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We present a numerical analysis of the mechanical deformation of carbon nanotube (CNT)

nano-rings on flat graphite substrates, which is motivated by our recent experimental findings on

the elastic deformation of CNT nano-rings. Our analysis considers a perfectly circular CNT ring

formed by bending a straight individual or bundled single-walled nanotube to connect its two ends.

The seamless CNT ring is placed vertically on a flat graphite substrate and its respective

deformation curvatures under zero external force, compressive, and tensile forces are determined

using a continuum model based on nonlinear elastica theory. Our results show that the van der

Waals interaction between the CNT ring and the substrate has profound effects on the deformation

of the CNT ring, and that the interfacial binding interaction between the CNT ring and the

substrate is strongly modulated by the ring deformation. Our results demonstrate that the CNT ring

in force-free conditions has a flat ring segment in contact with the substrate if the ring radius

R �
ffiffiffiffiffiffiffiffiffi

EI
2Wvdw

q
, in which EI is the flexural rigidity of the nanotube and Wvdw is the per-unit-length van

der Waals energy between the flat ring segment and the substrate. Our results reveal that the

load-deformation profiles of the CNT ring under tensile loadings exhibit bifurcation behavior,

which is ascribed to its van der Waals interaction with the substrate and is dependent on its relaxed

conformation on the substrate. Our work suggests that CNT nano-rings are promising for a number

of applications, such as ultrasensitive force sensors and stretchable and flexible structural components

in nanoscale mechanical and electromechanical systems. VC 2011 American Institute of Physics.

[doi:10.1063/1.3554406]

I. INTRODUCTION

Carbon nanotube (CNT) closed-ring type structures

have been reported in both as-grown and posttreated sam-

ples. CNT nano-rings formed by individual or bundled sin-

gle-walled and multi-walled carbon nanotubes have been

synthesized directly using the laser ablation1 and chemical

vapor deposition (CVD)2 methods. The CNT nano-ring can

be also formed through folding a long nanotube fiber either

by partially overlapping itself3–5 or by having its two pre-

functionalized ends connected.6 The self-folding formation

of circular structures is due to the fact that the bending in the

nanotube is balanced by the van der Waals (vdw) interaction

between contacting nanotube surfaces. The CNT folding pro-

cess can be facilitated by ultrasonic agitations7,8 and surface

chemical functionalization.9–11

The formation mechanism and the stability of CNT

nano-rings have been theoretically investigated by a variety

of modeling techniques, including tight-binding and semiem-

pirical quantum mechanics,12 molecular dynamics,13–19 con-

tinuum mechanics,16,20 and thermodynamics.21 From these

theoretical studies, two nanotube ring formation mechanisms

are proposed. The nano-ring can be formed by either pure

hexagon networks or a hexagon structure with pentagon-hep-

tagon defects. It is reported that, for nano-rings with large

ring diameters, the pure hexagon structure is energetically

more stable and the ring curvature is accommodated by the

bending of the nanotube. For nano-rings with small ring

diameters, the mixture of hexagon networks and pentagon-

heptagon defects is energetically more favorable with the

ring curvature accommodated by pentagon-heptagon defects.

It is also observed that buckling and ripples may be formed

in nanotube rings, which are closely related to the respective

diameters of the ring and the tube. The critical nanotube

length that is required to form a perfectly circular ring struc-

ture is found to increase with diameter. Nanotubes with

smaller diameters will form perfect ring structures for

smaller tube lengths.

Because CNTs are considered one of the strongest and

most flexible materials as a result of the C-C covalent bond-

ing and the seamless hexagonal network architecture, CNT

nano-rings hold great potential for a number of applications

such as flexible and stretchable load-bearing structural com-

ponents in nanoscale systems. For the pursuit of such appli-

cations, it is imperative to understand the elastic behavior of

the CNT nano-ring, in particular, when it is in contact with

other surfaces or substrates. However, the mechanical defor-

mation of CNT rings under external loadings has been little

explored either theoretically19 or experimentally.22 Only

very recently, the mechanical deformation of carbon nano-

tube nano-rings against a flat substrate under both compres-

sive and tensile loadings were experimentally characterized

by our group using in situ nanomanipulation techniques

inside a high-resolution scanning electron microscope.22 Our

experimental results clearly show that the CNT nano-ring

possesses purely elastic behavior in both tension anda)Electronic mail: cke@binghamton.edu
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compression within the large displacement deformation re-

