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We theoretically investigate the electromechanical dynamics of a double-sided driven cantilevered
nanotube-based electromechanical resonator. Closed-form analytical solutions capable of predicting
the steady-state resonant oscillation of the device and its resonant pull-in conditions are derived
using an energy-based method and are verified through a comparison with numerical simulations.
Our closed-form formulas clearly reveal the complex relationship among the device geometry,
driving voltages, and the device’s electromechanical dynamics. Our results show that the stable
steady-state spanning range of the resonating cantilever can reach up to 90% of the gap between the
actuation electrodes, which substantially exceeds the previously reported quasistatic pull-in limit for
cantilevered nanotube-based nanoelectromechanical systems and the resonant pull-in limit for
double-sided driven microelectromechanical gyroscopes. Our results also reveal that the processes
of tuning the resonant frequency of the resonator and controlling its stable steady-state oscillation
amplitude can be decoupled and controlled separately by controlling the dc and ac components in
the driving signal. The unique behavior of the large stable steady-state resonant oscillation range,
which is independent of the electrostatic-force-induced resonant frequency tuning, makes this
double-sided driven resonator attractive for many applications, such as tunable sensors for detecting
ultratiny mass and force and tunable electronics. The results reported in this paper are useful to the
optimal design of novel nanotube- or nanowire-based double-sided driven electromechanical
resonators. © 2009 American Institute of Physics. �DOI: 10.1063/1.3065534�

I. INTRODUCTION

Nanoscale electromechanical resonators are currently
pursued for a variety of applications, such as signal
processing,1,2 sensors for mechanical, electrical, or magnetic
forces,3–5 and detectors for chemical and biological
agents.6–8 Carbon nanotubes �CNTs�,9 a type of high aspect
ratio one-dimensional nanostructures with extraordinary me-
chanical and electrical properties and chemical stability,10–17

have been considered as ultimate building blocks for nano-
electromechanical systems �NEMSs�. Below we briefly sur-
vey the CNT-based NEMS resonators reported in the litera-
ture and their unique electromechanical behaviors and
applications. One of the earliest works on the electrostatic
excitation of CNTs was reported by Poncharal et al.18 They
demonstrated that oscillating nanotube cantilevers can work
as sensitive nanobalances for nanoscale particles. Sazonova
et al.5 proposed a fixed-fixed nanotube-based tunable oscil-
lator. The dc component in the driving signal produces a
static electrostatic force, which is used to control the tension
in the nanotube beam, and thus its natural frequency. The ac
component is used to excite the resonance of the beam. They
demonstrated that this novel device can operate as an ultra-
sensitive force transducer with the force sensitivity up to
5�10−18 N. Peng et al.19 developed a fixed-fixed nanotube-
based resonator with a fundamental mode frequency over
1.3 GHz and mass detection sensitivity of 10−18 g. It is ex-

pected that NEMS resonators are superior to their micro-
electromechanical system �MEMS� predecessors in many as-
pects, such as size and integration level, working frequency,
mass and force sensitivity, and energy consumption.

From a design point of view, CNTs serve as the movable
electromechanical components in the aforementioned resona-
tors and are configured as cantilevered or fixed-fixed beams.
Because a cantilevered beam has significantly lower stiffness
than a comparable fixed-fixed beam, its resonant frequency is
also much lower. Similarly, cantilevers require significantly
lower driving voltages to reach a certain oscillation ampli-
tude than comparable fixed-fixed beams. Regarding the ex-
citation scheme, electromechanical components of resonators
can be electrostatically actuated in either a single- or double-
sided manner. Studies on nanotube- or nanowire-based
NEMS resonators reported in the literature through both
modeling20–23 and experiments5,18,19,24–32 have focused on
single-sided driven devices. NEMS resonators with a double-
sided excitation scheme were little explored. It is noted that
the double-sided driven scheme has been employed in the
actuation of vibrational MEMS, such as gyroscopes,33

microphones,34 and comb drives.35 Moreover, a double-sided
actuated CNT-based memory element which operates in the
quasistatic regime has recently been proposed.36 Therefore,
more efforts, including both theoretical modeling and experi-
ments, are needed to the development of double-sided driven
NEMS resonators.

