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Abstract

In this paper, carbon nanotube-based nanoelectromechanical systems (NEMS) are

nanofabricated and tested. In-situ scanning electron microscopy measurements of the

deflection of the cantilever under electrostatic actuation are reported. In particular, a

cantilever nanotube suspended over an electrode (nanoswitch), or two symmetric cantilever

nanotubes (nanotweezers), from which a differential in electrical potential is imposed, are

studied. The finite deformation regime investigated here is the first of its kind. An analytical

model based on the energy method in both small deformation and finite kinematics (large

deformation) regimes is used to interpret the measurements. The theory overcomes limitations

of prior analysis reported in the literature towards the prediction of the structural behavior of

NEMS. Some of the simplifying hypotheses have been removed. Furthermore, the theory

takes into account the cylindrical shape of the deflected nanotube in the evaluation of its

electrical capacitance, the influence of the van der Waals forces as well as finite kinematics. In

addition, tip charge concentration and a quantum correction of the electrical capacitance are

also considered. The energy-based method is used to predict the structural behavior and

instability of the nanotube, corresponding to the on/off states of the nanoswitch, or to the

open/close states of the nanotweezers—at the so-called pull-in voltage. Accuracy of the

derived formulas is assessed by comparison of the theoretical prediction and experimental data

in both small deformation and finite kinematics regimes. The results reported in this work are
see front matter r 2005 Elsevier Ltd. All rights reserved.
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particularly useful in the characterization of the electromechanical properties of nanotubes as

well as in the optimal design of nanotube-based NEMS devices.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Ever since their discovery (Iijima, 1991), carbon nanotubes (CNTs) have been
attracting major interest in the scientific community. In the last decade, the
mechanical and electronic properties of nanotubes have been investigated. Small
size, low density, high stiffness, flexibility and strength, as well as excellent electronic
properties and unique coupled electromechanical behaviors (Tombler et al., 2000;
Johnson et al., 2004; Liu et al., 2004), suggest that nanotubes have the potential to
impact the development of novel composites, electronic devices and nanoelectro-
mechanical systems (NEMS). Nanotubes (as well as nanoropes—composed of
several nanotubes—and nanowires—having different shaped compact cross-sec-
tions) are envisioned as the ultimate fiber reinforcements as a consequence of their
extremely high stiffness (Young’s modulus of the order of 1TPa, Treacy et al., 1996;
Chopra and Zettl, 1998) and flexibility (strain at tensile failure of the order of 30%,
Yakobson et al., 1997). Their strength, recently investigated in the work by Yu et al.
(2000), is of the order of 10–100GPa. For a recent review on the mechanics of
carbon nanotubes the reader should refer to the paper by Qian et al. (2002).

Recently some research groups have been able to manufacture NEMS devices. For
instance, Kim and Lieber (1999) developed nanotweezers. The mechanical capabilities
of the nanotweezers were demonstrated by gripping and manipulating submicron
clusters and nanowires. Likewise, Rueckes et al. (2000) investigated a carbon
nanotube-based nonvolatile random access memory, by considering an innovative
bistable nanoswitch based on electrostatic and van der Waals forces. The authors
emphasized the extreme high integration level of the nanoswitches approaching 1012

elements per cm2 and an element operation frequency in excess of 100GHz. The
viability of the concept was demonstrated by the experimental realization of a
reversible bistable nanotube-based bit. Furthermore, the first really true nanotube-
based NEMS, fully integrating electronic control and mechanical response, was
developed only recently (Fennimore et al., 2003) by realization of a rotational motor.
The authors reported the construction and successful operation of a fully synthetic
nanoscale electromechanical motor incorporating a rotational metal plate, with a
multi-walled carbon nanotube serving as the key motion-enabling element.

In spite of this fast acceleration in the development of NEMS structures, the amount
of experimental data is extremely limited due to the complexity involved in the
realization of nanodevices. Likewise, accurate analyses and formulas needed in the
design of NEMS are still lacking. The first extensive investigation of the behavior of
NEMS devices has been recently reported by Desquenes et al. (2002). In that paper, the
equation of the elastic line of a nanotube suspended over an electrode and from which a
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differential electrical potential is imposed, was numerically solved according to
continuum mechanics, assuming small displacements. The corresponding pull-in
voltages, at the structural instability, were evaluated for different cases. In addition,
the first attempt to obtain an analytical formula for the pull-in voltage of the nanotube
was also proposed, assuming for the nanotube a plate-like undeformed shape connected
via a lumped stiffness to the ground electrode. As emphasized by the same authors, the
proposed formula was not able to accurately reproduce all their numerical results.

