Rl > 2 nm, where hl converges to h0. The inset in Fig. 6 emphasizes
this split between h1 and h2 for 3W-BNNTs compared to h1 for DW-
BNNTs. The split is most pronounced at small radii (Rl < 2 nm),
because the difference between hl at Dml ¼ 8, and Dml ¼ 9, is most
difficult to be accommodated in thin nanotubes. From Table 4 one
can see that as the nanotube radius grows, the preferred index
change, Dm, between consecutive layers goes from 9, for L < 5, to



Fig. 6. Interlayer distances hl between the l-th and the l + 1 layer in a L-wall BNNT
as a function of the radius of the l-th layer Rl . (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. (a) Radial strain el;RR of the l-th layer Eq. (7) in a nine- and a ten-wall BNNT of
length 1 nm as a function of its radius, Rl . (b) Spontaneous polarization of the l-th
layer Pl obtained with the el;RR given in (a) for the ten-wall BNNT. Symbols indicated
values that were: d - simulated; s - calculated from Eq. (9); } - cumulative
polarization over l layers.
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8 for L � 5, indicating that in thicker nanotubes accommodating hl

at Dml ¼ 8, becomes preferable to hl at Dml ¼ 9.

3.1.3. Spontaneous polarization of multi-wall BNNTs
Spontaneous, or preexisting permanent polarization of BNNTs,

has been first suggested by Mele and Král [3] as a pure quantum
mechanical effect, arising from braking the hexagonal symmetry
of the hBN layer when it is folded into a nanotube and the need
to satisfy quantum mechanical boundary conditions around the
tube circumference. A classical empirical model cannot, by its nat-
ure, emulate fully and correctly such an effect, but it can emulate
part of it, particularly the part that is due to the hexagonal symme-
try breaking, but not due to the circumference boundary condi-
tions of the electronic states. With this in mind, as demonstrated
previously [21], the piezoelectric model from Eq. (1) predicts a
polarization of the hBN layer in bending mode, which leads to a
spontaneous polarization per unit cell of an unloaded SW-BNNT
equal to [21]

pbend ¼
C

R2 with C ¼ p0

64
ffiffiffi
3

p ð1� 27thÞ ð8Þ

The fitting values for p0 and th from Table 1 give
C ¼ 0:006 ðe� nmÞ. This bending polarization becomes compara-
ble to the strain induced piezoelectric polarization only for very
small R 	 1 nm, and is not expected to have a significant role in
MW-BNNTs.

In MW-BNNTs, spontaneous polarization can be induced by an
additional mechanism. As noted in Section 3.1.2, the deviation of
the interlayer distance, hl, from h0 in MW-BNNTs creates incom-
patibility strain in the BNNT layers. Fig. 7(a) shows an example
of the radial strain el;RR in two simulated 9W- and 10W-BNNTs,

el;RR ¼ ðRl � Rl;0Þ=Rl;0; ð9Þ
for each layer l ¼ 1;2; . . . L of radius Rl relative to the equilibrium
radius, Rl;0, calculated through Eq. (6) using the relevant (m, 0) index
for that layer (see Table 4, L = 9 and 10). If one imagines a nanotube
layer being unrolled as a flat hBN sheet in the x-y plane, this strain
is equivalent to an inplane strain, eyy, perpendicular to the axial x-
direction. According to Eq. (2), eyy induces an axial polarization
per unit cell px equal to:

px ¼ exyyeyy ¼ � p0

2
ffiffiffi
3

p
r20

½ð1þ AÞ � 3thð1� AÞ�eyy: ð10Þ

This polarization, together with the bending polarization from
Eq. (8), leads to an overall polarization of the l-th layer
Pl ¼ px þ pbend, given as
Pl ¼ ð�1Þl px þ
C

R2
l

 !
XNl

¼ ð�1Þl�1 3p0

8
½ð1þ AÞ � 3thð1� AÞ�eyy þ CX

R2
l

( )
Nl: ð11Þ

Here, the ð�1Þl factor accounts for the alternating direction of the
BAN bond in each consecutive layer in the AA0 stacking sequence,
which leads to an alternating polarization direction in each layer.

The symbol X ¼ 3
ffiffi
3

p
4 r20 ¼ 0:027 nm2, is the area per atom in the

hBN lattice, and Nl is the number of atoms in the l-th layer.
Fig. 7(b) shows the measured overall l-th layer polarization

Plðl ¼ 1; . . .10Þ from the simulation of the 10W-BNNT, together
with the calculated values from Eq. (11) using the estimated strain
values, el;RR, as given in Fig. 7(a). For consistency, the polarization
values are scaled for H ¼ 1 nm length of the nanotube (i.e., Nl in
Eq. (11) is taken for a layer of a 1 nm-long nanotube). One can
see that Eq. (11) closely reproduces the simulated polarization
for Rl>3 > 1 nm, and starts to deviate for Rl63 6 1 nm. This shows
that as the layer curvature increases, additional factors begin to
dominate the polarization. One factor is the breaking of the BAN
overlap in the AA0 stacking between adjacent layers as the layer
bending increases, leading to additional local interlayer forces that
may change the local strain and, consequently, the polarization.

