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ABSTRACT:
A study is presented of the thermal-mechanical noise and response to sound of microphones that are designed to be

driven by the viscous forces in air rather than by sound pressure. Virtually all existing microphone designs are

intended to respond to sound pressure. The structures examined here consist of thin, micro-scale, cantilever beams.

The viscous forces that drive the beams are proportional to the relative velocity between the beams and fluid

medium. The beams’ movement in response to sound is similar to that of the air in a plane acoustic wave. The

thermal-mechanical noise of these beams is found to be a very weak function of their width and length; the size of

the sensing structure does not appear to significantly affect the performance. This differs from the well-known

importance of the size of a pressure-sensing microphone in determining the pressure-referred noise floor. Creating

microphones that sense fluid motion rather than pressure could enable a significant reduction in the size of the sens-

ing element. Calculated results are revealed to be in excellent agreement with the measured pressure-referred ther-

mal noise. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0025546

(Received 3 January 2024; revised 12 March 2024; accepted 22 March 2024; published online 10 April 2024)
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I. INTRODUCTION

When any microphone is used to detect low-level

sounds, its output signal can be significantly influenced by

unwanted noise. This noise can be introduced in the elec-

tronic circuit or it could be due to thermal-mechanical

motion of the pressure-sensing diaphragm. Whereas future

advances in circuit design may reduce the electronic noise,

there are currently few options for designers to reduce

thermal-mechanical noise. To reduce thermal-mechanical

noise in pressure-sensing microphones, designers have only

two options: (1) reduce viscous damping and/or (2) increase

the diaphragm area (Gabrielson, 1993; Miles, 2020). The

pursuit of either of these options can adversely impact pro-

duction costs and other performance metrics.

The reduction of thermal noise in the output signal can be

particularly vexing in microphones fabricated using the tech-

nology of micro-electromechanical systems (MEMS) micro-

phones, which tend to be more susceptible to thermal noise

than other, larger microphones. MEMS microphones have rev-

olutionized the microphone industry and are incorporated in

billions of electronic products. Because the cost of these devi-

ces is strongly influenced by their size and, hence, the number

of them that can be produced on each silicon wafer, there is

enormous pressure to minimize the size of each design.

One approach to this challenge could be to consider a

microphone design that is based on sensing the fluid motion

in a sound field rather than the pressure. This would be a

radical departure from the usual microphone design

approach, which, with almost no exceptions, has always

been about the measurement of sound pressure. It has been

argued (Fellgett, 1987) that the fundamental limits on the

size of a velocity sensing microphone could be quite differ-

ent than that for a pressure-sensing microphone.

Even so-called “velocity” microphones, such as the rib-

bon microphone (Julius and Olson, 1932), are based on

detecting pressure differences on each side of a thin ribbon

rather than velocity. It could be argued that the ribbon

microphone is actually a “pressure gradient” microphone as

it is not driven directly by fluid velocity. The motion of the

ribbon is a direct result of sound pressure. The driving force

on the ribbon is similar to that of any pressure-sensing struc-

ture, such as a tympanal membrane or diaphragm, which, as

Newton taught us, moves in response to the net difference

(or gradient) in pressure on its opposite surfaces. Pressure

gradients, of course, also result in motion of the fluid. Our

interest here, however, is on structures that respond primar-

ily to viscous forces caused by the relative velocity between

the structure and surrounding fluid. Viscous forces are not
generally believed to play a major role in the motion of

pressure-sensing tympana or diaphragms or ribbon micro-

phones but they are considered to be important in the flow-

induced motion of thin hairs or cilia (Bezares-Calder�on

et al., 2020; Tao and Yu, 2012).

It is not immediately clear whether sensing fluid veloc-

ity rather than pressure would lead to desirable performance

and meet the design requirements of typical microphone
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applications. It might, however, result in designs that avoid

some of the current design roadblocks. This study is moti-

vated by a desire to give the idea of sensing acoustic fluid

velocity a more proper amount of consideration in micro-

phone design.

The design of microphones that sense acoustic particle

velocity has received scant attention relative to the extensive

literature on pressure-sensing microphones. There have, how-

ever, been some notable advances. Forbes (1887) may have

been the first to create a microphone that responded to the

velocity of the air in a sound field. The device relied on the

change in temperature of a hot wire due to sound-driven air

flow around it. A microphone based on a similar idea used an

acoustic resonator to detect sound in a narrow frequency band

(Tucker and Paris, 1921). More recently, the Microflown

(Microflown Technologies, Arnhem, Netherlands) senses

sound across the audible frequency range by also detecting the

effect of acoustic flow on the temperature of a thin wire (de

Bree, 2003). This has been a very successful instrument for

examining noise sources. In addition, there has been extensive

work on sensing fluid flow using beam-like structures that

operate similarly to sensory hairs or cilia found on countless

small animals (Asadnia et al., 2016; Bezares-Calder�on et al.,
2020; Miles, 2019; Tao and Yu, 2012). Sensing acoustic parti-

cle velocity could be viewed as an extreme case of sensing

fluid flow because the low flow velocities and range of fre-

quencies of interest, spanning several decades, pose enormous

challenges. Many of these sensors are designed to resemble

the hairs of insects (Dijkstra et al., 2005; Krijnen et al., 2006;

Van Baar et al., 2005). In addition to hairs, we have previ-

ously shown that fine fibers, such as spider silk, can respond

to airborne sound very accurately over a frequency range from

about 1 Hz to 50 kHz (Miles and Zhou, 2018; Zhou et al.,
2022; Zhou and Miles, 2017).

Considering the vast number of species that hear using

thin, viscous-driven structures and the myriad designs nature

has employed, it is likely that effective engineered designs

might also take many forms. For example, if individual hairs

or fibers can be effective at sensing sound, it is reasonable to

suspect that a two-dimensional structure, such as an array of

fibers or a grid or mesh, might also be beneficial (Zhou et al.,
2018). This raises the question of how far apart they should

be to ensure maximum viscous drag. If they are too closely

spaced, the fluid will not be able to flow through as it acts

more like a conventional solid pressure sensor. This question

was addressed carefully by Zalalutdinov et al. (2017), who

showed that the open spacing between the solid sensing ele-

ments should be large enough relative to the thickness of the

viscous boundary layer. Many questions remain on how to

design an effective acoustic sensor designed to be driven by

viscous forces.

It is fairly well-understood that to create a structure that

is driven by viscous flow in a sound field, it must have very

small dimensions and be lightweight. Because we typically

seek to detect sound over a very wide range of sound levels,

it is essential to understand how the design parameters

impact the sensor’s ability to detect the quietest sounds.

This has been quantified various ways for conventional

pressure-sensing microphones and described as minimum

detectable pressure (MDP; Zalalutdinov et al., 2017) or

equivalently as “pressure-referred noise” (Miles, 2020). The

sensitivity of these acoustic velocity sensors to thermal

noise in the medium needs to be well-understood to create

effective designs.

The main purpose of this study is to examine the

responses to thermal noise and sound of a relatively simple

structure that could be used as the sensing element in a

flow-sensing microphone: a simple cantilever beam.

Knowing the response to thermal noise and the response to

sound enables the calculation of the signal to thermal noise

ratio. To respond to sound, the beam should have as little

mass and stiffness as possible (Miles, 2020). The beam

examined here is motivated by our earlier study of the

acoustic response of spider silk, which is driven by sound

due to viscous forces in the air (Miles and Zhou, 2018; Zhou

et al., 2022; Zhou and Miles, 2017). The beam is taken to

have a rectangular cross section, which is compatible with

the constraints of silicon microfabrication. The thickness of

each beam is approximately 340 nm. The widths and lengths

of the beams were varied to examine the effects of overall

beam size on the acoustic response and thermal noise.