In this paper we investigate the electromechanical behavior of CNT-based NEMS by
means of experimentation, in a regime until now unexplored, and by performing a
theoretical analysis in both small deformation and finite kinematics (large deformation)
regimes. In-situ scanning electron microscopy (SEM) experiments of electrostatically
actuated nanotube cantilevers, in the finite kinematics regime, are described.
Experimental data concerning the continuous deflection is reported and contrasted
with the small deformation regime data reported by Akita et al. (2001) (nanotweezers).
The experiments are analyzed by means of an energy-based theory. Through this theory,
the continuous deflection and pull-in voltage of the nanotube device are predicted. The
model takes into account the cylindrical shape of the deflected nanotube in the
evaluation of its electrical capacitance, the influence of van der Waals forces, finite
kinematics, quantum correction to the electrical capacitance and tube tip charge
concentration. A comparison between experimental data and theoretical predictions, in
both small deformation and finite kinematics regimes, is discussed. The errors from
neglecting charge concentration and finite deformation effects are also discussed.
2. Experiments

2.1. Small deformation regime

One of the few experimental results on in-situ SEM electrostatic actuation of
carbon nanotube devices was reported by Akita et al. (2001). They employed two
single-clamped nanotube cantilevers placed parallel to each other to construct
nanotweezers. The length of the nanotube cantilever employed in the experiments
was 2:5mm and the gap between them was 780 nm. Theoretically, this is equivalent to
a single-clamped nanotube with a length of 2:5mm freestanding above an infinite
large conductive substrate at a distance of 390 nm. Because the ratio between the
length of the nanotube and the gap between nanotube and electrode is 6.4, finite
kinematics effects are expected to be negligible; hence, the measured deflection of the
nanotube under the electrostatic force can be considered in the small deformation
regime. The gap-voltage measurements reported by Akita et al. (2001) are later
plotted and compared to the theoretical analysis results (see Section 4).

2.2. Finite kinematics regime

In this section, we describe in-situ SEM experiments performed on CNT cantilevers
using the setup schematically shown in Fig. 1. Multi-walled carbon nanotubes
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(MWCNTs) from Alfa Aesar were used. Since these nanotubes are provided in bundles,
they were first separated by a few hours of ultrasonication in an aqueous dispersant
commercially available from Alfa Aesar. A droplet of solution was then placed on a
copper transmission electron microscope (TEM) grid and dried. By employing a 3-axes
nanomanipulator from Klocke Co., possessing sub-nanometer resolution, CNTs were
manipulated and mounted on the tip of the manipulator probe inside a dual-beam
scanning electron microscopy (SEM)/focused ion beam (FIB) chamber (FEI Dual-Beam
235 FIB). The TEM grid was examined using SEM and protruding nanotubes were
identified. By approaching the nanomanipulator tungsten (W) tip to a protruding and
straight nanotube, good contact between the tip and nanotube was made. Such contact
was assessed from the motion of the nanotube while slightly lifting the probe. Electron
beam-induced deposition (EBID) of platinum (Pt) was then employed to weld the
nanotube to the probe. The probe was then displaced to pull out the nanotube from the
grid and in doing so a cantilever sample was obtained. Fig. 2 shows a CNT cantilever
with the fixed end welded to the tip of the nanomanipulator probe. The length of the
nanotube was measured at high magnification to be about 6:8mm:

The electrode employed in the configuration shown in Fig. 1 was a piece of silicon
wafer coated with 50 nm Au film by electron beam evaporation. This Si chip was
attached onto the side of a Teflon block possessing an angle of 93� between the top
and bottom surfaces. The nanotube cantilever shown in Fig. 2 was then placed
horizontal and parallel to the electrode surface as schematically shown in Fig. 1. The
distance between the top surface and the gun was 5mm, while the distance between
the nanotube and the gun was measured to be 6.8mm. By focusing on the electrode
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Fig. 2. SEM image of a carbon nanotube mounted at the tip of the nanomanipulator probe.
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surface and adjusting the working distance to be 6.8mm, a feature on the electrode,
which is on the same horizontal plane with the nanotube, was located. Such a feature
is schematically marked as a line in Fig. 1. The horizontal distance between the
nanotube and the line was controlled by the nanomanipulator and set to 3mm . In
the circuit, a resistor R ¼ 1:7MO was employed to limit the current. Because the
ratio between the length of the nanotube and the gap between the nanotube and
electrode is 2.3, the deflection of the nanotube under electrostatic force can be
considered to be in the finite kinematics regime.