The overall spontaneous polarization of a MW-BNNT is the sum
of the polarizations of each layer, Psp ¼

PL
l¼1Pl. This cumulative

sum is given in Fig. 7(b) for the 10W-BNNT. The estimated Psp for
all of the simulated nanotubes is presented in Fig. 8. Following
the data points for each L, a few trends could be identified. The
Psp of the SW-BNNTs follows the 1=R2 law, as expected from Eq.
(11), with an estimated fitted pre-factor, CX ¼ 0:004e � nm. The
1=R2 dependence is not followed by the MW-BNNTs, because the
polarization of the individual layers, Pl, becomes dominated by
the incompatibility strain, el;RR in Eq. (9), which enters as eyy in
Eq. (11) and increases the contribution of the first term in this



Fig. 8. Total simulated spontaneous polarization of unstrained multiwall BNNTs of
L layers as a function of the nanotube radius, R. The data are given for BBNTs of 1 nm
length.

Fig. 9. Young’s modulus, Y, multiplied by interlayer distance, h, for all of the
simulated BNNTs as a function their radius, R, and number of wall layers, L. The
inset gives the mean values of Yh averaged for R < 3.5 nm for each L > 1.
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equation. As a result, the MW-BNNTs of low number of layers,
L < 5 (open symbols in Fig. 8), show a continuous increase of their
polarization as the radius increases. The MW-BNNTs of higher
number of layers, 5 6 L < 9, show a peak in their polarization at
intermediate radius, 2 < Rpeak < 3 nm, followed by a decrease.
The data for L ¼ 5;6; and 7 indicate that the peak radius drifts
towards larger R as L increases. A peak radius is not observed for
L ¼ 8;9 and 10, likely because the simulations were limited to nan-
otubes of R < 3:5 nm. Still, the data for L ¼ 8 suggests that the peak
has already been passed, while for L ¼ 9, it is yet to be reached,
consistent with the expectations of an increasing peak radius with
L. These results suggest that MW-BNNTs could sustain significant
electric charge, experiencing stronger electrostatic interactions
than van der Waals forces alone. To put this into perspective, after
taking into account the estimated direct piezoelectric coefficient in
Section 3.2.2, the spontaneous polarization of a 7W-BNNT of 3 nm
in radius (the highest point in Fig. 8) is equivalent to the polariza-
tion of a 1.4% pre-strained nanotube. One consequence of this
spontaneous polarization phenomenon is that it increases the
van der Waals forces acting between the nanotubes. As a result,
while BNNTs with radii of around 3 nm may be more difficult to
disperse in solutions, they may be more likely to form strong
tightly-bound bundles and fibers.
3.2. Mechanically loaded multi-wall BNNTs

3.2.1. Elastic properties of a multi-wall BNNT
Analytical expressions for the elastic properties of BNNTs were

given by Song et al. [33] in terms of the spatial derivatives of the
interatomic potential. To recall, the two-dimensional tensile stiff-
ness of a hBN monolayer, expressed as a product of the Young’s
modulus, Y, and the interlayer distance, h, is

Yh ¼ B

4
ffiffiffi
3

p ð@2V
@r2 Þ0

ð@2V
@r2 Þ0 þ B

8

ð12Þ

The parameter B in Eq. (12) is defined through the interatomic
potential V, acting between two atoms at distance r, and its
spatial derivatives at equilibrium (noted by the ‘0’ subscript)
[33]. For the Tersoff potential [35], the value of B is given in Table 1,

which with the calculated @2V
@r2

� �
0
¼ 3926:6 ðeV=nm2Þ gives

Yh ¼ 1561:9 ðeV=nm2Þ ¼ 249:9 ðN=mÞ.
Young’s modulus of the simulated BNNTs was determined by

fitting the change of the potential energy per unit volume DEp of
an isolated nanotube to a quadratic dependence of the applied uni-
axial strain exx as

DEp ¼ 1
2
Ye2xx: ð13Þ

The Yh values for all of the simulated BNNTs are plotted in
Fig. 9. The inset gives the averaged values of Yh for R < 3.5 nm for
each L. The data show some oscillations, which are more pro-
nounced at small L and decreased at larger L. These oscillations
are likely due to the incompatibility strain between layers, as dis-
cussed in Section 3.1. The mean of the oscillations is around
Yh 
 215 ± 5 (N/m) (Y 
 645 ± 15 GPa), which is lower than the
analytical value calculated from Eq. (12). A controlled simulation
of a crystalline hBN gives Yh = 247.8 (N/m) – very close to the ana-
lytical value – suggesting that the lower elastic coefficient for
BNNTs is likely due to the folding of the hBN layers into a
nanotube.

For a SW-BNNT of length H and radius R, the tensile stiffness, k,
is equal to [33]

kSW ¼ YSSW

H
¼ Yh

2pR
H

¼ 1570:2
R
H

ðN=mÞ ð14aÞ

where SSW ¼ 2pRh is the cross-sectional area of the wall of thick-
ness h of a SW-BNNT.