gime. Our experimental results also reveal that the vdw inter-

action between the nanotube ring and the substrate has

profound impacts on its mechanical deformation. Partially

motivated by our experimental observation of the mechani-

cal deformation of nanotube nano-rings, in this paper we

present a numerical analysis of the mechanical deformation

of CNT nano-rings in contact with flat substrates using a

continuum model based on nonlinear elastica theory. Our

model takes into account the vdw interaction between the

nano-ring and the substrate and reveals its respective elastic

deformation curvatures in force-free conditions, and under

compressive and tensile loadings.

II. MODELING

In this section, we present a continuum model based on

nonlinear elastica theory to study the mechanical deforma-

tion of the CNT ring. In our model, the CNT circular ring is

formed by bending a long and straight single-walled carbon

nanotube (SWNT) to connect its two ends, thus the ring cur-

vature is accommodated by the bending moment in the nano-

tube. The nanotube segment is theoretically modeled as an

inextensible elastica rod.23–25 This modeling assumption is

consistent with the previous experimental observation that

carbon nanotubes could be repeatedly bent to large angles

and strain with no permanent distortion of the tube topogra-

phy.26 In our modeling, we consider that the radius of the

CNT ring is significantly larger than that of the CNT by

more than one order of magnitude. Considering that the stiff-

ness of a circular structure is inversely proportional to the

third power of its radius,27 the nanotube radial deformation

is considered to be negligible in our analysis and the nano-

tube circular cross section is assumed to remain intact during

the ring deformation process because the cross-section stiff-

ness of the nanotube is more than three orders of magnitude

higher than that of the CNT ring. In our model, we consider

the mechanical deformation of the nanotube ring in contact

with a N0-layer graphite sheet (a) in force-free conditions

(zero external force), (b) under compressive pushing force,

and (c) under tensile pulling force, as illustrated in Figs.

1(a)–1(c), respectively. The considered external point load

applied on the CNT ring is consistent with our experimental

measurements and is of generality when the CNT ring is

used as a force sensor or load bearing structural component

in nanoscale mechanical systems. It is noted that the analysis

presented in this paper for this load type can be readily

extended to other types of loads (e.g., distributed loads).

Due to the vdw interaction between the CNT ring and

the substrate, a flat ring segment may come into being on the

contact interface with the substrate. As shown in our later

analysis, the existence of the flat ring segment is dependent

on the strength of the vdw interaction and the flexural rigidity

of the CNT ring segment. Only if the nanotube ring radius is

smaller than a threshold value will the ring keep its perfectly

circular shape when it stands on the substrate. The diagram

of a CNT ring of a flat contact with the substrate under an

external load P is illustrated in Fig. 2(a). The free-body dia-

gram of the ring segment DG is schematically shown in Fig.

2(b). Symmetry allows us to study one-half of the configura-

tion, i.e., 0 � s � l, where s is the arc length starting from

point D, and l is one-half of the length of the ring segment in

the noncontact region. The inextensible condition gives

aþ l¼ pR, in which a is one-half of the length of the ring

flat segment, and R is the ring radius. In the free-body dia-

gram as shown in Fig. 2(b), T, V, and M represent the ten-

sion, shear, and bending moment on the nanotube cross-

section at s, respectively. The reaction tension, shear, and

bending moment at D (s¼ 0) are denoted as TD, VD, and MD,

respectively. From the symmetry, we can easily obtain that

the shear force VD at s¼ 0 equals to one-half of the external

force P, i.e., VD ¼ P
2
.