To gain confidence in the measured results, compari-

sons are presented of results obtained from analytical pre-

dictions of the responses to sound and thermal noise. The

approximate governing differential equations for the beams

are easily obtained using classical methods. The interaction

of each beam with the surrounding fluid is more difficult to

model; it is accounted for by calculating the viscous flow

field around the beam (Miles, 2020).

The response to thermal noise is calculated assuming

that the random thermal noise excitation is weakly station-

ary, fully uncorrelated in space, and time and uniformly dis-

tributed along the beam’s length. This approximate model

leads to a calculation of the power spectral density of the

random response at any location along the beam. The damp-

ing of the resonant modes is calculated based on the viscous

flow around the beam (Miles, 2020). The response to sound

is determined by, again, calculating the force applied to the

beam by the moving viscous fluid.

Measured results of the responses to thermal noise exci-

tation and sound were obtained using a laser vibrometer in

our anechoic chamber. Because the beam is fabricated using

silicon microfabrication methods, it is produced as part of a

silicon chip, which can have a significant influence on the

viscous acoustic flow around the beam. The influence of the

silicon chip on the acoustic flow is accounted for using a

finite element model for the flow of the viscous fluid.

The measured and predicted results are shown to be in

excellent agreement, suggesting that measurement chal-

lenges have not biased the results. The agreement between

predictions and measurements also suggests that our approx-

imate assumptions of considering the noise excitation to be

fully uncorrelated and weakly stationary along with the

approximations of our viscous fluid model do not lead to
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noticeable errors, at least for the structures and sound fields

examined here.

Because of the well-known importance of the size of

pressure-sensing microphone diaphragms on their thermal

noise response, here, microbeams are examined having vari-

ous widths of 2, 3, and 5 lm. In addition, the lengths of the

beams were varied from 171 to 500 lm. It is found that for

the beams examined here, the surface area, or overall size of

the beams, does not have a strong effect on the pressure-

referred noise.

Having the power spectral density of the response to

thermal noise and the response to sound reveals how the vis-

cous damping of the beam’s resonant modes influences the

sound pressure-referred noise. These data make it clear that

the beam should respond with as few resonant modes as fea-

sible such that the contribution to the power spectral density

of the thermal noise response will be minimized.

When the beam is driven by sound through viscous

forces due to the relative velocity between the beam and

fluid, it is desirable to have as much viscous damping as pos-

sible so that the beam’s motion more closely represents the

mean acoustic flow. An increase in the viscous damping,

which couples the structure to the fluid, will also reduce the

thermal noise response power spectral density. An increase

in viscous damping will then lead to an improvement in the

signal to thermal noise ratio when the structure is driven

using viscous forces. This is the opposite of the well-known

result in pressure-sensing microphones, where minimizing

all sources of damping is essential for minimizing the

response to thermal noise (Gabrielson, 1993; Miles, 2020).

It should be noted that damping that occurs as a result

of the relative motion of the beam and a fixed boundary

does not contribute to the coupling of the beam with the

moving fluid and, hence, should be avoided.

To explore further how the viscous damping due to the

relative motion of the beam and sound-driven fluid influen-

ces the pressure-referred noise, a hypothetical study is con-

ducted in which simulated pressure-referred noise is

calculated using an increased value of the viscous damping

coefficient for the beam. Of course, in practice, achieving a

significant increase in viscous damping would require a sig-

nificant modification to the beam structure; these calculated

results using artificially increased damping are simply to

illustrate the performance that might be achieved through

designs that increase the viscous damping. In the compari-

sons presented here, we have left the structural dimensions

and material properties unchanged to focus attention only on

the influence of the viscous damping on the performance.

The calculated hypothetical results clearly show that

the pressure-referred noise is inversely proportional to the

effective viscous damping coefficient. This result can also

be observed in the equation for the pressure-referred noise.

While the results of a mathematical prediction of the

pressure-referred noise decrease in proportion to the damp-

ing coefficient, the damping also influences other terms in

the equations, such as the frequency responses of each reso-

nant mode, making the overall dependence on damping

somewhat obscured. The numerical results plainly show that

for the beams examined here, the sound pressure-referred

thermal noise is essentially inversely proportional to the

amount of viscous damping.

In the following, an analytical model for the thermal

response of a beam is presented along with a model for the

response to sound of a thin beam that is driven by viscous

forces in the moving fluid. Experimental results are then

presented and compared to those of the analytical model for

beams of various widths and lengths. The results show that

the pressure-referred noise response of the beams is not sig-

nificantly affected by changes in the beams’ lengths and

widths.

II. ANALYTICAL MODEL FOR THE
THERMAL-MECHANICAL RESPONSE OF A BEAM

The thermal noise of microscale cantilever beams has

been studied extensively, primarily, because the noise of

these beams impacts their use in atomic force microscopy

(Butt and Jaschke, 1995). As a primary aim of the present

study is to explore the effects of thermal-mechanical noise

on the performance of thin beams as acoustic velocity sen-

sors, we will attempt to write down a reasonably detailed

model such that the mathematical basis or assumptions for

any conclusions is evident.

To avoid distracting details of a complicated sensing

structure, in this study, we will limit our attention to a linear,

isotropic, and elastic cantilever beam which experiences

pure bending due to external forces. The beam is assumed to

be surrounded by air that exerts viscous forces as a result of

the relative motion between the fluid and beam. The deflec-

tion of the beam, w(x,t), may be determined by solving a

partial differential equation having the form

LðwÞ þ m €w þ C _w ¼ f ðx; tÞ; (1)

where L is a linear differential operator, m is the mass per

unit length, and C is a constant per unit length such that C _w
gives a restoring force per unit length that is proportional to

velocity. In general, we could allow L, m, and C to depend

on the independent variable, x. f(x,t) is the applied force/unit

length. If we assume that the structure is a beam having uni-

form properties along its length, Eq. (1) takes the form of

the Euler-Bernoulli beam equation,

EIwxxxx þ qbh €w þ C _w ¼ f ðx; tÞ; (2)

where E is Young’s modulus, I is the area moment of iner-

tia, q is the mass density, b is the width, h is the thickness,

and m ¼ qbh is the mass per unit length. The subscripts, x,

denote partial differentiation with respect to x. C is the

damping constant per unit length.

The value of C depends on the geometry of the beam

and the properties of the fluid flow around the beam that

result from its motion. For beams with sufficiently small

cross-sectional dimensions and small Reynolds numbers, the

flow field can be assumed to be strongly influenced by
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viscous effects. The calculation of the viscous damping of

beams has been studied extensively by Sader and others to

understand the effects of fluid damping on the dynamic

response of beams used in atomic force microscope probes

(Chon et al., 2000; Sader, 1998). The viscous damping of

the beam plays a critical role in determining its response to

acoustic particle velocity.

There have been a number of studies of the fluid forces

on the vibration of thin beams. Bhiladvala and Wang (2004)

studied the influence of fluid damping on the quality factor

(Q) and damped resonance frequency of micron and submi-

cron scale beams oscillating at MHz frequencies. In this high

ultrasonic frequency range, it is shown that a continuum

model of the gas is not appropriate for submicron scale

beams. Because our primary interest here is on the audible

frequency range, we have employed a continuum model fol-

lowing the approach described by Stokes (1851). Blom et al.,
1992) explained the relationship between the natural frequen-

cies of the beams and the atmospheric pressure and also con-

cluded that the critical atmospheric pressure to obtain a large

quality factor is almost independent of the beam length but

decreases strongly with increasing width and thickness of the

beams, which are intended to be used as resonators.