In this paper, we theoretically investigate the electrome-
chanical dynamics of a double-sided driven cantilevered
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nanotube-based electromechanical resonator using both a nu-
merical method and an energy-based analytical method. Our
study focuses on examining the stable steady-state �S-S�
resonant oscillation and resonant pull-in �RPI� phenomenon
of this device, as many applications require that the device
operates in resonance for maximized oscillation amplitude.
Our results also reveal the unique resonant frequency tuning
capabilities of this double-sided driven resonator.

The resonator configuration employed in our study is
schematically shown in Fig. 1 �right�. The device comprises
a conductive CNT cantilever with length L, which is actuated
by two parallel-plate electrodes �I and II�. Both electrodes
have an equal separation with the nanotube, H. For simplic-
ity but not to lose the generality, we employ the square-wave
signals as illustrated in Fig. 1 �left� as the driving signals in
our study. Both signals have the same dc bias Vdc and ac
amplitude Vac, as well as the same period T. There is a 180°
difference in phase between their ac components. Forces act-
ing on the nanotube cantilever from the parallel-plate actua-
tor include electrostatic forces and van der Waals forces from
the respective interaction between the nanotube cantilever
and both electrodes. These forces are opposed by friction
forces from the mechanical damping in the system. The os-
cillation of the cantilever induced by both driving signals is
symmetric with respect to its original unactuated position,
meaning zero static deflection of the cantilever beam. From a
system point of view, the net added energy to the resonator
shown in Fig. 1 by the van der Waals interactions in one
oscillation cycle is zero due to the symmetric oscillation of
the nanotube cantilever. Therefore, the added energy to the
system is the electrostatic energy provided by the parallel-
plate electrodes or the power supply. The dissipated energy
from the system includes the energy loss due to the mechani-
cal damping and the energy loss due to Joule heating from
the electrical resistance in the wiring and the nanotube beam.
For each oscillation period T, if the added energy is equal to
the dissipated energy, the oscillation of the nanotube cantile-
ver reaches its equilibrium or S-S. If the added energy cannot
be balanced by the dissipated energy, dynamic pull-in,37 or
RPI when the nanotube cantilever is in resonance, takes
place and the cantilever beam subsequently snaps onto one
of the electrodes. The dynamic pull-in phenomenon is an
unstable process and typically leads to device failure. There-
fore, the stable S-S oscillation range of the resonator is lim-
ited by its RPI.

II. MODELING

A. Governing equation

The motion of the oscillating nanotube cantilever as
shown in Fig. 1 is assumed to be in the small or linear de-
formation regime and is governed by22

�A
�2r

�t2 + c
�r

�t
+ EI

�4r

�x4 = qelec + qvdW, �1�

where x is the position along the nanotube, r�x , t� is the gap
between the nanotube and electrode I, E is the Young’s
modulus, I is the moment of inertia �for nanotubes,
I= �� /4��Rext

4 −Rint
4 �, Rext and Rint are their outer and inner

radii, respectively�, � and A are the density and cross-
sectional area of the nanotube, respectively, and c is the
damping factor, defined as c=�A�n /Q, in which �n is the
natural frequency of the nanotube cantilever and Q is the
quality factor. qelec and qvdW represent the per-unit-length
electrostatic and van der Waals forces acting on the nanotube
cantilever, respectively. qelec is given by38,39
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where Cp�r� is the per-unit-length capacitance between
the nanotube and electrode I and is given by40

Cp�r�=2��0�cosh−1�1+r /Rext��−1 assuming that both elec-
trode planes are infinite and considering only the uniform
electrical charges along the side surface of the nanotube cyl-
inder. Employing the continuum model38 based on the
Lennard-Jones potential41 and assuming that both electrodes
are N-layer graphite sheets �interlayer distance
d=0.335 nm�, the net qvdW acting on the nanotube can be
approximated by22

qvdW = ��2C6 �
R=Rint

R=Rext �R�
n=1

N 	
−�

� � 1

��n − 1�d + r + 2R�1 + sin 	��5

−
1

��n − 1�d + �2H − r� + 2R�1 + sin 	��5
d	
 , �3�

where ��114 nm−3 is the carbon atom density for graphite
and C6=15.2 eV Å6 is a constant coefficient for carbon-
carbon interactions. It is noted that Eq. �3� only considers the
attractive term of the van der Waals force because the repul-
sive term is negligible here.