A. Ring–substrate interaction

We use a continuum model to calculate the vdw interaction

between the CNT ring and the substrate based on the Lennard–

Jones (L–J) potential, which defines the potential between two

atoms as / ¼ C12

r12 � C6

r6 in which r is the interatom distance,

and C6 and C12 are material constants (for carbon–carbon inter-

actions, C6¼ 15.2 eV Å6 and C12¼ 24.2 KeVÅ12). The per-

unit-length vdw energy between a single-walled nanotube and

an in-parallel N0-layer graphite sheet is given by28

Wvdw¼ pRCNTr2
XN0

N¼1

�
ðp

�p

C12

5 r0 þ d0 N�1ð Þþ RCNT 1 þ sinbð Þ½ �10

 (

� C6

2 r0 þ d0 N�1ð Þþ RCNT 1 þ sinbð Þ½ �4

!
db

)
(1)

FIG. 1. Schematics of a circular CNT

ring in contact with a flat substrate under

(a) zero external force; (b) a compres-

sive point force; (c) a tensile point force.
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where r¼ 38/nm2 is the graphene surface density, RCNT is

the nanotube radius, r0 is the distance between the bottom

atom of the CNT cross section and the top graphene layer of

the graphite substrate, and d0¼ 0.335 nm is the graphene

interlayer distance. It is noted that the per-unit-length vdw
force fvdw ¼ dWvdw

dr0
.

When the CNT has a flat ring segment in contact with

the substrate, we assume that the vdw interaction between

the noncontact portion of the ring and the substrate is negli-

gible,29 and only consider the vdw interaction in the flat con-

tact region. In the flat contact region, the contact between the

CNT ring and the substrate is under a quasistatic balance

between the elastic deformation of the ring segment and the

vdw interaction, meaning that the vdw interaction-based ad-

hesion between the CNT ring and the substrate has to bal-

ance the bending moment in the ring segment at point D.30,31

Therefore, the equilibrium conditions give

VD ¼ fvdw r0ð Þ a ¼
P

2
(2)

Wvdw r0ð Þ ¼
M2

D

2EI
(3)

where E and I are the Young’s modulus and the moment of

inertial of nanotubes, respectively. For SWNTs, the moment

of inertial I ¼ p
4

R4
CNT

B. Elastica model

For the nonlinear elastica model, we introduce the fol-

lowing dimensionless quantities: �s ¼ s
R, �x ¼ x

R, �y ¼ y
R,

�T ¼ T
EI =R2, �V ¼ V

EI =R2, �M ¼ M
EI =R, �P ¼ P

EI =R2, and �a ¼ a
R.

The deformation of the CNT ring is given by

d2h
d�s2
¼ �T sin h � �V cos h; (4)

where h is the angle between the tangent of the ring segment

at s and the x-axis. At point D (s¼ 0), �xD ¼ �a, hD¼ 0 and
dh
d�s

��
D
¼ �MD. By integrating Eq. (4), we obtain,

dh
d�s
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

q
: (5)

For the CNT ring under pulling forces or zero external force,

it is clear that dh
d�s � 0 for 0 � h � p. For the CNT ring in

compression, an inflection point may exist in its deformation

curvature, which is denoted as (s*, h*) in the (s, h) coordi-

nate system. These two cases are analyzed separately in the

following sections.

1. CNT ring under zero external force or under tensile
forces

From integrating Eq. (5), we obtain

�s hð Þ ¼
ðh

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh: (6)

Considering d�x ¼ cos h d�s and d�y ¼ sin h d�s, Eq. (6) gives

�x hð Þ ¼
ðh

0

cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dhþ �a

(7a)

�y hð Þ ¼
ðh

0

sin hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh: (7b)

The boundary conditions at point A are �xA ¼ 0, hA¼ p, and

�sA ¼ p � �a. Therefore,ðp

0

cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh ¼ � �a (8a)

ðp

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh ¼ p � �a: (8b)

The deformation curvature of the CNT ring can be obtained

by solving the equation set including Eqs. (2), (3), (8a), and (8b).

FIG. 2. (Color online) (a) Schematic of a CNT ring of a flat ring segment in

contact with a N0-layer graphite substrate under a tensile force P; (b) the

free-body diagram of a ring segment.
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This equation set involves four unknown variables, r0, �a, �TD,

and �MD, and can be solved efficiently using a shooting

method.

When no external force is applied on the CNT ring, i.e.