Similarly, it was shown by Verbridge et al. (2008) that

smaller resonators had higher quality factors (Q) under ambi-

ent conditions, although the question on the frequency-

dependence of Q in vacuum is left open. A study by Jandak

et al. (2016) showed that the quality factor of micromachined

beams depended on the boundary conditions of clamped-

clamped and clamped-free cases that were considered in their

work. Effect of air pressure on the damping of micro-

cantilever beams was measured by Sumali and Carne (2007),

who found that the damping force has a nearly linear relation-

ship with pressure. Through discovery of the gas force per

unit length, Bidkar et al. (2009) calculated the damping ratio

for several modes of a single resonator, which ranged from

tens to hundreds of microns in width, in free space and low

ambient pressures. They proposed a semi-analytical closed-

form model for long microcantilevers which deviates from

experimental results at a certain pressure range.

In the model used here to estimate the value of the

beam’s damping constant, C, the beam is assumed to be

infinitesimally thin and the flow velocity is normal to the

beam’s surface at distances very far from the beam as

described in Miles (2020). The viscous force on the beam is

determined by solving the Navier-Stokes equations in which

viscous effects dominate, i.e., at small Reynolds numbers.

It can be convenient to express the displacement as a

sum of the eigenfunctions, /iðxÞ, corresponding to either

Eq. (1) or (2), such that

wðx; tÞ ¼
X1
i¼1

giðtÞ/iðxÞ; (3)

where giðtÞ are unknowns. The orthogonality of the eigen-

functions facilitates determination of giðtÞ, which may be

shown to satisfy

€giðtÞ þ x2
i giðtÞ þ 2xifi _giðtÞ ¼ qiðtÞ; (4)

where xi is the natural frequency, fi is the damping ratio for mode

i, and qiðtÞ is the effective “modal” force for mode i. Equation (4)

enables us to express the solution of Eq. (2) in the form

wðx; tÞ ¼
ðt

0

ðl

0

Gðx; r; t; sÞf ðr; sÞdrds; (5)

where

Gðx;r; t;sÞ ¼Gðx;r; t� sÞ ¼
X1
j¼1

/jðxÞ/jðrÞhjðt� sÞðl

0

qbh/2
j ðyÞdy

(6)

is the Green’s function for the beam, and hj is the impulse

response for mode j.
Because the excitation, f(x,t), is a random function of

the independent variables, x and t, we seek appropriate sta-

tistics to examine the response. Having the solution for the

response expressed as Eq. (5) enables us to write the cross

correlation of the response at two locations, x1 and x2, and at

two times, t1 and t2, as

E wðx1; t1Þwðx2; t2Þ½ � ¼Rwwðx1;x2; t1; t2Þ

¼
ðt1

0

ðt2

0

ðl

0

ðl

0

Gðx1;r1; t1� s1Þ

�Gðx2;r2; t2� s2Þ
�E f ðr1;s1Þf ðr2;s2Þ½ �dr2dr1ds1ds2;

(7)

where E½� � �� denotes the expected value. The random noise

excitation may be assumed to be weakly stationary in time

such that Rwwðx1; x2; t1; t2Þ ¼ Rff ðr1; r2; s2 � s1Þ, which is

the cross correlation of the forces at r1 and r2. This may be

expressed as the inverse Fourier transform of the cross-

power spectral density, Sff ðr1; r2;xÞ,

E f ðr1; s1Þf ðr2; s2Þ½ � ¼ Rff ðr1; r2; s2 � s1Þ

¼
ð1
�1

Sff ðr1; r2;xÞeîxðs2�s1Þdx:

(8)

Substituting Eq. (8) into Eq. (7) and changing the order of

integration gives

E wðx1; t1Þwðx2; t2Þ½ �
¼ Rwwðx1; x2; t1; t2Þ

¼
ð1
�1

ðt1

0

ðt2

0

ðl

0

ðl

0

Gðx1; r1; t1 � s1Þ

� Gðx2; r2; t2 � s2ÞSff ðr1; r2;xÞ
� eîxðs2�s1Þdr2dr1ds1ds2dx: (9)

The integrations in the time domain may be modified by the

substitutions s01 ¼ t1 � s1 and s02 ¼ t2 � s2. Because the

impulse responses, hjðsÞ, in Eq. (6) are zero for s < 0, we
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can replace t1 and t2 in the upper limits of integration in Eq.

(9) by 1 without changing the result. We can also replace

the lower limits of integration by �1 as we are interested

in only the steady-state statistics, i.e., as t!1.

We can also let

G�ðx1; r1;xÞ ¼
ð1
�1

Gðx1; r1; sÞeîxsds (10)

and

Gðx2; r2;xÞ ¼
ð1
�1

Gðx2; r2; sÞe�îxsds; (11)

where the superscript “�” denotes the complex conjugate,

and we have used the fact that Gðx; r; t� sÞ, as defined in

Eq. (6), is real.

After some rearranging, Eqs. (9)–(11) lead to an expres-

sion having the form of the inverse Fourier transform of the

response cross-power spectral density, which leads to

Swwðx1; x2;xÞ ¼
ðl

0

ðl

0

G�ðx1; r1;xÞGðx2; r2;xÞ

� Sff ðr1; r2;xÞdr2dr1: (12)

The frequency response function of mode j, HjðxÞ, is

related to the impulse response hjðsÞ by

HjðxÞ ¼
ð1

0

hjðsÞeîxsds: (13)

Again, because the impulse response is zero for negative

values of s, Eqs. (6), (11), and (13) yield

Gðx; r;xÞ ¼
X1
j¼1

/jðxÞ/jðrÞHjðxÞðl

0

qbh/2
j ðyÞdy

: (14)

III. RANDOM RESPONSE TO SPATIALLY
UNCORRELATED IDEAL WHITE NOISE

To calculate the response of the beam due to thermal

excitation, we will determine its response to a spatially ran-

dom field in which the forces applied at any two spatial

locations, x1 and x2, are fully uncorrelated. We will also

assume that the forces at any two instants of time, t1 and t2,

are also uncorrelated. These approximations lead to a power

spectral density which is not dependent on the temporal fre-

quency, x, i.e., white noise. In addition, the wave vector

spectrum of the force is not dependent on the spatial fre-

quency, k. The cross correlation of the force in Eq. (8)

becomes

Rff ðr1; r2; s2 � s1Þ ¼ dðr1 � r2Þdðs1 � s2ÞK; (15)

where K is a constant and dð�Þ is the Dirac delta function.

The Fourier transform of this cross correlation function is

the cross-power spectral density.