For a MW-BNNT, consisting of L nanotube layers of radii
ðR1;R2; . . . ;RLÞ, the tensile stiffness is equal to [33]

kMW ¼ YSMW

H
¼ 2p

H
ðR1 þ R2 þ . . .þ RLÞYh: ð14bÞ

An alternative to Eq. (14b) can be obtained if SMW – the cross-
sectional area of all BNNT wall layers – is expressed through the
inner and outer radii of the BNNT, R1, and RL, respectively (Fig. 3) as

SMW ¼ p½ðRL þ h=2Þ2 � ðR1 � h=2Þ2�
¼ p½R2

L � R2
1 þ hðRL þ R1Þ�: ð15Þ

The above expression naturally transforms into SSW in Eq. (14a)
when RL ¼ R1 ¼ R and in the case of a very thin nanotube of

R ¼ h=2, it gives the base area of a full cylinder, S ¼ ph2. Further-
more, for the case of a MW-BNNT of radius R ¼ RL, assuming an
equidistant spacing of the layers, hl ¼ h ¼ constant, one can write
R1 ¼ R� ðL� 1Þh, which leads to a generalized expression for SMW :

SMW ¼ pL½2R� ðL� 1Þh�h; R > h=2

ph2
; R 6 h=2

(
: ð16Þ



Fig. 10. Tensile stiffness, k, of MW-BNNTs as a function of their radius, R, and
number of layers, L. Symbols indicate simulated data, lines indicate the corre-
sponding analytical values calculated using Eq. (17) with H = 1 nm, and Yh values
from the inset in Fig. 9.

Fig. 11. The total direct piezoelectric coefficient in stretching e11;L for all simulated
MW-BNNTs as a function of their radius, R, and the number of layers, L. The
simulated data (symbols) are plotted together with the analytical dependence Eq.
(22) (lines) for nanotubes of odd number of layers L (open symbols – dashed lines),
and of even number of layers L (full symbols – solid lines). The data are normalized
for nanotubes of 1 nm length.
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Consequently, the tensile stiffness is:

kMW ¼ YSMW

H
¼ Yh

H
� pL½2R� ðL� 1Þh�; R > h=2

ph; R 6 h=2

�
; ð17Þ

with Yh determined from Eq. (12).
Eq. (17) explains well the simulation results shown in Fig. 10.

The stiffness of nanotubes of equal L shows the predicted linear
dependence of R, with a slope, dependent on L. The upper envelope
of the data gives the limiting case of fully filled nanotubes, having
the stiffness of a full hBN cylinder of radius R, and base area,
S ¼ pR2.

3.2.2. Direct piezoelectric effect of a multi-wall BNNT
The direct piezoelectric effect is the effect of induced polariza-

tion under an applied strain. In this work, this effect is studied
by measuring the dipole moment per unit cell pcell, induced under
tension (stretching) applied along the tube axis, es ¼ exx:

pcell ¼ exxxð1þ mÞexx ¼ e11es; ð18Þ
where e11 ¼ exxxð1þ mÞ is the tensile piezoelectric coefficient of the
nanotube [21], and exxx is expressed through Eq. (2). Using the val-
ues of exxx and m from Table 1, e11 ¼ 2:14 e=nm ¼ 3:42� 10�10 C=m.
This value is in close agreement with the DFT calculations [46],
reported as 3:71� 10�10 C=m for a ‘‘clamped-ion” hBN monolayer.

The piezoelectric polarization of the l-th nanotube layer in a
MW-BNNT of L layers is

pl ¼ pcellSl ¼ e11Sles ¼ e11;les; ð19Þ
where Sl ¼ 2pRlH is the circumferential area of the l-th layer, and
e11;l is the piezoelectric coefficient defined for that layer. The
piezoelectric coefficient for the whole nanotube is the sum over
all layers

e11;L ¼
XL
l¼1

ð�1Þl�1e11;l ¼ 2pe11
XL
l¼1

ð�1Þl�1RlH; ð20Þ

where, as in Eq. (11), the ð�1Þl�1 factor accounts for the alternating
direction of the BAN bond in each layer in the AA0 stacking
sequence. Assuming equidistant spacing of the layers,
hl ¼ h ¼ constant, the radius of the l-th layer can be expressed as
Rl ¼ R� ðL� lÞh, which when substituted in Eq. (20) yields

e11;L ¼ 2pe11H
XL
l¼1

ð�1Þl�1½R� ðL� lÞh�: ð21Þ
Because of the alternating direction of the polarization in con-
secutive layers, nanotubes of even and odd number of layers will
have substantially different piezoelectric polarization.

For nanotubes of even number of layers, L ¼ 2n:

eeven11;L ¼ 2pe11H
Xn
l¼1

f½R� ð2n� lÞh� � ½R� ð2n� l� 1Þh�g

¼ �pLhe11H: ð22aÞ
For nanotubes of odd number of layers, L ¼ 2nþ 1:

eodd11;L ¼ 2pRe11H þ eeven11;L�1 ¼ p½2R� ðL� 1Þh�e11H: ð22bÞ
Note that the polarization coefficient of the even-layer nan-

otubes does not depend on the nanotube radius, while for the
odd-layer nanotubes, there is a linear dependence of R, at given
L. The negative sign in Eq. (22a) is due to the predefined choice
of the exponent of the (�1) factor in Eq. (20), setting the polariza-
tion coefficient of a SW-BNNT (or the innermost layer of a MW-
BNNT) as positive. In this sense, the sign in Eq. (22a) means that
the polarization of an even-layer nanotube will have the sign of
the outermost layer, which is negative relative to the innermost
layer, since it has the largest radius and the largest circumferential
area of all layers.