P¼ 0, the relaxed conformation of the CNT ring on the sub-

strate is determined by the flexural rigidity of the nanotube and

its vdw interaction with the substrate. From Eq. (8b), we obtainðp

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ þ �M2

D

p dh ¼ p � �a: (9)

The reaction force �TD ! 0 as the contact length between the

CNT ring and the substrate tends to be very small. Therefore,

if the CNT ring has a flat ring segment in contact with the

substrate (i.e., �a > 0), the following condition has to be satis-

fied, �M2
D > 1. This result shows that the critical ring radius

for the CNT ring to have a flat contact with the substrate,

Rcr
flat, is given by

Rflat
cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

2Wvdw

r
(10)

It is noted that similar phenomena have been reported in

prior studies of the radial deformation of individual SWNTs

on a flat substrate32 or between two neighboring SWNTs29

that are purely due to the vdw interaction. The reason that

the CNT ring may remain as a perfectly circular structure on

a flat substrate is due to the fact that the CNT ring employed

in our study is not internal force-free for its undeformed con-

figuration and an internal bending moment is accommodated

by its circular ring conformation.

2. CNT ring under compressive forces

When the CNT ring is pushed against the substrate

under compressive forces, inflection points may develop in

the curvature of the deformed CNT ring. The slope of the

CNT ring curvature in the (s, h) coordinate system, i.e., dh
ds,

changes from positive to negative around the inflection point

(s*, h*), while at the inflection point dh
ds¼ 0. From Eq. (5), we

obtain,

2 �TD 1� cos h�ð Þ � �P sin h� þ �M2
D ¼ 0: (11)

The deformation curvature of the CNT ring in compression

without inflection points can be obtained by solving the

equation sets for CNT rings in tension, as presented in

Sec. II.B.1. The deformation curvature of the CNT ring in

compression with inflection points is given byðh�

0

coshffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh

�
ðp

h�

cos hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh ¼ � �a (12a)

ðh�

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh

�
ðp

h�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 �TD 1� cos hð Þ � �P sin h þ �M2

D

p dh ¼ p � �a:

(12b)

The boundary conditions at points D and A are �xD ¼ �a,

�yD ¼ 0, �xA ¼ 0, hA¼p. The deformation curvature of the

CNT ring in compression with inflection points can be

obtained by numerically solving the equation set that con-

sists of Eqs. (2), (3), (11)–(12) and that involves five

unknown variables, h*, r0, �a, �TD, and �MD.

For the CNT ring in compression, tension, or force-free

conditions, the total potential energy of the system is given

by

U ¼ 2

ðl

0

EI

2

dh
ds

� �2

ds � 2aWvdw � PDyA; (13)

where the first term is the strain energy stored in the

deformed CNT ring, the second term is the vdw energy

between the CNT ring and the substrate, and the third term is

the work done by the external force [DyA is the vertical dis-

placement of point A in Fig. 2(a)]. The dimensionless poten-

tial energy is given by �U ¼ U
EI=R.

3. The applicable range of the elastica model

The elastica model presented in the previous sections is

based on nanotube rings of perfectly circular geometry. Prior

continuum and atomistic modeling studies have shown that

the CNT in a ring structure can buckle and the ring actually

becomes polygon shapes,16,18 which is due to the fact that

the deformation of the carbon network in the CNT can not

be accommodated by the smooth circular curvature of the

ring. The buckling of the CNT ring largely depends on the

ratio between the ring radius R and the nanotube radius

RCNT. Therefore, it is of importance to identify the applicable

range of the elastica model in term of the geometrical param-

eters of the CNT ring. Based on the work reported by Hod et
al.,16 the critical CNT ring radius for the ring to keep an

unbuckled and perfectly circular shape is given by

Rbuckle
cr ¼ ncr

2

2
RCNT (14)

where ncr is the minimal integer for a perfectly circular ring

structure and can be obtained based on atomistic

simulations.

It is noted that the buckling of the CNT ring is depend-

ent on the chirality of the nanotube that determines the tube

radius.33 We consider two representative types of single-

walled carbon nanotubes, namely arm-chair (m, m) and zig-

zag (m, 0) nanotubes, in which m is the chiral vector index.