Figs. 3(A–E) show the scanning electron images of the deflection of the CNT as it is
subjected to increasing applied voltages. The feature on the electrode, which is in the
same horizontal plane containing the cantilever nanotube, is schematically marked as
a solid black line in Figs. 3(A–E). These images clearly reveal changes in nanotube
deflection and local curvature as a function of applied voltage. A very noticeable
effect, although difficult to quantify accurately, is the changes in local curvature. The
pull-in voltage, VPI; was measured to be 48V. Through digital image processing, the
tip deflection as a function of voltage was measured. The gap-voltage measurements
are later plotted and compared to the theoretical analysis results (see Section 4).
3. Modeling: electrostatic and van der Waals energies

We focus our attention on a cantilever nanotube suspended over a graphitic
electrode at a distance r ¼ H from which a difference V in the electrostatic potential
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Fig. 3. SEM images of the deformed carbon nanotube at various biased voltages.
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is imposed (e.g. in a nanoswitch or nanotweezers). Note that this is equivalent to the
problem of two identical cantilever nanotubes placed at distance 2r ¼ 2H under a
difference in voltage of 2V, as imposed by the symmetry. The two schemes are
shown in Fig. 4 and correspond to the experimental setups discussed in Section 2.

3.1. General expressions

The electrostatic forces between two oppositely charged structures can be
computed by using a standard capacitance model assuming perfect conductors.
This implies that the electrostatic potential is constant in the two structures.
Consequently, the electrostatic energy can be evaluated as

Eelec ¼
1
2
CV 2, (1)

where V is the difference in voltage and C is the capacitance, defined as C ¼ Q=V ;
�Q being the two opposite total charges in the two conductors. For a double-layer
conductor, the contribution to the capacitance of two infinitesimal surfaces
oppositely charged and separated by r is dC ¼ �0dS=r; where �0 ¼ 8:85�
10�12 C2 N�1 m�2 is the vacuum permittivity.

On the other hand, the van der Waals energy, as well as Pauli’s energy, due to the
atomic interactions can be computed by using the well-known Lennard-Jones
potential (Lennard-Jones, 1930). It presents an attractive term (/ r�6) describing the
van der Waals forces and a repulsive one (/ r�12), due basically to Pauli’s Principle.
The effect of Pauli’s Principle decays extremely fast and plays an important role only
when the structures come into contact. As a consequence, it is dropped in the
following discussion. To compute the total van der Waals energies, instead of the
usual discrete approach, we can employ a continuum model (Girifalco et al., 2000;
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Desquenes et al., 2002, 2004). In the continuum model, the total van der Waals
energies are computed by the integral of the two terms in the Lennard-Jones
potential, i.e.

EvdW ¼

Z
V1

Z
V2

n1n2C6

r6
dV 1 dV2, (2)

where V 1 and V2 represent the two volume domains of integration, n1and n2 are the
corresponding atom densities and r is the distance between any point on V 1 and any
point on V 2: C6 is a material constant. For carbon–carbon interactions C6 ¼

15:2 eV (A
6
¼ 2:43� 10�78 Nm7:

The component of the force along the r-direction can be derived from the
corresponding energy terms as

F ¼ �
dE

dr
. (3)
3.2. Electrostatic and van der Waals energies per unit length

Following the approach discussed in the previous section, the electrostatic and van
der Waals energies per unit length are (Desquenes et al., 2002)

dEelec

dz
¼

p�0V 2

cosh�1
ð1þ r=RÞ

, (4)

dEvdW

dz
¼
XRext

R¼Rint

XrintþðNG�1Þd

r¼rint

p2C6n
2d2Rðr þ RÞð3R2 þ 2ðr þ RÞ

2
Þ

2ððr þ RÞ
2
� R2Þ

7=2
, (5)

where z is the axial co-ordinate of the cantilever nanotube (z ¼ 0 at the clamp), Rint

and R 
 Rext are the inner and outer radius of the (eventually multi-walled)
nanotube, NG is the graphene layer number of the substrate and d is the interlayer
distance (for graphite d ¼ 0:335 nm); in addition, r 
 rint is the gap between the
nanotube (external wall) and the surface layer of the substrate, where n is the atomic
density (e.g., for graphite n ¼ 1:14� 1029 m�3).