Because the cross correlation function depends on two

independent variables (time and space), the power spectral

density is, in general, dependent on a temporal frequency,

x, (rad/s) and a spatial frequency, k (1/m). Note that this

spatial frequency is denoted by a lowercase k while the con-

stant, K, in Eq. (15) is uppercase. Because the cross correla-

tion functions are given by Dirac delta functions, the power

spectral density becomes independent of temporal and spa-

tial frequencies. Again, as the random force is assumed to

be weakly stationary in time, Eq. (15) depends only on the

difference, s ¼ s1 � s2. We also assume that the random

force is homogeneous in space such that it depends only on

the difference, r1 � r2 ¼ Dr. The two-dimensional Fourier

transform of Eq. (15) then gives the two-dimensional power

spectral density of the force,

Sff ðx; kÞ ¼
1

ð2pÞ2
ð1
�1

ð1
�1

e�îDrke�îxsRff ðDr; sÞdDrds

¼ 1

ð2pÞ2
ð1
�1

ð1
�1

e�îDrke�îxsdðDrÞdðsÞ

� KdDrds ¼ K

ð2pÞ2
: (16)

The power spectral density of the force is then independent

of the temporal and spatial frequencies, x and k. This is typ-

ically referred to as “white noise.” The constant, K, is

K ¼ ð2pÞ2Sff ðx; kÞ ¼ ð2pÞ2Sff : (17)

If the force, f(t), in Eq. (3) has the units of N/m, the two-

dimensional power spectral density, Sff, will have the units

of

ðN=mÞ2=ðrad=sÞ=ð1=mÞ ¼ ðN=mÞ2m s=rad: (18)

In this special case, Eqs. (12) and (14) lead to

Swwðx1;x2;xÞ¼
X1
j¼1

ð2pÞ2Sff /jðx1Þ/jðx2ÞjHjðxÞj2
ðL

0

/2
j ðxÞdx

ðqbhÞ2
ðl

0

/2
j ðyÞdy

 !2
;

(19)

where we have used the fact that the eigenfunctions are

orthogonal and assumed that qbh is independent of x. We

may let x1¼ x2 to compute the auto-power spectral density.

The frequency dependence of the power spectral den-

sity of the response in Eq. (19) is determined by the modal

frequency response functions, HjðxÞ. These are of the form

HjðxÞ ¼
1

x2
j � x2 þ 2̂ixxjfj

; (20)

where xj is the jth natural frequency, and fj is the damping

ratio of mode j. The natural frequencies depend only on the

system’s stiffness and mass and how these are distributed
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along the x direction. Substitution of each eigenfunction into

Eq. (2) leads to a set of ordinary differential equations for the

response of each mode. The natural frequencies may be deter-

mined by solving Eq. (2) with no force applied and using the

appropriate boundary conditions. This also leads to

2xjfj ¼
C

qbh
: (21)

The frequency response functions in Eq. (20) then simplify to

HjðxÞ ¼
1

x2
j � x2 þ î

xC

qbh

: (22)

IV. FORCE DUE TO THERMAL NOISE

We now need to relate the power spectral density of the

random force, Sff, to the properties of the air. To do this, we

will use the equipartition theorem, which relates the kinetic

and potential energies of each degree of freedom of the sys-

tem to the kinetic energy of the gas (Kittel, 1958).

The expected value of the beam’s total kinetic energy

may be expressed as

E T½ � ¼ 1

2
qbh

ðL

0

E _wðx; tÞ2
h i

dx; (23)

where we assume that the density, q, the width, b, and the

thickness, h, are all independent of x. We may express the

mean square velocity, E½ _wðx; tÞ2�, in terms of the power

spectral density of the displacement, Swwðx1; x2;xÞ. Letting

x1 ¼ x2 ¼ x,

E _wðx; tÞ2
h i

¼
ð1
�1

x2Swwðx; x;xÞdx: (24)

Substituting Eq. (24) into Eq. (23) results in

E T½ � ¼ 1

2
qbh

ðL

0

ð1
�1

x2Swwðx; x;xÞdxdx: (25)

This total kinetic energy may be expressed as a summation

over all of the modes using Eq. (19) such that

E T½ � ¼ 1

2
qbh

ðL

0

ð1
�1

x2
X1
j¼1

ð2pÞ2Sff /
2
j ðxÞjHjðxÞj2

ðL

0

/2
j ðyÞdy

ðqbhÞ2
ðl

0

/2
j ðyÞdy

 !2
dxdx

¼
X1
j¼1

1

2

ðL

0

ð1
�1

x2

ð2pÞ2Sff /
2
j ðxÞjHjðxÞj2

ðL

0

/2
j ðyÞdy

qbh

ðl

0

/2
j ðyÞdy

 !2
dxdx ¼

X1
j¼1

E Tj½ �: (26)

The kinetic energy of mode j is then

E Tj½ � ¼
1

2

ðL

0

ð1
�1

x2

ð2pÞ2Sff /
2
j ðxÞjHjðxÞj2

ðL

0

/2
j ðxÞdx

qbh

ðl

0

/2
j ðyÞdy

 !2
dxdx:

(27)

The integration over x may be performed using contour

integration (Miles, 2020) after substituting Eq. (20) for

HjðxÞ and using Eq. (21) to obtain

ð1
�1

x2jHjðxÞj2dx ¼ p
2xjfj

¼ pqbh

C
: (28)

Equation (27) may then be simplified to

E Ti½ � ¼
1

2

p
C

ðL

0

ð2pÞ2Sff /
2
j ðxÞ

ðL

0

/2
j ðyÞdy

ðl

0

/2
j ðyÞdy

 !2
dx

¼ 1

2

pð2pÞ2Sff

C
: (29)

Note that the expected value of the kinetic energy for mode

i is independent of mode number. That is, it is the same for

all modes. We can then say that the energy is equally dis-

tributed or “partitioned” between all of the degrees of free-

dom of the structure (Kittel, 1958). This is a consequence of

our assumption that the force consists of a spatially and tem-

porally uncorrelated random field as in Eq. (15).

Because we are interested in the random response due

to thermal noise, we need to express this power spectral den-

sity of the force in terms of the temperature of the surround-

ing gas. If the random response of the beam is weakly
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stationary (that is, the first order statistics are not varying

with time), the expected value of the kinetic energy of each

degree of freedom will equal the expected value of the

potential energy of each degree of freedom. The equiparti-

tion theorem tells us that these mean degree of freedom

energies will equal the kinetic energy of the gas, which may

be calculated knowing the absolute temperature, T, and

Boltzmann’s constant, KB, such that

1

2
KBT ¼ E Vi½ � ¼ E Ti½ �; (30)

where E½Vi� is the expected value of the randomly fluctuat-

ing potential energy of degree of freedom (or resonant

mode), i, of the beam, and E½Ti� is the expected value of the

randomly fluctuating kinetic energy of the ith mode. These

expected values may be computed from our expressions

above for the power spectral density of the beam’s response.

Equations (30) and (29) enable us to express the power

spectral density of the random thermal excitation in terms of

the temperature,

1

2
KBT ¼ 1

2

pð2pÞ2Sff

C
(31)

or

Sff ¼
KBTC

pð2pÞ2
: (32)

The force that results from thermal noise is, thus, strongly

dependent on the energy dissipation, which, in this case, is

proportional to the dashpot constant, C (Gabrielson, 1993).

The equipartition theorem has led us to an expression for the

power spectral density of the force, f(x,t), in Eq. (2) that

depends only on the damping coefficient, C, in Eq. (2), the

temperature, T, and Boltzmann’s constant, KB. Note that this

result does not depend on any properties of the beam or its

resonant modes or degrees of freedom.

Equation (32) may be used in Eq. (19) to compute the

power spectral density of the response at the location x due

to thermal noise,

Swwðx; x;xÞ ¼
X1
j¼1

KBTC/2
j ðxÞjHjðxÞj2

pðqbhÞ2
ðl

0

/2
j ðyÞdy

: (33)

If the damping constant, C, is not too large, this spectral

density will have maxima at each resonant frequency, xj. If

the response at x � xj is dominated by the contribution

from only mode j, then evaluating Eq. (33) at x ¼ xj gives

Swwðx; x;xjÞ �
KBT/2

j ðxÞ

px2
j C

ðl

0

/2
j ðyÞdy

: (34)

The power spectral density of the velocity at each resonance

simply becomes

S _w _wðx; x;xjÞ �
KBT/2

j ðxÞ

pC

ðl

0

/2
j ðyÞdy

: (35)

Increasing the damping constant, C, will clearly reduce

the beam’s response to thermal noise excitation at the fre-

quency xj.