The dependences of the critical ring radii Rcr
flat and Rcr

buckle

on the tube radius for both arm-chair and zigzag nanotubes

are shown in Figs. 3(a) and 3(b), respectively. For arm-chair

tubes we use ncr¼ 8 and for zig-zag tubes we use ncr¼ 13 in

the calculation of Rcr
buckle, which are presented in the circle

curves in Figs. 3(a) and 3(b), and are consistent with the data

(diamond curves) from the molecular dynamic (MD) simula-

tion reported in Ref. 33. For both types of tubes, our results

show that Rcr
buckle > Rcr

flat for the indicated nanotube radius

range. Therefore, the region above the circle/diamond curves

in both Figs. 3(a) and 3(b) corresponds to an unbuckled CNT

ring at a flat contact with the substrate. Because accurate

074304-4 M. Zheng and C. Ke J. Appl. Phys. 109, 074304 (2011)

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



modeling of the buckling of the CNT ring requires the con-

sideration of the microscopic structure of the nanotube, it

may be only properly treated using atomistic-level modeling

techniques. In this study, we only consider CNT rings with

geometrical parameters in the unbuckled configuration

range.

III. RESULTS AND DISCUSSION

To illustrate mechanical deformation of the CNT ring as

presented in Sec. II, we consider a CNT ring formed by

bending a straight arm-chair (10,10) SWNT to connect its

two ends and form a closed circular structure. This CNT ring

is vertically placed on a 40-layer graphite sheet. The radius

of the (10,10) SWNT is 6.78 Å.34 The axial elastic strength

of the CNT is ascribed to the covalent C-C bonding, and the

Young’s modulus of the nanotube E¼ 1 TPa is employed in

the simulation.35 Figures 4(a) and 4(b) show Wvdw and fvdw

for a straight (10,10) tube segment above a 40-layer graphite

sheet at different gap distance r0, respectively. It is noticed

that the fvdw plot displays a bifurcation in the attractive force

zone, while displaying a simple monotonous profile in the re-

pulsive force zone. The solid segment of the vdw force curve

that has positive slope indicates that the vdw force increases

with the gap, while the vdw force decreases with the increase

of the gap for the dotted segment.

The equilibrium gap distance between the nanotube seg-

ment and the top graphene sheet is found to be 3.144 Å based

on Eq. (1), which is in good agreement with the value (3.152 Å)

obtained by using a full atomistic model that sums up the

vdw interaction between each pair of carbon atoms on the

CNT and the graphite sheet. It is noted that this equilibrium

gap distance is smaller than that of two parallel single-layer

graphene sheets, which was reported to be in the range of

0.34�0.35 nm.29,34,36,37

On the basis of Fig. 3(a), a CNT ring of 0.678 nm in

tube radius and 40 nm in ring radius has a flat ring segment

in contact with the substrate and does not buckle. The

relaxed deformation curvature of this CNT ring on the

FIG. 3. (Color online) Dependences of the critical ring radii for a CNT ring

of no flat contact with the substrate (red-square curve) and of no buckling

(black-circle curve) on the nanotube radius based on the predictions using

the continuum models. The blue-diamond points represent the reported MD

data about the buckling of the CNT ring in Ref. 33. Data shown in (a) are

for arm-chair nanotubes; while data shown in (b) are for zig-zag nanotubes.

FIG. 4. (Color online) The dependence of the per-unit-length van der Waals

energy (a) and force (b) between a straight (10, 10) SWNT segment and a

40-layer graphite sheet on the gap distance.
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graphene sheet in the force-free condition (i.e., P¼ 0) is pre-

sented as the solid curve in Fig. 5(a), which is contrasted

with its original circular shape as shown in the dotted curve.

The width of the flat ring segment, 2a, and the height of the

deformed ring, AB, are calculated to be 59.1 nm and 55.3

nm, respectively. The per-unit-length vdw energy at the flat

contact region Wvdw¼ 0.27 nJ/m. These results clearly show

that the vdw interaction between the CNT ring and the sub-

strate has a substantial effect on the ring deformation, even

in external force-free conditions.