B. Analytical analysis

In this section, we derive the closed-form analytical so-
lutions to predict the S-S resonant oscillation and the RPI
conditions of the double-sided driven nanotube-based elec-
tromechanical resonator using an energy-based method.33,42

When the nanotube cantilever oscillates at its tuned resonant
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FIG. 1. �Color online� Schematics of a double-sided driven cantilevered
nanotube-based electromechanical resonator �right� and driving signals
�left�.
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frequency �tun, the S-S oscillation of the cantilever beam
w�x , t� is assumed to follow a sinusoidal function with a 90°
phase lag with respect to the driving signal applied on elec-
trode I as illustrated in Fig. 2. According to the boundary
conditions at both ends of the cantilever, the shape of the
deflected nanotube cantilever is assumed to follow a fourth-
order polynomial, i.e., w�x , t�= �D /3���x /L�4−4�x /L�3

+6�x /L�2�sin��tunt�, in which D is the oscillation amplitude
of the nanotube cantilever tip, as shown in Fig. 1.

The energy loss due to mechanical damping in one os-
cillation cycle is given by


Edamp = − 	
0

L 	
0

T

c� �w�x,t�
�t


2

dtdx = −
104�Lc�tunD

2

405
.

�4�

Noticing that the natural frequency of the cantilever beam
�n= �3.516 /L2��EI /�A, Eq. �4� is rewritten as


Edamp = − 3.175
�EID2

QL3

�tun

�n
. �5�

We assume that the energy loss due to Joule heating in the
electrical wiring is small relative to the energy loss due to the
mechanical damping. Therefore the dissipated energy from
the system can be approximated by 
Edamp.

The energy pumped into the system from the power sup-
ply in one oscillation cycle is calculated as the work done by
the electrostatic force acting on the nanotube in one cycle,
namely,


Eadd = 	
0

L 	
0

T

qelec
�w�x,t�

�t
dtdx = 8��0VdcVacS�D� , �6�

in which

S�D� = 	
0

L 
�cosh−1�1 +
�H − w�

Rext

�−1

− �cosh−1�1 +
�H + w�

Rext

�−1�dx . �7�

It is noted that 2��0S�D� represents the difference between
two capacitances: one between the CNT and electrode I and
the other between the CNT and electrode II. Assuming that
H−D�Rext, S�D� can be approximated by43

S�D� � 	
0

L 
�ln�2�H + Rext�
Rext

�1 −
w

H + Rext


�−1

− �ln�2�H + Rext�
Rext

�1 +
w

H + Rext


�−1�dx . �8�

The oscillation of the cantilever reaches its S-S when the
added energy is equal to the dissipated energy, i.e.,


Eelec + 
Edamp = 0. �9�

Therefore, the S-S resonant oscillation of the device is given
by

S�D� =
0.397EID2

�0VdcVacQL3

�tun

�n
=

0.549VSPI
2

QVdcVac

�tun

�n

LD2

�2�H + Rext�2 ,

�10�

where

VSPI = 0.85
H + Rext

L2 ln�2�H + Rext�
Rext


�EI

�0

is the quasistatic pull-in voltage of cantilevered nanotube
devices with the single-sided electrostatic actuation, which
was derived and experimentally verified in our previous
study,42 and �=ln�2�H+Rext� /Rext�.

Using the lumped model, the tuned resonant frequency
of the actuated nanotube cantilever is given by

�tun

�n
=�1 +

kelec + kvdW

kelas
, �11�

where kelas, kelec, and kvdW are the spring constants corre-
sponding to the elastic, electrostatic, and van der Waals in-
teractions, respectively, and they can be calculated by taking
the second-order derivative of the respective energy with re-
spect to the deflection of the cantilever. For simplicity, we
only consider kelas and kelec in the analysis of the tuned reso-
nant frequency because they play dominant roles in the reso-
nant frequency tuning. We rewrite the displacement of the
nanotube cantilever as w= �wL /3���x /L�4−4�x /L�3

+6�x /L�2�, in which wL is the displacement of the cantilever
tip. For the oscillation of the cantilever tip as shown in Fig.
2, wL=D sin��tunt�. The stored elastic energy from the de-
flection of the cantilever is

Eelas =
EI

2
	

0

L �d2w

dx2 
2

dx =
8EI

5L3 wL
2 . �12�

Therefore, the mechanical spring constant is obtained as

kelas = � �2Eelas

�wL
2 �

wL=0

=
16EI

5L3 . �13�

Because the electrostatic energy is proportional to the
square of the driving voltage, we only consider the electro-
static energy generated by the constant voltage component in
both driving signals in the calculation of the electrical spring
constant, which is given by