The estimated magnitude of the piezoelectric coefficients of all
of the simulated nanotubes normalized for H ¼ 1 nm, is given in
Fig. 11. The data clearly differentiate the even-layer nanotubes,
with a piezoelectric coefficient independent of R, from the odd-
layer nanotubes, showing a linear increase of the polarization with
R, as expected from Eq. (22b). In addition, again in agreement with
Eqs. (22a) and (22b), for a fixed radius R ¼ constant, and increasing
L, the polarization of even-layer nanotubes increases, while that for
the odd-layer nanotubes decreases.

3.2.3. Converse piezoelectric effect of a multi-wall BNNT
The converse piezoelectric effect, also referred as the inverse

piezoelectric effect, is the effect of induced strain under an applied
external electric field. When the electric field, Ux, is applied along
the tube axis oriented in the x-direction, the coefficient of propor-
tionality, d11, between U and the inducing stretching, es, is the con-
verse piezoelectric coefficient:

es ¼ d11Ux: ð23Þ
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The converse piezoelectric effect is not explicitly simulated in
this work, but it can be deduced from the direct piezoelectric effect
in combination with the elastic properties of MW-BNNTs as stud-
ied in Sections 3.2.1 and 3.2.2, assuming that the underlying mech-
anism for the converse piezoelectricity is the same as for the direct
piezoelectricity. The relation between the converse and the direct
piezoelectric coefficients is:

d11 ¼ e11
Y

: ð24Þ

In Eq. (24), e11 is the direct piezoelectric coefficient in tension
per unit nanotube volume. In Section 3.2.2, it was shown that
the piezoelectric response of a MW-BNNT is not uniform through-
out the volume, but has a complex structure due to the AA0 stack-
ing. For this reason, e11 for a MW-BNNT is defined as the volume
average, e11 ¼ e11;L=S

MWH, giving

d11 ¼ e11;L
YSMWH

: ð25Þ

Using the values of e11;L from the simulations as given in Fig. 11,
together with Y from Fig. 9, d11 can be determined for all of the
considered MW-BNNTs. The results are plotted in Fig. 12.

An analytical expression for d11 can be derived from Eq. (25)
after substituting SMW and e11;L from Eq. (15b), and Eqs. (22a) and
(22b), which gives:

deven
11 ¼ �e11

½2R� ðL� 1Þh�Y ; L ¼ 2n; ð26aÞ

dodd
11 ¼ e11

LhY
; L ¼ 2nþ 1: ð26bÞ

As in Eq. (22a), the negative sign in Eq. (26a) indicates that the
polarization of an even-layer nanotube will have the sign of the
outermost layer, while the innermost layer polarization is consid-
ered positive to be consistent with the SW-BNNT case.

For dimensional considerations, note that e11, as defined
through Eq. (18), is the two-dimensional piezoelectric coefficient
of a hBN monolayer per unit area, while d11 is the three-
dimensional converse piezoelectric coefficient per unit volume of
the nanotube. If e11 is expressed in 10�10 C=m, R and h in Å, and
Y in TPa, then d11 is obtained in pm/V or (m=V� 10�12).

A comparison between the analytical and the simulated values
of d11 is given in Fig. 12. For even-layer nanotubes, the simulated
Fig. 12. The converse piezoelectric coefficient d11 for all simulated MW-BNNTs as a
function of their radius, R, and the number of layers, L. The simulated data
(symbols) are plotted together with the analytical dependence Eq. (26) (lines) for
nanotubes of odd number of layers L (open symbols – dashed lines), and of even
number of layers L (full symbols – solid lines). The data are normalized for
nanotubes of 1 nm length.
d11 shows no distinguishable dependence on L, while following a
general 1=R behavior, and bonded by the e11=RY and e11=2RY
curves. This is in agreement with Eq. (26a), which is dominated
by the e11=2RY when Lh 	 R, and by e11=RY when Lh ! R. The for-
mer case is representative for hollow nanotubes (e.g., Fig. 2(e)),
while the latter case is representative for full nanotubes (e.g.,
Fig. 2(f)). The d11 for odd-layer nanotubes of L > 1 closely follows
the relation in Eq. (26b), which scales as 1=L, independent of R.
SW-BNNTs (L ¼ 1) approach the analytical solution for R > 1 nm,
but diverge strongly at R < 0:5 nm. The deviation is due to the
rapid decrease of Yh when R < 0:5 nm (Fig. 9). This divergence
approaches the analytical line e11=RY for full nanotubes (as nan-
otubes of R ! h=2 can be considered full nanotubes), which follows
from both Eqs. (26a) and (26b) when Lh ! R, i.e.,

dodd;even
11

���
Lh!R

! �e11
RY

: ð27Þ

For R � h=2, Fig. 12 gives d11 for the SW-BNNTs (L ¼ 1)
approaching 1:5 pm=V. This value is in agreement with the DFT
results [46] of 1.50 pm/V for a ‘‘clamped-ion” hBN monolayer.
The estimated d11 values for MW-BNNTs are all below 0.5 pm/V,
which is substantially lower than the SW-BNNT values due to
the alternating polarization of the consecutive wall layers in the
AA0 stacking.