Using the nonlinear elastica model presented in Sec. II,

we determine the deformation curvatures of the CNT ring

under both compressive and tensile loadings. Selected defor-

mation curvatures of the CNT ring at various applied forces

are presented in Fig. 5(b). Our results show that the flat ring

segment becomes shorter when the ring is subject to tensile

loadings and, at the same time, the height of the CNT ring

becomes longer and the width of the CNT ring, EF, becomes

smaller. When the CNT ring is subject to compressive load-

ings, two distinct deformation configurations occur, depend-

ing on the magnitude of the load. For small compressive

loads, the overall deformation curvature of the CNT ring

does not change dramatically from its relaxed conformation

and the slope of the deformation curvature in the (s, h) coor-

dinate system remains nonnegative, as exemplified by curve

4 ( �P¼�2.1) shown in Fig. 5(b). In such a loading regime,

both the width of the CNT ring and the contact length

between the ring and the substrate increase with the load,

while the height of the ring decreases with the increase of

the load. When the applied compressive load exceeds a cer-

tain value, inflection points show up in the deformation cur-

vature of the CNT ring. The slope of the deformation

curvature changes sign at the inflection point from positive

to negative, then the slope becomes zero at point A. For such

loading conditions, the curvature of the deformed CNT ring

displays a concavity, as exemplified by curve 5 ( �P¼�6.4)

and curve 6 ( �P¼�9.1) in Fig. 5(b). The comparison

between curves 5 and 6 in Fig. 5(b) show that the width of

the deformed CNT ring actually decreases with the increase

of the load, contrasting with the width increase under the

small compressive load. Figures 6(a)–6(f) show the respec-

tive dependences of six pertinent parameters of the ring de-

formation on the applied load, including (a) the ring height,

(b) the width of the flat ring segment, (c) the gap distance

between the ring flat segment and the substrate, (d) the

potential energy of the system, (e) the axial tensile force in

the nanotube at point D, and (f) the bending moment in the

nanotube at point D. It is noticed that all the plots in Fig. 6

display bifurcation behavior when the CNT ring is subject to

tensile loading, while displaying monotonous curves when

the CNT ring is in compression. The bifurcation indicates

that one tensile load corresponds to two equilibrium ring de-

formation configurations, which are respectively represented

by the square and the circle branches in Figs. 6(a)–6(f). This

bifurcation is due to the fact that the vdw interaction displays

a bifurcation in the attractive-force regime, as shown in Fig.

4(b). The square and circle branches in Figs. 6(a)–6(f) corre-

spond to the vdw interaction as shown by the solid and the

dotted segments in Figs. 4(a) and 4(b), respectively. Under

the same tensile load, the height of the deformed CNT ring is

higher for the circle branch of the bifurcation, while the

length of the flat contact between the CNT ring and the sub-

strate is longer for the square branch. It is noted that the

length of the flat contact as shown by the circle branch is in

the sub-nm regime, implying a nearly point contact between

the CNT ring and the substrate. This difference is also

clearly shown through the comparison between curves 1 and

2 in Fig. 5(b). The total potential energy of the system as pre-

sented in Fig. 6(d) reveals that the total potential energy of

the circle branch is always higher than that of the square

branch. Our analysis shows that the deformation curvatures

of the CNT ring represented by the square branch of the

bifurcation are stable equilibrium configurations, while the

circle branch represents unstable equilibrium configurations.

Fig. 6(e) shows that the ring segment in contact with the sub-

strate is actually under compressive axial force, which is oppo-

site to the initial tension force assumption shown in Fig. 2(b).

FIG. 5. (Color online) (a) Comparison between the relaxed deformation cur-

vature (black-solid curve) and the original conformation (red-dotted curve)

of a CNT circular ring of 40-nm in ring radius standing on the graphite sub-

strate with zero external force. (b) Representative deformation curvatures of

the CNT ring shown in (a) under a variety of tensile and compressive loads.
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The compressive axial force transits to tensile force only

when a significant external compressive load is applied on

the CNT ring.

It is noted that the external load equals the product of

the contact length 2a and the per-unit-length vdw force fvdw,

the latter of which is determined by the gap distance r0.