0

D

0

-D

T 2T

Vdc+Vac

Vdc-Vac

Vdc

Time

3T

FIG. 2. �Color online� Schematics of the driving signal applied on electrode
I �red curve� and the oscillation motion of the nanotube cantilever tip �blue
curve�.
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Eelec =
Vdc

2 + Vac
2

2
	

0

L

�Cp�H − wL� + Cp�H + wL��dx . �14�

By using the approximation as shown in Eq. �8� and Taylor
series expansion of Eelec with respect to wL / �H+Rext�, the
electrical spring constant is obtained as44

kelec = �−
�2Eelec

�wL
2 �

wL=0

= −
208��0�Vdc

2 + Vac
2 �L

405�H + Rext�2�2 �1 +
2

�

 .

�15�

The tuned resonant frequency of the actuated nanotube
cantilever is approximated by

�tun

�n
��1 − 0.364

�Vdc
2 + Vac

2 �
VSPI

2 �2

�
+ 1
 . �16�

From Eq. �16�, we can clearly see that the tuned resonant
frequency of the electrostatically actuated cantilever is lower
than its natural frequency, i.e., �tun��n, which is due to the
negative spring constant effect of electrostatic interactions,
as shown in Eq. �15�. Equation �16� also reveals that both Vdc

and Vac have to satisfy the following condition in order to
keep the system stable:

Vdc
2 + Vac

2 � 2.747VSPI
2 �2

�
+ 1
−1

. �17�

Inserting Eq. �16� into Eq. �10�, the S-S resonant oscil-
lation of the nanotube cantilever is given by

S�D�

� D

H + Rext

2 =

0.549VSPI
2

QVdcVac

�
L

�2�1 − 0.364
�Vdc

2 + Vac
2 �
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2 �2

�
+ 1
 .

�18�

The instability or RPI happens when

��
Eelec + 
Edamp�
�D

= 0. �19�

From Eqs. �18� and �19�, the RPI conditions are given by

S��DRPI�
2DRPI

�H + Rext�2

=
0.549VSPI

2 L

QVdcVac�
2

��1 − 0.364
�Vdc

2 + Vac
2 �

VSPI
2 �2

�
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 . �20�

Comparing Eq. �20� with Eq. �18�, the RPI oscillation
amplitude of the cantilever tip DRPI can be obtained from

S��DRPI�
S�DRPI�

=
2

DRPI
. �21�

Equation �21� shows that DRPI is independent of the
driving voltages while dependent on the quantity H /Rext.
Figure 3 shows the normalized DRPI as a function of H /Rext

ranging from 10 to 5000, as plotted based on the solution of

Eq. �21�. DRPI increases monotonically from 0.832H to
0.900H with the increase in H /Rext in the given range. It is
noted that the RPI oscillation amplitude DRPI

=0.832H–0.900H is substantially higher than its quasistatic
pull-in limit DSPI=0.66H �Ref. 42� and than the RPI limit
DRPI=0.54H of a double-sided driven MEMS gyroscope �a
micro-plate resonator� reported by Seeger and Boser.33 The
large stable S-S oscillation range of the nanotube cantilever
indicates a large stable operation range for the device, which
is of importance to many of its applications.

Both Eqs. �18� and �20� show that the S-S resonant os-
cillation and the RPI of this double-sided driven resonator
are determined by both the dc and ac components of the
driving signals. In the following section, we discuss the S-S
resonant oscillation and the RPI of the resonator for two
representative driving signals: �1� Vdc=Vac and �2� Vdc�Vac.

III. CASE STUDY AND DISCUSSIONS

A. Vdc=Vac

The driving signals applied on both electrodes become
half-wave signals with a 180° difference between their
phases, implying that the electrodes are becoming active al-
ternatively. This type of driving signals has been utilized in
the actuation of MEMS gyroscopes.33 The S-S resonant os-
cillation of the nanotube cantilever is given by

S�D�

� D

H + Rext

2 =

0.549

Q
�VSPI

Vdc

2

�
L

�2�1 − 0.728� Vdc

VSPI

2�2

�
+ 1
 . �22�

Equation �22� shows the correlation between the S-S reso-
nant oscillation amplitude of the cantilever tip D and the
driving voltage Vdc �and Vac�. We compare the analytical re-
sults based on Eq. �22� with the numerical results obtained
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H

FIG. 3. �Color online� The dependence of the RPI oscillation amplitude of
the cantilever tip on the quantity H /Rext.
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by solving Eq. �1� in predicting the S-S resonant oscillation
and the RPI conditions.