Recent measurements of a 40 wt% BNNT/polymer composite [8]
reported a piezoelectric coefficient d13 of 14.41 pm/V, which is sig-
nificantly higher than the calculated values reported above for an
isolated BNNT. To reconcile this substantial difference between
an isolated BNNT and a BNNT/polymer composite, one needs to
correctly estimate the overall piezoelectric properties, as well as
the overall stiffness of the composite, which does not always fol-
low the simple rule of mixtures. One needs to account for the phys-
ical interaction of the BNNTs with the dielectric polymer matrix
that leads to non-linear effects. One example of these effects is
the appearance of interfacial polarization, which is known to be a
mechanism for enhanced piezoelectric behavior of heterogeneous
composites. Other possible mechanisms that affect piezoelectric
properties of a composite include: (i) the inter-tube interaction
of BNNTs via the dielectric medium; (ii) the random coiled mor-
phology of the nanotubes in the composite leading to redistribu-
tion of the BNNTs polarization; (iii) appearance of defects in the
BNNTs with enhanced dipole moments, and others. Further study
is needed for those more complicated systems.
4. BNNT fiber

In this section, the derived analytical expressions in Section 3
for the elastic and piezoelectric properties of isolated BNNTs will
be used to predict the physical properties of an example system,
representing a BNNT fiber composed of BNNTs with an experimen-
tally established diameter and wall number distribution.

4.1. Experimental characterization of BNNT distribution

The BNNTs used for this example were synthesized using the
HTP method [25,34] and were characterized by AFM. Prior studies
have revealed that HTP-synthesized BNNTs are highly crystalline,
up to 100 lm in length, and less than 10 nm in diameter. The
HTP-BNNTs were found to be predominantly 1-to-4 walled nan-
otubes with a dominant presence of double-walled structures as
shown in high resolution transmission electron microscope
(HRTEM) images in Fig. 13. For AFM measurements of BNNT diam-
eters, as-synthesized BNNTs were first separated and dispersed in
deionized (DI) water by means of ultrasonication with the aid of
ionic surfactants [42,43]. After centrifugation at 2000 rpm for



Fig. 13. TEM image of as grown boron nitride nanotubes with close views of 1-wall, 2-wall, and 3-wall nanotubes shown in the insets.

Fig. 14. Histogram of the outer diameter distribution based on AFM measurements
of 1000 randomly selected individual HTP-grown BNNTs. The solid curves are the
respective Gaussian fitting curves corresponding to different wall layers, L, as
indicated. The percentage of each type of tubes is calculated as the area under the
respective fitting curves. The black dashed line is the aggregate fitting curve. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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30 min, small drops from the top portion of the BNNT solution
were deposited on clean Si wafers. The deposited BNNT samples
were subsequently rinsed with DI water to remove residue surfac-
tants, and then air-dried. The cross-sectional heights of individual
BNNTs on the substrate, Dh, were measured using a Park Systems
XE-70 AFM. The AFM operated in a tapping mode with silicon
probes of less than 10 nm in nominal tip radius in ambient envi-
ronment. The tubes outer diameters were calculated as
Dout ¼ Dh� h, where h ¼ 0:34 nm is the inter-layer distance of
the BAN sheet.

Fig. 14 shows the outer radius distribution that is obtained
based on the AFM measurements of Nfiber ¼ 1000 individual BNNTs
that were randomly selected. To quantify the probability distribu-
tion of the wall numbers of the tubes, it is assumed that the radius
distribution of BNNTs with a certain wall number follows a Gaus-
sian distribution. This assumption is consistent with the observed
distributions based on the HRTEM measurements of 77 BNNTs of
1-4 tube walls, which were originally reported [42] and are repro-
duced and displayed in Fig. 5. The HRTEM-measured radius range
of each type of tube is utilized in the Gaussian fitting of the BNNT
radius distribution histogram. The Gaussian fitting starts from the
data with the smallest radius values, which are considered to cor-
respond to single-walled tubes, and moves towards the data with
higher radius values that are for tubes of higher wall numbers.
The solid curves shown in Fig. 14 are the respective fitting curves
for SW- to 4W-BNNTs, through which the fraction of tubes nLðRÞ
of type L, having radius between R� DR=2 and Rþ DR=2 with
ðDR ¼ 0:1 nmÞ is expressed as

nLðRÞ ¼ n0;L exp �ðR� �RLÞ2
r2

L

" #
; ð28Þ

where n0;L is the maximum of the distribution, �RL is the mean radius,
and rL is the standard deviation. Their fitted values are given in
Table 5.

The dashed line displayed in Fig. 14 represents the aggregated
fitting curve that is obtained through the summation of all four
individual fitting curves and shows a reasonable agreement with
the AFM-measured radius distribution histogram. The percentage
of each type of tube is calculated as the area fraction under the
respective fitting curve and is found to be 11.0% (SW), 57.0%
(DW), 24.6% (3W) and 4.6% (4W). The analysis shows that DW
BNNTs have a dominant presence in the HTP-synthesized BNNTs,
and more than 97% of the tubes are SW- to 4W-BNNTs. The results
based on the AFM measurements are consistent with the prior
HRTEM observations of the BNNT radius and wall number distribu-
tions [25,42].