Note that having the power spectral density of the force

in Eq. (32) also allows us to calculate the power spectral

density of the response, Swwðx; x;xÞ, by other methods that

do not require knowledge of the uncoupled resonant modes.

There are structures, for example, having nonproportional

damping, where the solution for the uncoupled eigenfunc-

tions is cumbersome compared to a more direct solution

approach (Miles, 2020).

V. RESPONSE DUE TO ACOUSTIC FLOW

Having a means of calculating the response of beams

to thermal noise excitation, our task now is to determine

the response of the beams to sound when their dimensions

are sufficiently small such that viscous forces in the air

dominate. These beams are quite thin and narrow, having

thicknesses significantly less than 1 lm and widths on the

order of a few microns. These will typically be made using

silicon microfabrication, where the material has been

deposited using a process in which the material properties

of the structure can be quite difficult to control and/or

characterize. Our main interest here is more on the interac-

tion of the fluid with the beams than on the material prop-

erties that determine the beam stiffness and mass, i.e., the

density, q, and the Young’s modulus, E. For our purposes,

these stiffness and mass properties are determined

empirically.

The sound field is taken to be a single ideal plane wave

propagating in the positive x direction in which the fluctuat-

ing pressure and fluctuating acoustic particle velocity are

related to each other by the constant acoustic impedance,

q0c, where q0 is the air density and c is the speed of propa-

gation of acoustic waves (Miles, 2020). As is common, we

will characterize the amplitude of the sound wave in terms

of the sound pressure in pascals. Because the dimensions of

the beam are very small relative to the acoustic wavelength

at the frequencies of interest, the force on the structure is

mainly the result of the viscosity of the fluid rather than the

sound pressure, which dominates when the structure is suffi-

ciently large. The viscous acoustic force is assumed to be

proportional to the relative velocity of the fluid, _y, and

beam, _wðx; tÞ. If the beam’s cross section does not vary with

position, x, along the length, then we can assume that the

viscous force is simply proportional to the relative velocity,

where the constant of proportionality is the viscous damping

coefficient, C. Again, C _wðx; tÞ will be the viscous damping

force per unit length.

LetW denote the deflection of the beam due to viscous

flow. The force per unit length resulting from the excitation

in Eqs. (1) and (2) then becomes
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f ðx; tÞ ¼ FðtÞ ¼ C _y; (36)

where, again, the flow velocity, _y, is assumed to be indepen-

dent of the spatial position, x. Equations (2) and (36) enable

us to express the governing equation of the beam as

EIwxxxx þ qbh €w ¼ Cð _y � _wÞ: (37)

The net viscous force on the right hand side of Eq. (37) is

clearly proportional to the relative velocity between the

beam and fluid, _y � _w. Because we have assumed that the

flow velocity, _y, does not depend on the spatial position, x,

the cross-power spectral density of the force applied by the

fluid motion, _y, becomes equal to the auto-power spectral

density and is independent of the spatial coordinate,

SFF ðr1;r2;xÞ¼SFF ðxÞ¼C2S _y _yðxÞ¼C2SppðxÞ=ðq0cÞ2:
(38)

Consequently, the integrations over r1 and r2 as in Eq. (9)

become separated such that

RWWðx1; x2; t1; t2Þ

¼
ð1
�1

ðt1

0

ðt2

0

ðl

0

ðl

0

Gðx1; r1; t1 � s1Þ

� Gðx2; r2; t2 � s2ÞSFF ðxÞ
� eîxðs2�s1Þdr2dr1ds1ds2dx

¼
ð1
�1

ðt1

0

ðt2

0

ðl

0

Gðx1; r1; t1 � s1Þdr1

" #

�
ðl

0

Gðx2; r2; t2 � s2Þdr2

" #

� eîxðs2�s1Þds1ds2SFF ðxÞdx: (39)

We can, again, recognize this to be the inverse Fourier trans-

form of the cross-power spectral density, which is then

SWWðx1; x2;xÞ ¼ SFF ðxÞ
ðl

0

G�ðx1; r1;xÞdr1

" #

�
ðl

0

Gðx2; r2;xÞdr2

" #
: (40)

Using Eq. (14), the integrations may be written asðl

0

Gðx; r;xÞdr ¼
X1
j¼1

/jðxÞHjðxÞðl

0

m/2
j ðyÞdy

ðl

0

/jðrÞdr: (41)

Equations (40) and (41) show that in the case of this acous-

tic flow excitation, the eigenfunctions that have small aver-

age values over the length do not contribute significantly to

the response because they tend to be orthogonal to the force,

which, again, we have taken to be independent of spatial

position, x. This differs from the result that we obtained for

spatially random noise in Eq. (33), where all modes contrib-

ute equally. Equations (40) and (41) may be used to calcu-

late the power spectral density of the deflection,

SWWðx; x;xÞ, relative to the power spectral density of the

acoustic pressure, SppðxÞ, at one location, x,

SWWðx; x;xÞ
SppðxÞ

¼ C2

ðq0cÞ2
X1
j¼1

/jðxÞH�j ðxÞðl

0

m/2
j ðyÞdy

ðl

0

/jðrÞdr

2
64

3
75

�
X1
i¼1

/iðxÞHiðxÞðl

0

m/2
i ðyÞdy

ðl

0

/iðrÞdr

2
64

3
75:

(42)

Having expressions for the power spectral density of the

response to sound (the signal) in Eq. (42) and that due to ther-

mal noise in Eq. (33), we can obtain the pressure-referred

noise. This would next give a measure of how much sound

pressure would elicit the amount of signal that we obtain as a

result of noise. This pressure-referred noise is then

Sppthermal
ðxÞ ¼ SwwðxÞ

SWWðx; x;xÞ=SppðxÞ
¼

X1
j¼1

KBTC/2
j ðxÞjHjðxÞj2

pðqbhÞ2
ðl

0

/2
j ðyÞdy

C2

ðq0cÞ2
X1
j¼1

/jðxÞH�j ðxÞðl

0

m/2
j ðyÞdy

ðl

0

/jðrÞdr

2
64

3
75
X1
i¼1

/iðxÞHiðxÞðl

0

m/2
i ðyÞdy

ðl

0

/iðrÞdr

2
64

3
75
: (43)

This can be simplified somewhat, and using the fact that m ¼ qbh,

Sppthermal
ðxÞ ¼ KBTðq0cÞ2

Cp

X1
j¼1

/2
j ðxÞjHjðxÞj2ðl

0

/2
j ðyÞdy

X1
j¼1

/jðxÞH�j ðxÞðl

0

/2
j ðyÞdy

ðl

0

/jðrÞdr

2
64

3
75
X1
i¼1

/iðxÞHiðxÞðl

0

/2
i ðyÞdy

ðl

0

/iðrÞdr

2
64

3
75
: (44)
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As in Eq. (33), if the damping constant, C, is not too

large, resonant peaks will dominate the responses to sound

and thermal excitation. In this case, we may assume that

each summation in Eq. (44) is dominated by a single term

when x � xj. Equation (44) may then be approximated by

Sppthermal
ðxjÞ �

KBTðq0cÞ2

Cp

ðl

0

/2
j ðyÞdy

ðl

0

/jðrÞdr

" #2
: (45)

Again, this shows that the viscous damping constant, C, is a

key parameter in determining the pressure-referred noise.