The square branch in Fig. 6(b) shows that the magnitude of

the pulling force is inversely correlated with contact length

and that the maximum pulling force occurs at a very small

contact length, while the magnitude of the pushing force in

general is positively correlated with the contact length. There

is a very small variation of the gap distance between the

CNT ring and the substrate as shown by the square curve in

Fig. 6(c). The external load corresponding to the maximum

FIG. 6. (Color online) The respective dependences of six pertinent quantities about the CNT ring deformation on the applied load: (a) the CNT ring height, (b)

the length of the flat ring segment, (c) the gap distance between the ring flat and the substrate, (d) the total potential energy in the system, (e) the axial force in

the CNT ring segment at point D, and (f) the bending moment in the CNT ring segment at point D. The black-square branches represent the stable ring defor-

mation configurations, while the blue-circle branches represent the unstable ring deformation configurations.
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fvdw is actually much smaller than the maximum external

force as a result of the very small contact length. This obser-

vation suggests that the change of contact length between the

nanotube ring and the substrate is a gradual pull-off or push-

on process, which is strongly modulated by the deformation

of the CNT ring that has a very low stiffness.

Figure 6(a) shows that the height of the deformed CNT

ring displays a nearly linear relationship with the applied

compressive load for �P ranging from 0 to �6.4 and the corre-

sponding ring height AB from 1.4R to 0.5R. We define the

stiffness or the spring constant of the ring as k ¼ DP
DAB

and

the corresponding dimensionless quantity �k ¼ k
EI=R3. For the

CNT ring shown in Fig. 5(a), its spring constant is calculated

to be k¼ 17.2 mN/m. We analyze the stiffness of the CNT

ring of ring radius ranging between 30 nm and 70 nm, all of

which fall into the region above the circle/square curves in

Fig. 3(a). The dependence of the ring’s spring constant on

the ring radius is presented in Fig. 7(a). Our results reveal

that the normalized stiffness of the ring (�k) is linearly propor-

tional to the ring radius, and thus the stiffness of the ring in

compression is inversely proportional to the square of the

ring radius, i.e., k � EI
R2. By properly selecting the ring pa-

rameters, our work suggests that CNT rings can be used as

ultrasensitive force sensors and stretchable and flexible struc-

tural components in nanoscale mechanical and electrome-

chanical systems.

We examine the effect of the substrate on the mechani-

cal deformation of the CNT ring. Without the substrate, the

mechanical deformation of circular ring structures under two

balanced point loads is a classical structural mechanics prob-

lem and its analytical solutions, based on nonlinear elastica

theory, were reported in Ref. 27. The comparison of the me-

chanical deformations of the CNT ring as shown in Fig. 5(a)

with and without the contacting substrate is presented in Fig.

7(b). Our results show that, under tensile loading, the me-

chanical deformation of the CNT ring without the substrate

[solid curve in Fig. 7(b)] overlaps well with the circle branch

of the elastic profile of the CNT ring that is in contact with

the substrate. In the compressive loading regime, the me-

chanical deformation profile of the CNT ring under two point

loads displays a nonlinear relationship and the slope of the

force–ring height profile is smaller than that of the same

CNT ring interacting with the substrate. It is noticed that the

mechanical deformation of the CNT without the substrate

contact displays a monotonous force-deformation relation-

ship under both compressive and tensile loadings. Our results

clearly demonstrate that the vdw interaction between the

CNT ring and the substrate plays an important role in the

mechanical behavior of the CNT ring in both tension and

compression regimes.