We numerically solve Eq. �1� using the assumed-modes
method,45 which assumes a solution of Eq. �1� in the form
r�x , t�=�i=1

n 
i�t�Yi�x�, in which 
i�t� �i=1,2 , . . .� are the
modal coordinates and Yi�x� �i=1, 2 , . . .� are the linear un-
damped mode shapes of the cantilever beam. Yi�x� is given
by

Yi�x� = Ti�sin �ix − sinh �ix

−
sin �iL + sinh �iL

cos �iL + cosh �iL
�cos �ix − cosh �ix��,

i = 1, 2, . . . , �23�

where �i is the solution of the characteristic equation
cos �iL cosh �iL+1=0 and Ti is a coefficient and can be
obtained through the orthogonal properties of Yi�x�, i.e.,
�0

L�AYi
2�x�dx=1. The modal coordinates 
i�t� are given by45


i�t� =
1

�i
	

0

t

Ni�t − ��sin��i��d�, i = 1, 2, . . . , �24�

in which

Ni�t� = 	
0

L

Yi�x��qelec�x,t� + qvdW�x,t� − c
dr�x,t�

dt

dx

�i = 1,2, . . .� ,

are the modal forces and �i is the ith natural frequency of the
cantilever beam and is given by �i=�i

2�EI /�A. Therefore,
r�x , t� can be obtained as

r�x,t� = �
i=1

n
Yi�x�

�i
	

0

t

Ni�t − ��sin��i��d�, r = 1,2, . . . .

�25�

We utilize five modes, i.e., n=5 in Eq. �25�, in our numerical
simulations.

We consider a nanotube-based resonator with the follow-
ing parameters: L=500 nm, Rint=1.4 nm, and Rout

=3.075 nm �six graphite layers assuming inner layer dis-
tance of 0.335 nm�, E=1 TPa, �=1350 kg /m3, H
=100 nm, and Q=1000. Both electrodes are assumed to be
30-layer graphene sheets. The quasistatic pull-in voltage is
calculated to be VSPI=4.06 V. The natural frequency of the
nanotube cantilever is �n=647�106 rad /s or fn

=103 MHz. In our numerical simulation, we determine the
resonant frequency for each driving voltage using a fre-
quency sweeping approach. When the nanotube cantilever
oscillates at its tuned resonant frequency, its oscillation lags
the driving voltage by 90° in phase. By monitoring the phase
difference between the oscillation and the driving voltage,
the tuned resonant frequency and the corresponding S-S os-
cillation amplitude can be determined from the phase and
amplitude responses of the oscillating cantilever.

Figures 4�a� and 4�b� show the S-S oscillation amplitude
and phase responses of the nanotube cantilever as a function
of the driving frequency f for three driving voltages Vdc

=0.0183VSPI, 0.0193VSPI, and 0.0197VSPI, respectively. Be-
cause the tuned resonant frequency of the cantilever beam is
fr� fn, in our simulation the driving frequency starts from fn

and decreases at a fixed interval, which is 800 Hz in our
study. The y axis of Fig. 4�b�, denoted as �, represents the
phase lag between the oscillation of the nanotube and the
driving signal applied on electrode I. The tuned resonant
frequency for each driving voltage corresponds to a 90°
phase difference between the oscillation and the driving sig-
nal and is determined from the curves in Fig. 4�b�. Subse-
quently, we obtain the oscillation amplitude of the nanotube
cantilever oscillating at its tuned resonant frequency from
Fig. 4�a�. It is clear that the resonant frequency decreases
with the increase in the driving voltages, while the resonant
oscillation amplitude increases with the increase in the driv-
ing voltage. It is noted that the driving frequency corre-
sponding to the peak �maximum� oscillation amplitude does
not coincide with the tuned resonant frequency, which is due
to a frequency shift caused by the damping in the system.
However, when the Q factor is sufficiently large, the resonant
oscillation amplitude is almost equal to the peak oscillation
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FIG. 4. The S-S oscillation �a� amplitude and �b� phase responses of the
cantilever tip as a function of the driving frequency f for three given Vdc and
Vac. The diamond curve in �a� shows the dependence of the peak oscillation
amplitude on the driving frequency.
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amplitude. The dependence of the peak oscillation amplitude
on the driving frequency is shown in the diamond curve in
Fig. 4�a�. The oscillation of the cantilever tip obtained by our
numerical simulations is exemplified in Fig. 5. The driving
voltage is Vdc=Vac=0.0193VSPI and the driving frequency is
f = fn−10.4 kHz, which is its tuned resonant frequency and
corresponds to a S-S oscillation amplitude of about 0.67H. It
can be seen that the oscillation of the cantilever tip can be
divided into two regions: the transient region and the S-S
region. In the transient region, the oscillation amplitude in-
creases monotonically with time, while in the S-S region, the
oscillation amplitude stays in a constant mode. The S-S os-
cillation amplitude of the cantilever tip is half of the oscilla-
tion range of the cantilever tip in the S-S region.