The forces per unit length acting on the nanotube can be obtained by
differentiating Eqs. (4) and (5) with respect to r as

qelec ¼ �
dðdEelec=dzÞ

dr
and qvdW ¼ �

dðdEvdW=dzÞ

dr
,

as suggested by Eq. (3). The force qelec is a consequence of the distributed charges in
the nanotube. On the other hand, the charges will tend to have a concentration at the
end of the nanotube, so that an additional force will act at the tip of the nanotube
(Bulashevich and Rotkin, 2002; Ke and Espinosa, 2004). We will discuss this effect
as well as the quantum correction with respect to the classical analysis in a latter
section.
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3.3. Total electrostatic and elastic energies stored in the nanotube

Let us consider, initially, the principal contribution to the pull-in voltage of the
nanotube, i.e. the electrostatic forces. We start by assuming a uniform charge
distribution. In addition, we reasonably assume that the nanotube’s (external) radius
R is much smaller than the distance r between nanotube and ground plane, i.e.,
R=r51: By this assumption Eq. (4) becomes

dEelec

dz
�

p�0V 2

lnð2r=RÞ
. (6)

Noting that r ¼ H � w (and R=H51) the electrostatic energy per unit length
becomes

dEelec

dz
¼

p�0V2

lnð2H=RÞ
1þ

1

lnð2H=RÞ

X1
i¼1

1

i

w

H

� �i

 !
. (7)

We describe the deflection of the cantilever nanotube by using the following
quadratic function,

wðzÞ � ð1þ �ðz=LÞÞ
z2

L2
c, (8)

where L is the length of the nanotube and c is an unknown constant that represents
the displacement of the tip. The coefficient �ðz=LÞ represents a correction to the
assumed quadratic form, which is crucial only in the evaluation of the curvature of
the beam. It means that we consider a quadratic form sufficient for describing
displacements and rotations but not sufficient for describing the nonconstant
curvature of the nanotube. Accordingly, it will be 1b�; �05�00; where the symbol 0

represents differentiation with respect to the dimensionless variable z=L:
As a consequence, the elastic energy stored in the nanotube due to bending

becomes

Eelast ¼
EI

2

Z L

0

d2w

dz2

� �2

dz ¼
2xEI

L3
c2, (9)

where the coefficient x arises from the integration of �00: We estimate this coefficient,
equating the maximum values of the elastic strain energy

Eelast ¼
EI

2

Z L

0

d2w

dz2

� �2

dz

and that of the kinetic energy

KðtÞ ¼
1

2

Z
L

dw

dt

� �2

mdz

during its free vibration, i.e., wðz; tÞ � ð1þ �ðz=LÞÞðz2=L2Þc sin o0t: In these
equations, m is the nanotube mass per unit length and o0 is the well-known
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fundamental frequency of the cantilever nanotube. The equality results in x � 1
2
:

Accordingly, we will assume this value in the remainder of the analysis.
On the other hand, the total electrostatic energy stored in the nanotube, according

to Eqs. (7) and (8), can be expanded in series as

Eelec ¼

Z L

0

dEelec

dz
dz ¼

p�0V 2L

lnð2H=RÞ
1þ

1

lnð2H=RÞ

X1
i¼1

1

ið2i þ 1Þ

c

H

� �i

 !
. (10)

3.4. Free energy, equilibrium and structural instability

The free energy (or total potential energy) of the system is

W ðcÞ ¼ EelastðcÞ � EelecðcÞ. (11)

The equilibrium condition is reached when the free energy reaches a minimum
value, i.e., when dW ðcÞ=dc ¼ 0: On the other hand, a structural instability occurs at
the so-called pull-in voltage, when d2W ðcÞ=dc2 ¼ 0:

3.4.1. Equilibrium

The equilibrium condition gives

V ðcÞ ¼
H

L2
ln

2H

R

� � ffiffiffiffiffiffiffiffi
2EI

p�0

s
S1

c

H

� �
, (12a)

S1
c

H

� �
¼

X1
i¼0

1

ð2i þ 3Þ

c

H

� �i�1
( )�1=2

. (12b)

The characteristic curve of Eq. (12), normalized with respect to the pull-in voltage,
is given in Fig. 5. The descending branch could be experimentally captured only by a
displacement-control device. On the other hand, if the NEMS is voltage-controlled,
instead of the descending branch it will follow a horizontal line (at V ¼ VPI) until
reaching the contact at c=H ¼ 1: The difference between the two paths is related to
the kinetic energy released by the structure after pull-in when the device is actuated
under voltage-control.