4.2. Elastic properties of a BNNT fiber

Assuming that a fiber is prepared from the BNNT conglomerate
examined in Section 4.1 and all tubes are perfectly aligned, one can
use the Gaussian distribution nLðRÞ from Eq. (28) with the esti-
mated parameters from Table 5 to calculate the total fiber stiffness
as

kfiber ¼ Nfiber

X4
L¼1

kL ð29Þ

with



Table 5
Fitted parameter values, n0;L; �RL , and rL , of the Gaussian distribution in Eq. (28) of a BNNT aggregate, together with the relative molecular fraction, and the volume fraction of each
LW BNNT type. Young’s modulus, expressed as YLh, and the partial stiffness per one nanotube, kL, integrated analytically by Eq. (30b) for each L-type are also given.

L n0,L (%) �RL (nm) rL (nm) Mol. fraction (%) Volume fraction (%) YLh (N/m) kL (N/m)

1 2.9 0.75 0.20 11.0 1.8 200 97
2 6.8 1.45 0.60 57.0 49.2 215 2501
3 3.1 2.275 0.45 24.6 39.0 225 2034
4 0.4 2.65 0.85 4.6 10.0 210 684
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kL ¼ 1
R

Z 1

0
kMW
L ðRÞnLðRÞdR: ð30aÞ

Above, kL is the partial stiffness, or the stiffness of the fraction of

LW BNNTs, and kMW
L ðRÞ is the stiffness of an isolated nanotube of

radius R, expressed through Eq. (17). Integration of Eq. (30a), using
Eq. (28) for nLðRÞ, gives (see Appendix)

kL ¼ n0;L
YLh
HDR

p3=2rLL½2�RL � ðL� 1Þh� ¼ 1
DR

n0;L
ffiffiffiffi
p

p
rLk

MW
L ð�RLÞ:

ð30bÞ
As seen from Fig. 9, the MD simulations show that Y varies

slightly for nanotubes of different R and L. To simplify the integra-
tion in Eq. (30a), the YðRÞ dependence was averaged for each L, as
shown in the inset to Fig. 9, and used as a constant, YL, in Eq. (30b).
Table 5 gives the MD-values of YLh, and the calculated values of
kLðL ¼ 1; . . .4Þ for H ¼ 1 nm BNNTs. The total stiffness for a fiber
of Nfiber ¼ 1000 according to Eq. (29) is kfiber ¼ 5:3 MN=m.

Knowing kfiber , one can calculate the overall Young’s modulus for
the considered BNNT fiber using the relation

ðYhÞfiber ¼
kfiber
Sfiber

Hh; ð31Þ

where Sfiber is the total base area of the BNNT fiber. Sfiber can be cal-
culated as a sum of the base areas of all BNNTs in the fiber, divided
by some packing coefficient, Cpack,

Sfiber ¼ Nfiber

Cpack

X4
L¼1

SBaseL ð32Þ

with

SBaseL ¼ 1
DR

Z 1

0
pR2nLðRÞdR; ð33aÞ

being the base area contributed by the L-wall BNNTs. Here, the base
area of a BNNT, equal to pR2, should not be confused with the cross-
sectional area of the BNNT layers, SMW , as defined through Eqs. (14)–
(16).

Integrating Eq. (33a) gives (see Appendix)

SBaseL ¼ 1
DR

n0;Lp3=2rL
1
2
r2

L þ �R2
L

� �
: ð33bÞ

Knowing SBaseL , one can estimate the volume fraction of the

L-wall BNNTs defined as SBaseL =
P4

L¼1S
Base
L and given in Table 5.

After choosing the packing coefficient in Eq. (32) as Cpack ¼ 0:82

(an intermediate value between 0.907 for dense hexagonal packing
of cylinders, and 0.75 for square packing), the calculated cross-
section of the BNNT fiber is Sfiber ¼ 13150 nm2, and the overall
Young’s modulus of the fiber from Eq. (31) is ðYhÞfiber ¼ 137 N=m,
or Yfiber ¼ 410 GPa.. This value is 55% of the theoretical Young’s mod-
ulus for an hBN sheet defined by Eq. (12), while still assuming per-
fect crystallinity of the BNNTs. The decreased Young’s modulus of
2 The packing value may be highly overestimated, because there are some
indications that BNNTs avoid dense packing in conglomerates.
the fiber is mainly due to its lower density compared to a crystalline
hBN.

The mass density of the fiber can be calculated as

qfiber ¼
Nfiber

P4
L¼1S

cross
L

Sfiber
qhBN; ð34Þ

where qhBN is the mass density of a crystalline hBN, and

ScrossL ¼ 1
R

Z 1

0
SMW
L ðRÞnLðRÞdR; ð35Þ

where SMW
L is the cross-section area given by Eq. (16).