Figure 6 shows a detailed view of a part of the S-S
oscillation shown in Fig. 5. Figure 6 also illustrates the driv-
ing signal applied on electrode I. It can be seen that the
oscillation of the cantilever tip in the S-S region is a

sinusoidal-like function with a phase lag of approximately
90° with respect to the driving signal, both of which are in
good agreement with the aforementioned assumptions in de-
riving the closed-form analytical solutions.

Figure 7 illustrates the S-S electromechanical character-
istics of the resonator obtained from the closed-form analyti-
cal solution given by Eq. �22�. The analytical solution curve
shows that the S-S resonation amplitude of the cantilever tip
increases monotonically with the increase in the driving volt-
age until the driving voltage reaches its maximum. The
maximum driving voltage is indicative of the occurrence of
the resonant pull-in phenomenon. In the region close to the
RPI, it is noticed from Fig. 7 that each driving voltage cor-
responds to two oscillation amplitudes. One is smaller than
the RPI amplitude �DRPI=0.843H�, while the other is higher
than the RPI amplitude. However, only the one smaller than
the RPI amplitude is a stable solution, while the other is an
unstable solution and can only be captured through the in-
corporation of a feedback control mechanism.35,46 Figure 7
also shows a comparison between the analytical predictions
and the numerical simulations, which are in good agreement
in predicting both the S-S resonant oscillation and the RPI
conditions. Both methods show that RPI voltage Vac

RPI=Vdc
RPI

�0.0204VSPI, which implies that the tuned resonant fre-
quency is only slightly lower than its natural frequency based
on Eq. �16�. This observation is consistent with our numeri-
cal simulation results. On the other hand, it suggests that the
resonant frequency tuning capability of the device for such
driving signals is quite limited. The good agreement between
the closed-form analytical solutions and the numerical simu-
lations show that our closed-form analytical formulas can be
used confidently in predicting the S-S resonant oscillation
and the RPI conditions in such devices.

B. VdcšVac

Under such driving voltages, the resonant frequency of
the actuated nanotube cantilever �tun is mainly tuned by Vdc

and is given by

FIG. 5. �Color online� The motion of the cantilever tip as a function of time.
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FIG. 6. �Color online� The motion of the cantilever tip in the S-S resonation
�blue curve�. The red dotted curve represents the square-wave driving signal
applied on electrode I.
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the double-sided driven resonator.
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�tun

�n
��1 − 0.364� Vdc

VSPI

2�2

�
+ 1
 . �26�

Equation �26� reveals that tuned resonant frequency �tun

is inversely correlated with Vdc. The S-S resonant oscillation
of the nanotube cantilever tip is given by

S�D�

� D

H + Rext

2 =

0.549VSPI
2 L

QVdcVac�
2 �1 − 0.364� Vdc

VSPI

2�2

�
+ 1
 .

�27�

Equation �27� shows that the stable S-S resonant oscil-
lation amplitude of the cantilever tip D can be controlled by
Vac. Therefore, the processes of tuning the resonant fre-
quency and controlling the stable S-S oscillation amplitude
of the nanotube cantilever are decoupled and can be con-
trolled separately by Vdc and Vac, respectively. The maximum
stable oscillation range of the cantilever tip, or twice of its
RPI oscillation amplitude, is not affected by the electrostatic-
force-induced frequency tuning. Such unique resonant fre-
quency tuning capability is superior to the resonant fre-
quency tuning in resonators with a single-sided excitation
scheme.