3.4.2. Instability

According to Fig. 5, the instability, corresponding to the maximum of the curve,
arises for

c

H

� �
PI

�
2

3
. (13)

Note that since Eq. (13) is obtained by a second-order derivative, it could be
considered only an estimate. However, the result is quite reasonable. The mean value
(with respect to z) of the deflection is close to ðhwi=HÞPI �

1
3 ; which is the same as the

condition found in MEMS. On the other hand, in view of the fact that the
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characteristic curve is very flat near the maximum, the pull-in voltage may only be
slightly affected by this ratio.

Substituting Eq. (13) into Eqs. (12a) and (12b) (the summation converges rapidly
to s1ð

2
3
Þ � 1:05 gives the expression for the pull-in voltage of the nanotube as

VPI ¼ k
H

L2
ln

2H

R

� � ffiffiffiffiffiffi
EI

�0

r
, (14)

where theoretically k � 0:85:
As a consequence, the characteristic curve reported in Fig. 5 follows the expression

V cð Þ

VPI
¼ 0:95S1

c

H

� �
. (15)

Assuming that all the lengths are proportional to a characteristic length l, Eq. (14)
shows that the pull-in voltage scales as VPI / l:

3.5. Correction due to the van der Waals forces

In this section we examine the effect of van der Waals forces as a correction to the
pull-in voltage derived in the previous section. We also assess under what conditions
such a correction becomes relevant.

According to our previous hypothesis, R=r51; Eq. (5) can be rewritten as

dEvdW

dz
¼ p2C6n

2d2NW hRi
XrintþðNG�1Þd

r¼rint

r�4, (16)

where NW is the number of walls of the nanotube and hRi is the mean value of their
radii.
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Considering the first term in the series expansion of Eq. (16), we obtain

dEvdW

dz
¼ p2C6n

2d2NW hRi
XNG�1

i¼0

ðH þ idÞ�4 1�
w

H þ id

� ��4

� p2C6n
2d2NW hRi

XNG�1

i¼0

ðH þ idÞ�4 1þ 4
w

H þ id

� �
, ð17Þ

in which we have neglected terms Oðw=ðH þ idÞÞ2:
By employing Eqs. (8) and (17), the total van der Waals energy accumulated in the

tube is

EvdW ¼

Z L

0

dEvdW

dz
dz ¼ p2C6n

2d2LNW hRi
XNG�1

i¼0

ðH þ idÞ�4 1þ
4

3

c

H þ id

� �
.

(18)

The variation of the van der Waals energy during a variation of the deflection of
the nanotube yields

dEvdW

dc
¼ 4

3
p2C6n2d2LNW hRiS2, (19a)

S2 ¼
XNG�1

i¼0

ðH þ idÞ�5. (19b)

To derive simple formulas, we evaluate the summation S2 in Eq. (19b) assuming a
small number i of layers, i.e., H þ id � H

S2 �
NG

H5
, (20a)

or a large number of layers, by substituting the summation with an integral,

S2 � 4

Z NG

0

ðH þ idÞ�5 di ¼
1

4d

1

H4
�

1

ðH þ NGdÞ4

� �
, (20b)

that for a very large number of layers (semi-infinite ground plane) it becomes

S2 �
1

4dH4
. (20c)

Comparing Eqs. (20c) and (20a) defines precisely what we mean by a large number of

layers, i.e., Nn
G � H=4d: Accordingly, the equilibrium condition gives

VvdwðcÞ ¼ V ðcÞ � DvdwV ðcÞ, (21a)

DvdWV ðcÞ ¼ nd ln
2H

R

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pC6HNW hRiS2

3�0

s
S1

c

H

� � ffiffiffiffiffi
c

H

r
, (21b)

where V ðcÞ is again given by Eq. (12). V vdW is the voltage including van der Waals
forces and DVvdW is the correction arising from these forces. At first glance, the
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correction to the characteristic curve due to the van der Waals forces seems to be
negligible due to the very small value of the constant C6: However, from Eq. (21) we
can infer its effect on the characteristic curve of a device and the corresponding pull-
in voltage.