Increasing C will reduce the influence of thermal noise.

We should examine the units of Eq. (44). The power

spectral density, Sppthermal
, should have units of Pa2=ðrad=sÞ.

First, note that if the eigenfunctions, /j, are expressed with

units, the units will cancel because /j always appears with

equal exponents in the numerator and denominator in each

term. The complex frequency response functions, HjðxÞ,
also appear squared in numerator and denominator, so their

units also cancel. The only remaining term contributing

units in the complicated fraction,

X1
j¼1

/2
j ðxÞjHjðxÞj2ðl

0

/2
j ðyÞdy

X1
j¼1

/jðxÞH�j ðxÞðl

0

/2
j ðyÞdy

ðl

0

/jðrÞdr

2
64

3
75
X1
i¼1

/iðxÞHiðxÞðl

0

/2
i ðyÞdy

ðl

0

/iðrÞdr

2
64

3
75
;

(46)

will then be the differential length dr or dy in the denomina-

tor. The units of the fraction in Eq. (46) will then be 1/

length, i.e., 1/m.

Boltzmann’s constant, KB, is normally expressed with

units of J per deg K such that KBT has the units of J or N

� M. The units of the acoustic impedance, q0c, will be

P� s=m, or N=m2 � s=m. As mentioned above after Eq.

(2), C _w will be the damping force per unit length so the

units of the dashpot constant, C, will be N� s=m2.

Combining the units of the first fraction on the right hand

side of Eq. (44) then gives

KBTðq0cÞ2

Cp
!ðN�mÞ�ðN=m2�s=mÞ2

N�s=m2
¼N2�s

m3
: (47)

The product on the right hand side of Eq. (44) will then

have the units of

N2 � s

m3
� 1

m
¼ N2 � s

m4
¼ P2

rad=s
; (48)

which are the correct units of the power spectral density,

Sppthermal
.

One aim of this study is to examine how the pressure-

referred noise of the viscous-driven beam depends on the

viscous damping coefficient, C. The result of Eq. (44) is

clearly inversely proportional to C such that we can con-

clude that increasing C should decrease the pressure-

referred noise.

The determination of the dashpot constant, C, can be a

bit difficult and depends on the geometry of the structure

being examined. The approach used to obtain the relation

between the pressure on the beams because of their motion

relative to the surrounding viscous fluid is described in Sec.

9.8 of Miles (2020). The calculations assume that the air

density is q ¼ 1:2064 kg=m3, the sound speed is c¼ 344 m/s,

and the dynamic viscosity of air is l ¼ 1:8075� 10�5 kg/

(m s).

Note also that the frequency response functions, H, that

appear in Eq. (44) also depend on C, as shown in Eq. (22).

This can make it somewhat difficult to see the overall sensi-

tivity of the pressure-referred thermal noise to changes in

the damping constant, C, because the complex frequency

response functions are summed in the numerator and

denominator in Eq. (44). Whereas the exact dependence on

C in Eq. (44) depends on frequency, x, the natural frequen-

cies, xj, and the eigenfunctions, /jðxÞ, we can expect the

effects of C on the numerator and denominator to tend to

cancel each other, leaving its net impact to be determined

mainly by the factor of C in the denominator of the leading

term. Rather than presenting a general expression for the

dependence of the pressure-referred noise on C, it may be

more instructive to examine numerical results for the

beam geometries considered here. The results presented in

the following show that Sppthermal
remains inversely propor-

tional to the viscous damping constant, C, for beams such as

these.

VI. COMPARISON WITH EXPERIMENTS

Measurements have been performed for silicon cantile-

ver beams having several widths and lengths to obtain the

responses resulting from thermal noise and acoustic excita-

tion. The experiments are conducted in the anechoic cham-

ber at Binghamton University. The chamber interior

dimensions are 4.2 m wide, 5.4 m long, and 3.2 m tall. The

absorbent wedges that cover all surfaces are made of fiber-

glass. The chamber has been certified by the manufacturer

to provide an anechoic environment at all frequencies above

80 Hz. The noise floor of the chamber is approximately

0 dBA. The anechoic chamber was tested using methods

specified in ISO 3745 (2003).

The beams are fabricated on a silicon chip over a cen-

tral square through-hole. The dimensions of the chip are

2 mm � 2 mm � 0.5 mm. The central through-hole is

505 lm � 505 lm � 505 lm. The beams are 500 lm long,

and each is composed of three layers of film having equal

thickness, a layer of poly-crystalline silicon having a thick-

ness of hpoly � 0:113 lm, surrounded by silicon nitride

layers each having the same thickness of hnitride � 0:113 lm
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for a total beam thickness of approximately h � 0:34 lm.

Measurements were performed on beams having widths of

B¼ 2, 3, and 5 lm. The widths of these beams are suffi-

ciently small relative to the wavelength of sound in the audi-

ble frequency range such that the dominant acoustic

excitation is very likely to be the result of the viscosity of

air.

In the calculations here, we have assumed that the com-

posite beams have an equivalent isotropic density of

qbeam � 2600 kg=m3: (49)

The equivalent Young’s modulus of the composite beams is

taken to be

E � 1:48� 1011 N=m2: (50)

The beams are fabricated over a hole in the silicon chip as

depicted in Fig. 1.

The motion of each beam is measured using a laser

doppler vibrometer (Polytec OFV-534, Polytech GmbH,

Waldbronn, Germany). The laser is placed at a distance to

avoid acoustic reflection for the acoustic response measure-

ment and close to the test object with a 100� close-up lens

for maximum signal to noise ratio for the thermal noise

measurement. For acoustic stimulation, step sinusoidal sig-

nals and time-domain windowing are used to acquire the

acoustical frequency response while eliminating the acousti-

cal reflection and uncorrelated noise (Lai et al., 2022).

Measurements were performed at normal atmospheric pres-

sure and temperature. The reference microphone (B&K type

4138 1/8 in.) is placed adjacent to the chip. Measurements

obtained at an array of locations around the test sample

show that the sound field closely approximates that of an

ideal plane acoustic wave. The well-known relation between

sound pressure and acoustic particle velocity in a one-

dimensional plane wave can then be used to relate the mea-

sured sound pressure to the acoustic particle velocity near

the test object. National Instruments PXI 1033 data acquisi-

tion system (National Instruments, Austin, TX) is used for

data acquisition. The laser is focused on the tip of the beam

as displayed in Fig. 2.

The noise root power spectral density is calculated from

the measured beam velocity resulting from thermal noise

excitation. The measured results for all three beam widths

are compared to predictions obtained using Eq. (44) in Fig.

3. The results show excellent agreement between measure-

ments and predictions, which suggests that the measurement

method and assumptions of the predictions are not overly

biased by errors.

The acoustical frequency response of the beams is mea-

sured in the anechoic chamber using stepped sinusoidal pure

tones and narrow band least squares curve fitting (Lai et al.,
2022). This process can greatly reduce the influence of any

acoustic reflection and any uncorrelated acoustic noise from

the equipment or electromagnetic noise.