Integration of Eq. (35) is identical to the integration of Eq. (30a),

because kMW
L ðRÞ ¼ YL

H SMW
L ðRÞ, giving

ScrossL ¼ n0;L
h
DR

p3=2rLL½2�RL � ðL� 1Þh�: ð36Þ

Inserting Eq. (36) in Eq. (34) and using Eq. (32) and Eq. (33b) to
express Sfiber , the fiber density is

qfiber ¼ h
P4

L¼1n0;LrLL½2�RL � ðL� 1Þh�P4
L¼1n0;LrL

1
2r

2
L þ �R2

L

	 
 CpackqhBN

¼ 0:75CpackqhBN ¼ 0:6qhBN: ð37Þ
Knowing the density of a crystalline hBN to be

qhBN ¼ 2:3 g=cm3, Eq. (37) gives qfiber ¼ 1:38 g=cm3.

4.3. Piezoelectric properties of a BNNT fiber

The direct piezoelectric coefficient per unit volume for a BNNT
fiber with a given distribution nLðRÞ, from Eq. (28) is calculated as

e11;fiber ¼
ffiffiffiffiffiffiffiffiffiffiffi
Nfiber

p
SfiberH

X
L¼1;3

Z 1

0
eodd11;LðRÞnLðRÞdRþ

X
L¼2;4

Z 1

0
eeven11;L ðRÞnLðRÞdR

 !

ð38Þ
with eeven11;L and eodd11;L given by Eqs. (22a) and (22b), respectively. Theffiffiffiffiffiffiffiffiffiffiffi
Nfiber

p
multiplier accounts for the random choice between positive

and negative alignment of individual nanotubes along the axis of
the fiber. The ‘‘odd”-integral term in Eq. (38) is similar to the inte-
gral in (30a) and givesZ 1

0
eodd11;LðRÞnLðRÞdR ¼ n0;L

H
DR

e11p3=2rL½2�RL � ðL� 1Þh�: ð39aÞ

Noting that eeven11;L ¼ �pLhe11H does not depend on R, the ‘‘even”-
integral term in Eq. (38) givesZ 1

0
eeven11;L ðRÞnLðRÞdR ¼ �n0;L

H
DR

e11p3=2rLhL: ð39bÞ

After performing the integration, Eq. (38) takes the form

e11;fiber ¼
ffiffiffiffiffiffiffiffiffiffiffi
Nfiber

p
Sfiber

1
DR

e11p3=2
X
L¼1;3

n0;LrL½2�RL�ðL�1Þh��
X
L¼2;4

n0;LrLhL

( )
:

ð40Þ
After expressing Sfiber from Eq. (32) and using Eq. (32a,b)
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e11;fiber ¼ Cpacke11ffiffiffiffiffiffiffiffiffiffiffi
Nfiber

p
P

L¼1;3n0;LrL½2�RL � ðL� 1Þh� �PL¼2;4n0;LrLhLP4
L¼1n0;LrL

1
2r

2
L þ �R2

L

	 

¼ Cpacke11ffiffiffiffiffiffiffiffiffiffiffi

Nfiber

p 0:686 e=nm2: ð41Þ

Using the value for e11 ¼ 2:14 e=nm ¼ 3:42� 10�10 C=m,
calculated from Eq. (18), Nfiber ¼ 1000, and Cpack ¼ 0:8, then
e11;fiber ¼ 0:037 e=nm2 ¼ 0:0059 C=m2. Compared to the piezoelec-
tric coefficient of a hypothetical hBN crystalline material, calcu-
lated [4] as e3D ¼ 0:76 C=m2, the result for a BNNT fiber is much
lower. This weak piezoelectric behavior of a fiber is mostly due
to two factors: (i) the assumed random alignment of the individual
nanotubes, introducing the 1ffiffiffiffiffiffiffiffi

Nfiber

p coefficient, and (ii) the AA0 stack-

ing of the nanotube wall layers, leading to a partial cancellation of
the polarization of each layer.

The converse piezoelectric coefficient for the considered BNNT
fiber defined as

d11;fiber ¼ e11;fiber
Yfiber

; ð42Þ

After using the already calculated values for
e11;fiber ¼ 0:0059 C=m2, and Yfiber ¼ 0:410 TPa, Eq. (42) gives
d11;fiber ¼ 0:0144 pm=V. Both results for e11;fiber , and d11;fiber , show
that unless the individual tube orientation is controlled, the piezo-
electric properties of a BNNT fiber are rather weak and decreasing
proportionally with increasing the fiber thickness (assuming that
the fiber thickness is proportional to

ffiffiffiffiffiffiffiffiffiffiffi
Nfiber

p
).
5. Conclusion

This study applied the previously developed SW-BNNT piezo-
electric molecular dynamics model [21] to study the stiffness and
piezoelectric properties of MW-BNNTs that are more commonly
synthesized. The interlayer interactions in the MW-BNNTs were
represented by an improved Lennard-Jones type of potential, fitted
to closely reproduce the van der Waals forces as calculated from
first principles calculations [29,30]. Nanotubes of the zig-zag (m,
0)-type made of one to ten layered walls were simulated in equilib-
rium, and under uniaxial tension to examine their elastic and
piezoelectric properties. Analytical relations were derived to sup-
port the simulations and make predictions for a hypothetical BNNT
fiber consisting of 1000 nanotubes that match the experimentally
obtained diameter and wall number distribution. The results can
be summarized as follows.