Noting that the pull-in voltage is slightly dependent on the ratio c=H; the
correction can be simply estimated substituting ðc=HÞPI �

2
3
in Eq. (21b), which

yields

DvdWVPI � 2nd ln
2H

R

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C6HNW hRiS2

�0

s
. (22)

This correction scales as DvdWVPI / l�1 (assuming a semi-infinite ground plane) and
becomes dominant with respect to the electrostatic contribution VPI / l as the size l

approaches zero.

3.6. Correction due to nonlinear kinematics

In this section we examine the effect of nonlinear kinematics as a correction to the
pull-in voltage formula derived in Section 3.4. Under large displacements we assume
for the deflection of the nanotube the following form:

wðsÞ � ð1þ �ðs=LÞÞ
s2

L2
c, (23)

where s is the natural co-ordinate along the longitudinal axis of the nanotube and
1b�; �05�00: Only for small displacements s � z: Under this assumption, the total
electrostatic and van der Waals energies

Eelec ¼

Z L

0

dEelec

ds
ds, (24)

EvdW ¼

Z L

0

dEvdW

ds
ds (25)

are the same as those reported in Eqs. (9) and (10). The advantage of the assumption
of Eq. (23) (with respect for example to wðzÞ � ðz2=ðL � DÞ2cÞ; with D being the
horizontal tip displacement) is that the effect of the finite kinematics appears only in
the elastic energy Eelast:

Noting that ds2 ¼ dz2 þ dw2; and making use of Eq. (23) and considering the first
corrective term we obtain

1�
2c2

L4
s2 �

2c4

L8
s4

� �
ds ffi dz. (26)

Integrating Eq. (26) we obtainZ L

0

1�
2c2

L4
s2 �

2c4

L8
s4

� �
ds ffi

Z L�D

0

dz, (27)
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which yields the horizontal displacement D of the tip:

D ffi
2

3

c2

L
. (28)

This result is important for a better description of the tip vector position (D;
wðs ¼ LÞ) of NEMS designed for large displacement applications.

The elastic energy stored in the nanotube is

Eelast ¼
EI

2

Z L

0

dW
ds

� �2

ds, (29)

where W defines the slope of the elastic line of the nanotube. Noting that, from Eq.
(26),

1�
2c2

L4
s2 �

2c4

L8
s4

� �
ffi

dz

ds
¼ cos W ffi 1�

W2

2
, (30)

we obtain

W ffi
2c

L2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

c2

L4
s2

s
ffi

2c

L2
s 1þ

c2

2L4
s2

� �
. (31)

Hence, Eq. (29) yields

Eelast ¼
2xEIc2

L3
1þ

c2

L2

� �
, (32)

where x arises from the integration of �00: The first term is the classical one related to
small displacements; therefore, the second term represents the correction due to large
displacements.

Differentiating Eq. (32) with respect to c and comparing the result with Eq. (9),
one finds

EI ! 1þ
2c2

L2

� �
EI . (33)

As a result, the characteristic curve including finite kinematics is given by Eq. (12a)
with the substitution identified by Eq. (33). Hence,

VFKðcÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

2c2

L2

s
H

L2
ln

2H

R

� � ffiffiffiffiffiffiffiffi
2EI

p�0

s
S1

c

H

� �
. (34)

Eq. (34) being also a function of c=L; cannot be plotted solely in terms of c=H ; as
was done for the characteristic curve reported in Fig. 5. However, we can discuss two
limit cases. One case corresponds to H=L ! 0: The correction is negligible and we
obtain the result discussed in Section 3.4. The other limit case, H=L ! 1;
corresponds to contact under large deflections. The two limit cases (Eq. (34) with
c=L ! 0 or c=L ! c=H) are compared in Fig. 6. We can observe that a larger
deflection is experienced by the system before the onset of instability. Accordingly,
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Characteristic limit curves, with and without finite kinematics
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Fig. 6. Effect of the finite kinematics on the theoretical characteristic curve of the nanotube cantilever.

Squares correspond to the case H=L approaching zero and circles correspond to the case H=L ¼ 1:
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the pull-in is predicted by

VFK
PI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b

H2

L2

s
VPI, (35)

where VPI is again given by Eq. (14) and neglecting the small variation of c=H ;b � 8
9
:

It is interesting to note that the correction due to the van der Waals forces, in
which the term EI does not appear, does not affect the correction due to the finite
kinematics.