Lastly, we investigate the mechanical deformation of

the CNT ring above the graphite sheet when the CNT ring is

able to keep a perfectly circular conformation in its relaxed

configuration (i.e. without having a flat ring segment). For

this purpose, we consider a circular ring made of a thin

SWNT bundle, as illustrated in Fig. 8(a). The bundle consists

of seven SWNTs, which are assumed to be oriented in a hex-

agonal configuration. We reasonably assume that the tubes

in the bundle retain their circular cross sections during the

ring deformation process. The intertube distance, l0, is given

by l0¼ 2RCNTþ 0.313nm.34 By considering that the tubes in

the bundle are arm-chair SWNTs and two tubes in the bundle

are in contact with the substrate, the critical ring radii

Rcr
buckle and Rcr

flat are calculated using the approaches

reported in Sec. II, and are plotted in Fig. 8(b). Our results

reveal that the critical ring radius for unbuckled CNT rings

[circle curve in Fig. 8(b)] is smaller than that of CNT rings

of no flat ring segment in contact with the substrate [square

curve in Fig. 8(b)], which is due to the significant increase of

the bending stiffness of the nanotube bundle. Here, we only

consider the parameters of the CNT ring in the region

between the square and circle curves in Fig. 8(b), where the

CNT ring preserves its perfectly circular configuration when

it stands above a 40-layer graphite substrate. Selected defor-

mation curvatures for a CNT ring, which is made of a bundle

consisting of 7 (10,10) tubes and has a radius of 100 nm, are

obtained based on the elastica model presented in Sec. II and

are presented in Fig. 9(a). The flexural rigidity of this

FIG. 7. (Color online) (a) The dependence of the spring constant of CNT

rings of initial flat contact with the substrate on the ring radius, (b) The com-

parison of the force-ring height profile shown in Fig. 6(a) with that of a com-

parable CNT ring under two point loads as illustrated by the inset (red solid

curve).
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bundled tube is calculated to be 1.36� 10�23 N	m2. Figures

9(b) and 9(c) show the respective dependences of the height

of the CNT ring and the potential energy in the system on

the applied force. Bifurcation is also exhibited in both pro-

files when the CNT ring is in tension. Similar to earlier dis-

cussion, the square curves in both profiles represent the

stable deformation curvature while the circle curves repre-

sent the unstable deformation curvatures. The differences

between both branches of the bifurcation as shown in Figs.

9(b) and 9(c) are much smaller, compared to the respective

differences shown in Figs. 6(a) and 6(d). The force–ring

height profile of the CNT ring shown in Fig. 9(b) displays a

nonlinear relationship in both tension and compression

regimes. Figure 9(b) also shows a comparison of the force–

ring height profiles for the CNT ring with and without the

substrate, the latter of which is shown by the solid curve.

Both profiles overlap well in the tension regime. The com-

parison between the deformation profiles presented in Figs. 6

and 9 suggests that the deformation curvature of the CNT

ring on the substrate under external compressive or tensile

loadings is highly dependent on relaxed conformation on the

substrate.

IV. CONCLUSION

In this paper, the elastic deformations of the CNT ring

on a flat substrate under a variety of external loading condi-

tions are investigated using a nonlinear continuum elastica

model. Our results clearly reveal that the vdw interaction

FIG. 8. (Color online) (a) Schematic of the cross section of a bundle consist-

ing of seven identical nanotubes; (b) the respective dependences of the criti-

cal ring radii for a bundled-tube-based CNT ring of no flat contact with the

substrate (red-square curve) and of no buckling (black-circle curve) on the

radius of the individual tubes. The considered nanotube bundle is made of

seven arm-chair single-walled carbon nanotubes.

FIG. 9. (Color online) (a) Representative deformation curvatures of the

CNT ring, which relaxed conformation on the substrate remains perfectly

circular, a variety of tensile and compressive loads; (b) the dependence of

the ring height on the applied load (black-square and blue-circle curves) and

its comparison with the deformation profile for a comparable CNT ring

under two point loads as illustrated by the inset (red-solid curve); (c) the de-

pendence of the total potential energy in the system on the applied load.
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between the CNT ring and the substrate has profound effects

on its deformation curvature. Our results show that the load-

deformation profiles of the CNT ring under tensile loading

exhibit bifurcation behavior, which is ascribed to its vdw
interaction with the substrate. The mechanical deformation

of the CNT ring on the graphite surface is also dependent on

its relaxed conformation, which is determined by its stiffness

and vdw interaction with the substrate. Our work suggests

that CNT rings are promising for a number of applications,

such as ultrasensitive force sensors and stretchable and flexi-

ble structural components in nanoscale mechanical and elec-

tromechanical systems.
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