For a cantilevered beam-based resonator with the single-
sided excitation scheme, the constant force component in the
driving electrostatic force induces a static deflection of the
cantilever beam, reducing the gap between the cantilever and
the electrode. Therefore, the maximum stable oscillation am-
plitude of the cantilever becomes smaller because the RPI
phenomenon takes place at a smaller oscillation amplitude.
Because the electrostatic-force-induced frequency tuning in-
evitably induces static deflection of the cantilevered beam,
the maximum stable oscillation range of the cantilever is
decreased by its static deflection. Such limitation on the
stable oscillation range of the device becomes more severe
when a large static deflection is induced as a result of the
electrostatic-force-induced resonant frequency tuning, and
therefore may negatively impact its applications. This limi-
tation can be effectively avoided in the double-sided driven
resonator as presented in this paper. The unique behavior in
resonant frequency tuning associated with the double-sided
excitation scheme makes the resonator attractive for many
applications such as tunable sensors for ultratiny mass and
forces and tunable electronics.

Using the aforementioned device parameters, we analyze
the S-S resonant oscillation and the RPI conditions of the
device for three different driving signals with their dc com-
ponent Vdc fixed at 0.8VSPI, 1.0VSPI, and 1.2VSPI, respec-
tively. Using Eq. �26�, the corresponding tuned resonant fre-
quencies are estimated to be 0.810�n, 0.680�n, and 0.475�n,
respectively. Figure 8 shows the stable S-S resonant charac-
teristics and RPI for all three driving voltages, which are
plotted based on Eq. �27�. The RPI limits of the ac compo-
nent Vac are found to be 4.21�10−4VSPI, 2.83�10−4VSPI, and
1.65�10−4VSPI, respectively. Our results show that the ap-
plied Vac in the driving voltages for the stable S-S resonation
of the device is much smaller than Vdc, implying that Vac has
little impact on the resonant frequency tuning. The pull-in

oscillation amplitude is DRPI=0.843H for all three cases. All
three curves shown in Fig. 8 display a linear relationship
regarding the dependence of D on Vac within a fairly large
range, e.g., D from 0 to 0.6H. Such linear correlation is
useful to the control of the stable S-S oscillation amplitude
of the resonator.

IV. THE LIMITATION OF THE CURRENT MODELS

There are several assumptions and simplifications in the
theoretical model presented in this paper. The present model
does not take in account the finite kinematics �large displace-
ment� of the oscillating nanotube cantilever39,42 or the con-
centration charges at the free end of the nanotube
cantilever.47 In addition, when the nanotube is on the order of
a few nanometers in diameter, such as single-walled CNTs,
the quantum effect becomes prominent and has to be taken
into account in the calculation of the charge distribution on
the surface of the nanotube because the density of states on
the surface of the nanotube with a small diameter is limited
and the electrical charges may penetrate inside the
nanotube.48 Though the aforementioned factors, if omitted,
are expected to result in deviations in predicting the device’s
electromechanical dynamics, we believe that the results as
presented in this paper regarding the overall S-S resonant
oscillation and RPI behaviors of the resonator will not be
substantially impacted.

V. CONCLUSION

In summary, in this paper, we investigate the electrome-
chanical dynamics of a double-sided driven cantilevered
nanotube-based electromechanical resonator. Closed-form
analytical solutions capable of predicting the S-S resonant
oscillation and the RPI conditions are derived using an
energy-based method. They were then verified through a
comparison with numerical simulations. Our results clearly
reveal the device’s electromechanical dynamics associated
with the double-sided excitation scheme regarding the reso-
nator’s stable operation range and resonant frequency tuning.

0.0000 0.0001 0.0002 0.0003 0.0004
0.0

0.2

0.4

0.6

0.8

1.0

Vdc=1.2VSPI
Vdc=1.0VSPI
Vdc=0.8VSPI

D
H

ac

SPI

V
V

FIG. 8. The S-S resonant characteristics, including RPI, of the double-sided
driven resonator for three tuned resonant frequencies by Vdc.
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The results reported in this paper will be useful to the opti-
mal design of double-sided driven nanotube or nanowire
base electromechanical resonators. The methodologies pre-
sented in this paper can be useful to study other novel nano-
scale electromechanical systems.
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