In examining the response of the beams to acoustic

flow, it is important to be able to measure the motion of the

beams and the velocity of the sound-induced flow around

the beams. Of course, measuring the motion of the air can

be quite difficult. The sound-induced air velocity can be sig-

nificantly affected by the boundary conditions imposed by

the structure used to support the silicon beams. This struc-

ture includes the silicon chip itself and any structure used to

hold the chip. To estimate the acoustic flow near the beams

displayed in Fig. 1, a COMSOL (COMSOL, Inc.,

Burlington, MA) finite element model was constructed. This

model estimates the acoustic flow around the chip and

through the hole in which the beams reside and is shown in

Fig. 1. This model was used to estimate Vair, employed to

normalize the measured velocity of the tips of the beams in

Fig. 4. Because the hole containing the beams takes up only

a fraction of the planar surface of the chip, the air velocity

within the hole can be greater than that far from the chip,

Vair. This can cause the velocity of the tip of each beam to

be greater than Vair.

FIG. 1. Microfabricated cantilever beams fabricated on a silicon chip. The cantilever beams are over a central square through-hole. The dimensions of the

chip are 2 mm � 2 mm � 0.5 mm. The central through-hole is 500 lm � 500 lm � 500 lm. The beams are 480 lm long and 340 nm thick. Three widths of

beams are measured: 2, 3, and 5 lm. The beams are made of a sandwich of silicon nitride-polysilicon-silicon nitride.
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The results of Figs. 3 and 4 are used in Fig. 5 to show

the predicted and measured power spectral densities of the

acoustic pressure-referred noise for these beams. The results

again show good agreement between measurements and pre-

dictions over much of the audible range of frequencies. The

predicted and measured beam velocities obtained from mea-

surements and the COMSOL finite element model are in

much closer agreement than those of the analytical model.

This difference is likely due to the fact that the COMSOL

result more accurately accounts for the actual viscous acous-

tic flow within the chip than is assumed in the analytical

model. In any case, calculated results and measured results

show that changes in the beam width do not have a signifi-

cant effect on the results.

Figure 5 leads us to conclude that at least for this range

of widths, the width of each beam is not a strong parameter

in determining its performance in responding to sound. This

insensitivity to mechanical parameters can be extremely

FIG. 2. (Color online) Experimental setup of the measurement. (a) Acoustic response setup, (b) thermal noise measurement setup, and (c) mounting of the

test sample are shown. The motion of the beam is measured by the laser doppler vibrometer (Polytec OFV-534). The laser is placed at a distance to avoid

acoustic reflection for the acoustic response measurement and placed close to test object with a 100� close-up lens for maximum signal to noise ratio. For

stimulation, step sinusoidal signals are used to acquire the acoustical frequency response while eliminating the acoustical reflection and uncorrelated noise.

The reference microphone (B & K type 4138 1/8 in.) is placed adjacent to the chip to measure the sound pressure for acoustic particle velocity calculation.

National Instruments PXI 1033 data acquisition system is used for data acquisition. Laser is positioned on the tip of the beam.

FIG. 3. (Color online) Measured and predicted thermal noise of the beams are in close agreement. Measured and predicted power spectral density of the ran-

dom response to thermal-mechanical noise are shown for thin micro-cantilever beams with different widths of 2, 3, and 5 lm. Note that the square root of

the single-sided velocity power spectral densities,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G _w _w ðx; x;xÞ

p
, are plotted, and G _w _w ðx; x;xÞ ¼ 4pS _w _w ðx; x;xÞ (Miles, 2020). The results are displayed

for the free end of the beam, x¼ l.
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beneficial in a design because controlling design parameters

in bulk manufacturing can be a vexing challenge and adds

considerable expense. It is a remarkable property of viscous

fluids that when they interact with sufficiently small, com-

pliant, solid structures, fine geometric details of the struc-

tures tend to not impact their overall flow-induced motion.

In addition to examining the effect of beam width on

the pressure-referred thermal noise, the effect of changing

beam length was also examined. Measurements were per-

formed on beams having lengths of L¼ 500, 480, 446, 396,

and 171 lm. The lengths and widths of these beams are

quite small relative to the wavelength of sound in the audi-

ble frequency range.

The predicted and measured power spectral densities of

the acoustic pressure-referred noise of different length

beams depicted in Fig. 8 are calculated from the results of

Figs. 6 and 7. Like beams with different widths, the results,

again, show good agreement between measurements and

predictions over much of the audible range of frequencies

for all of the lengths investigated here. The predicted and

measured beam velocities obtained from measurements and

the COMSOL finite element model are in much closer

agreement than those of the analytical model at the lower

frequencies. This is, once more, probably because the finite

element model more accurately accounts for the influence of

the chip geometry on the acoustic flow near the beam.

Calculated and measured results show that changes in the

beam lengths do not have a dramatic effect on the results.

Once again, Fig. 8 leads us to the conclusion that changes in

the mechanical parameters of each beam do not have a

strong influence on its performance in responding to sound.

VII. THE PRESSURE-REFERRED THERMAL NOISE
IS INVERSELY PROPORTIONAL TO DAMPING
FOR THESE ACOUSTIC FLOW-SENSING BEAMS

The results displayed in Figs. 3–8 indicate that the ana-

lytical model for the pressure-referred noise of these thin

beams does a reasonable job of accounting for the viscous

forces applied to the beam by the air. As mentioned above,

we would like to explore how the pressure-referred noise

depends on the viscous damping of these beams. Here, we

would like to avoid the single-mode assumption used to

derive Eqs. (35) and (45). To accomplish this, we consider

the pressure-referred noise of one beam having a width of

2 lm at a single frequency of 1 kHz. The dimensions and

material properties of the beam are held fixed, but the calcu-

lations are performed for a range of values of the viscosity

of the fluid (air). Increasing the viscosity will, of course,

increase the damping constant, C, depending on the details

of the viscous flow around the beam, as examined in Miles

(2020). The results of this numerical study presented in Fig.

9 show that the pressure-referred noise clearly decreases sig-

nificantly as the viscous damping constant, C, increases.

The noise appears to be proportional to the inverse of C as

expected by examining the leading term in Eq. (44).

Although these numerical results were obtained by arti-

ficially modifying the fluid viscosity, they suggest that for

an acoustic sensor that detects fluid motion rather than

sound pressure, it is very beneficial to seek designs of the

sensing structure that maximize the effective damping con-

stant, C. This will minimize the influence of thermal noise

on the structure’s motion.

VIII. DISCUSSION AND CONCLUSIONS

This study has been motivated by a desire to consider

methods of creating microphones based on the detection of

the acoustic particle velocity rather than the fluctuating

sound pressure, as is used in essentially all current micro-

phone designs. Countless animals hear sound by detecting

the motion of thin hair-like structures that are driven by vis-

cous forces due to the sound-induced motion of air. An

important step in contemplating engineered designs based

on this approach is to consider in what way the essential

FIG. 4. (Color online) Acoustic frequency response of thin micro-cantilever

beams with different widths. The acoustical frequency response of the

beams is measured in the anechoic chamber using step sinusoidal pure tone

and narrow band least square curve fitting. The results are displayed for the

free end of the beam, x¼ l. The results obtained using the three methods

show that changing the beam width does not significantly affect the results.