The potential energy of MW-BNNTs in equilibrium shows the
existence of crossover radii where the number of wall layers is
expected to change (Fig. 4). This finding enables the prediction of
the possible range of radii for MW-BNNTs of a given number of
walls. The prediction for BNNTs of one to four walls are found to
overlap with the lower end of experimentally reported ranges
[42], and slightly underestimates the expected nanotube thickness.

MW-BNNTs are predicted to experience a significant sponta-
neous polarization in equilibrium state. The spontaneous polariza-
tion is a result of the tube wall curvature [21], but also ascribed to
the internal incompatibility strain experienced by the layers due to
their discrete atomic structure. The simulations indicate that this
spontaneous polarization is strongest for BNNTs of radii between
2 and 3 nm and is likely to diminish at larger radii (Fig. 8).

The elastic properties of MW-BNNTs generally follow the
expectation of the shell model for BNNTs, developed by Song
et al. [33]. The van der Waals forces, acting between the BNNT lay-
ers play the role of slightly decreasing the Young’s modulus.
The piezoelectric properties of MW-BNNTs show significant dif-
ferences for nanotubes of even vs. odd number of layers. The rea-
son is in the alternating polarization direction in the adjacent
hBN layers with AA0 stacking sequence. As a result (Fig. 11), the
direct tensile polarization coefficient e11 for odd-layer BNNTs
increases with an increase of the tube radius R, and decreases with
an increase of the number of layers L. By contrast, e11 of even-layer
BNNTs remains constant with R, but increases with L. Analytically,
these relations are expressed through Eqs. (22a) and (22b). The
converse piezoelectric coefficient d11 � e11=Y also has different
behavior for odd- versus even-layer BNNTs (Fig. 12). In the case
of even-layer BNNTs, d11 decreases with R as 1=R, but remains
mostly independent of L when R � Lh (hollow nanotubes) Eq.
(26a). In the case of odd-layer BNNTs, d11 scales as 1=Lh independent
of R, Eq. (26b). For full nanotubes of both types, i.e., BNNTs for
which R ! Lh, d11 scales as 1=R, Eq. (27).

The derived analytical expressions for the elastic and piezoelec-
tric properties of an isolated BNNT are used to predict the physical
properties of an example system, representing a BNNT fiber com-
posed of 1000 BNNTs having an experimentally established diam-
eter and wall number distribution. The calculated Young’s modulus
of the fiber is found to be about 55% of the theoretical Young’s
modulus for an hBN sheet, while the mass density of the fiber is
about 60% that of a crystalline hBN, or 1.38 g/cm3.

The calculations show that the piezoelectric properties of a
BNNT fiber are rather weak and decreasing proportionally with
increasing the fiber thickness. This weak piezoelectric behavior is
mostly due to two factors: (i) the assumed random sense of polar-
ization of the individual nanotubes in the fiber direction, and (ii)
the AA0 stacking of the nanotube wall layers, leading to a partial
cancellation of the polarization of each layer. A possible way to
increase the piezoelectric response of the fiber could be to control
the orientation of individual nanotubes to be predominantly in one
direction, rather than being random.
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Appendix A

Performing the integration in Eqs. (30a), (33a), (35), (38), and
(39) leads to solving the following series of integrals:

I0 ¼
Z 1

0
exp �ðR� �RLÞ2

r2
L

" #
dR; ðA1Þ

I1 ¼
Z 1

0
R exp �ðR� �RLÞ2

r2
L

" #
dR; ðA2Þ

and

I2 ¼
Z 1

0
R2 exp �ðR� �RLÞ2

r2
L

" #
dR: ðA3Þ

Applying the substitution x ¼ R��RL
rL

, and usingZ 1

a
expð�x2Þdx ¼

ffiffiffiffi
p

p
2

½1� erf ðaÞ�; ðA4Þ
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Z 1

a
x expð�x2Þdx ¼ 1

2
expð�a2Þ; ðA5Þ

andZ
x2 expð�x2Þdx ¼ 1

4
ffiffiffiffi
p

p
erf ðxÞ � x

2
expð�x2Þ; ðA6Þ

where erf ðxÞ ¼ 2ffiffiffi
p

p
R x
0 expð�t2Þdt, one gets, respectively:

I0 ¼ rL

ffiffiffiffi
p

p
2

1þ erf
�RL

rL

� �� �
!

�RL=rL�1
rL

ffiffiffiffi
p

p
; ðA7Þ

I1 ¼ 1
2
r2

L exp �
�RL

rL

� �2
" #

þ rL
�RL

�
ffiffiffiffi
p

p
2

1þ erf
�RL

rL

� �� �
!

�RL=rL�1
rL

�RL

ffiffiffiffi
p

p
; ðA8Þ

and

I2 ¼ 1
2
rL rL

�RL exp �
�RL

rL

� �2
" #(

þ p 1
2
r2

L þ �R2
L

� �
1þ erf

�RL

rL

� �� �r 

!

�RL=rL�1
rL

ffiffiffiffi
p

p 1
2
r2

L þ �R2
L

� �
:

ðA9Þ
All integrals in Section 4 can be presented as linear combina-

tions of I0, I1, and I2. For the values for �RL, and rL, provided in
Table 5, the ratio �RL=rL > 2:4, gives less than 0.1% error in the lim-
iting values of the right side of Eqs. (A7)–(A9), which justifies the
used approximation when solving the integrals in Section 4.
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