FIG. 5. (Color online) The pressure-referred thermal noise of the beams is

not a strong function of the beam width. The pressure-referred noise

obtained using a COMSOL model is in close agreement with measured

results and nearly independent of frequency over a significant range of audi-

ble frequencies for the range of beam widths examined here. The analytical

result, Sppthermal
, as calculated in Eq. (43) is shown to depart from those

obtained by measurements, particularly at the lower frequencies. This may

be because of the difficulty of estimating the viscous flow within the chip in

which the beams are fabricated. In each case, however, the beam width

does not appear to be a significant parameter in determining the results. The

results are shown for the free end of the beam, x¼ l. Note, again, that the

square root of the single-sided velocity power spectral densities,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gppðl;xÞ

p
, are plotted, and Gppðl;xÞ ¼ 4pSppðl;xÞ.
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design parameters influence how quiet a sound a flow-

sensing microphone could detect. Because we have well

over 100 years of design experience in pressure-sensing

microphones, it is well known that as the pressure-sensing

diaphragm becomes smaller, thermal noise from the sur-

rounding gas can adversely affect the signal. The influence

of thermal noise of pressure-sensing microphones is reduced

by making the diaphragm larger and minimizing sources of

energy dissipation (i.e., damping). When the sensing struc-

ture is intended to detect acoustic particle velocity (i.e.,

flow) rather than pressure, it is not obvious how the domi-

nant parameters of the design impact the influence of ther-

mal noise on the structure’s motion relative to the detected

sound.

In creating any system for detecting sound, it is impor-

tant to carefully consider the fact that in a traveling sound

wave, there are fluctuating pressures that propagate in space

and as a result, portions of the medium can experience

unbalanced forces on opposing sides of any small volume.

The unbalanced fluctuating forces result in fluctuating

motion of the medium. Detecting that motion can be an

alternative to attempting to detect the forces or sound pres-

sure. It is also important to note that the medium is com-

posed of vast numbers of individual particles or molecules,

which all exhibit uncorrelated, random motion. The detec-

tion system must, somehow, respond to the spatial average

acoustic fluctuations of the ensemble rather that to the indi-

vidual particles.

Because sound in air involves extremely small motions

and forces, any mechanical structure intended to move with

the air should be as compliant and have as little mass as pos-

sible (Miles, 2020). This is surely true whether the aim is to

detect pressure or motion. In systems for measuring sound

underwater, it can be advantageous to achieve neutral buoy-

ancy by using an enclosed air-filled chamber (Ivancic et al.,
2023). It would be an interesting challenge to apply this idea

when the medium is a gas such as air.

In addition to a focus on devices that are highly compli-

ant and have minimal inertia, the importance of minimizing

overall device size has dominated microphone research,

owing to the related reduction in production cost. When the

size of a solid object (such as a diaphragm, beam, hair, or

fiber) interacting with a fluid, such as air, becomes suffi-

ciently small, viscous forces of the fluid can increase in

importance relative to those caused by pressure. When the

size of the object is microscopic, viscous forces can domi-

nate over forces that we usually encounter such as pressure

and gravity; small dust particles float in the air while large

FIG. 6. (Color online) Measured and predicted power spectral densities of the random response to thermal-mechanical noise of thin micro-cantilever beams

with different lengths of 171, 396, 446, 480, and 500 lm are in close agreement. The results are displayed for the free end of the beam, x¼ l.
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objects certainly do not. The importance of viscosity relative

to pressure and pressure gradients in small acoustic sensors

deserves more attention (Miles and Zhou, 2018; Zhou and

Miles, 2017).

The sound-induced motion of a solid object, such as a

beam or an animal’s sensory hair, could be the result of dif-

ferences in pressure on its opposing sides in a traveling

sound wave or it could be the result of viscous forces in the

moving fluid. Of course, the air is moving because of pres-

sure gradients, therefore, it can be somewhat unclear

whether to attribute the object’s motion to viscous forces or

simple pressure gradients. One way to examine this might

be to remove viscosity and see what difference it makes on

the resulting motion. Although this is straightforward in a

FIG. 7. (Color online) Measured and

predicted acoustic response of thin

micro-cantilever beams with different

lengths of 171, 396, 446, 480, and

500 lm. The results are displayed for

the free end of the beam, x¼ l. The

results obtained using the three meth-

ods show that changing the beam

length does not significantly affect the

results.

FIG. 9. (Color online) Increasing the viscous damping coefficient per unit

length reduces the pressure-referred thermal noise. Power spectral density

of the pressure-referred thermal noise of a thin micro-cantilever beam hav-

ing a width of 2 lm versus the viscous damping coefficient per unit length.

The results are displayed for a frequency of 1 kHz. The calculations were

performed using a range of values of the air viscosity which caused the vis-

cous damping coefficient to vary over the range depicted. These results

show that the pressure-referred noise is proportional to the inverse of the

viscous damping coefficient as indicated in Eq. (44).

FIG. 8. (Color online) The beam length does not have a marked influence

on the pressure-refereed noise. Measured and predicted pressure-referred

noise of thin micro-cantilever beams with different lengths reasonably agree

over much of the audible range.
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numerical model, it is not a simple matter to accomplish this

in an experiment. Numerical results that we have obtained

indicate that when viscosity is dramatically reduced, the

sound-induced motion of these beams is substantially less.

Based on our numerical results, we have concluded that vis-

cosity plays a dominant role for these beams.

The focus of the present study is on relatively simple

candidate structures that could be considered in an acoustic

flow-sensing microphone. Of course, as is clear by the vari-

ety of forms used by animals for detecting acoustic flow,

there are countless possible engineered designs that could be

considered. We have concentrated on a rather simple candi-

date design consisting of a thin, narrow, cantilever beam.

The properties of the beam are chosen such that its motion

due to a traveling acoustic wave resembles the acoustic par-

ticle velocity. Analytical models of the response to sound

and the response to random thermal noise are in close agree-

ment with experimental results.

One of the main findings in this study is that the sound-

induced motion and the effective sound pressure that elicits

the same response as the thermal noise excitation (i.e., the

pressure-referred noise) is not a strong function of the width

and length of the beams. The beams chosen here are quite

narrow (from 2 to 5 lm in width). This suggests that for suf-

ficiently thin sensing structures, geometric details are not

particularly important. Not needing to worry extensively

about dimensional tolerances (and, perhaps, material proper-

ties) can lead to significant benefits when fabricating

devices.

Another conclusion of this study is that it is very benefi-

cial to seek designs that maximize the effective viscous

damping coefficient that determines the viscous force on the

structure resulting from the relative velocity between the

structure and fluid. The dependence of the sound pressure-

referred noise on the viscous damping can be observed in the

analytical model and is apparent in the numerical results.

Whereas the present study has focused on fairly simple canti-

lever beams as the sensing structure, many other geometries

could be considered, having enhanced surface area that ena-

bles them to achieve higher viscous damping coefficients.

Although our attention here has been focused on an

examination of thermal noise in microphones designed to be

driven by viscous flow, the transition from sensing pressure

to sensing flow will introduce myriad other important con-

siderations. One important aspect is that flow often depends

substantially on the boundary conditions near the sensing

structure; fluid flow can be very strongly dependent on posi-

tion while pressure tends to be less so. The enclosure or

package then must be designed carefully. With proper

design, the surrounding structure can provide an increase in

flow velocity which could enhance performance

significantly.

By focusing solely on thermal noise in the present

study, we have avoided the very difficult issue of selecting

the most effective means of transduction. Achieving an elec-

tronic readout, obviously, is an essential task which, admit-

tedly, can be daunting. In the simple beams examined here,

transduction could be achieved using capacitance, strain, or

optical methods, which have been used successfully in pres-

sure microphones. Capacitive transduction may require a

departure from the common parallel plate design but might

take the form of interdigitated fingers or other less common

electrodes. Because the structure should be as compliant as

possible and have minimal mass, the transduction scheme

should be designed to apply as little force to the structure as

possible. An attempt at a capacitive sensing system that is

designed to achieve this has been described previously

(Miles, 2018).
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