3.7. Free-end charge concentration and quantum effects

It is well known that at the ends of a linear conductor charges tend to concentrate.
The same effect happens in a cantilevered nanotube. Even when its influence could
be considerable, it is not usually taken into account. This section aims to evaluate
this effect.

We start by assuming a concentration in charge Q0 at the end of the nanotube of
lengthLbH;R (Ke and Espinosa, 2004):

Q0 ¼
2Kp�0V

cosh�1
ð1þ r=RÞ

, (36)

where K � 0:85ðRðH þ RÞ
2
Þ
1=3; which has a length unit (�L).

According to Eqs. (4) and (1),

Eelec
con

� K
p�0V2

cosh�1
ð1þ r=RÞ

, (37)
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which represents the additional electrostatic energy concentrated at the end of the
nanotube. Here r ¼ H � c is the distance between nanotube tip and electrode.
Considering rbR and differentiating Eq. (37) with respect to c gives

dEelec
con

dc
� K

p�0V 2

Hð1� c=HÞln2ðð2H=RÞð1� c=HÞÞ
. (38)

The equilibrium will be reached for a minimum of the free energy, which in this
case is given byW ðcÞ ¼ EelastðcÞ � EelecðcÞ � EvdWðcÞ � Eelec

con
ðcÞ: According to Eq. (38)

the correction on the characteristic curve given by Eq. (12a) can be easily taken into
account by the following substitution:

ln
2H

R

� �
! ln

2H

R

� �
1þ K

ln2ð2H=RÞ

Lð1� c=HÞln2ðð2H=RÞð1� c=HÞÞ

 !�1=2

. (39)

Considering ðc=HÞPI �
2
3
; the pull-in voltage of Eq. (14) decreases, becoming

V con
PI ¼ 1þ 3K

ln2ð2H=RÞ

L ln2ð2H=3RÞ

 !�1=2

VPI. (40)

It is interesting to note that the correction due to the concentration of charges does
not affect the other corrections. As a consequence, for large displacements instead of
VPI; in Eq. (40) we have to employVFK

PI : The correction due to the van der Waals
forces remains described by Eq. (22) in which we have to make the substitution
described by Eq. (38).

In addition, Bulashevich and Rotkin (2002) suggest a quantum correction for the
capacitance per unit length, i.e., for the electrostatic energy, of the form of

dE
Q
elec

dz
�

dEelec

dz
1�

1

2 lnð2r=RÞe2vM

� �
, (41)

where vM is the constant density of the states near the electroneutral level measured
from the Fermi level. We can evaluate accordingly the quantum correction, yielding
an increase of the pull-in voltage as

VQ
PI � VPI 1�

1

2 lnð4H=3RÞe2vM

� ��1=2

. (42)

The correction (42) still neglects the transverse polarization of the nanotube,
reasonable for the usual cases, for which

R2

4H2 lnð2H=RÞ
51.
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4. Comparison between analytical predictions and experiments

In this section, a comparison between analytical predictions and experimental
data, for both small deformation and finite kinematics regimes, is presented.

4.1. Small deformation regime

The nanotweezers experimental data reported by Akita et al. (2001) is plotted in
Fig. 7. The nanotweezer is equivalent to a nanotube cantilever with a length of 2:5mm
freestanding above an electrode with a gap of 390nm. The experimentally measured
pull-in voltage was 2.33V. In the same figure, a comparison between the analytically
predicted nanotube cantilever deflection and the experimentally measured data is shown.
The analytical model includes the van der Waals force and charge concentration at the
free end of the nanotube cantilever. Model parameters include Young’s modulus, E ¼

1TPa; external radius R ¼ Rext ¼ 5:8 nm; and Rint ¼ 0: The pull-in voltage from our
analytical model is 2.34V. It is clear that the analytical prediction and experimental data
for the deflection of the nanotube cantilever, as a function of applied voltage, are in
good agreement. The estimated radius of the nanotube by Akita et al. and Desquesnes et
al. was 6.65nm and 5.45nm, respectively. The value identified by our detailed analysis
falls in between and is consistent with possible metrology errors.

4.2. Finite kinematics regime

The experimentally measured nanotube cantilever deflections, in the finite
kinematics regime, are plotted in Fig. 8 (see Section 2.2). The figure also shows a
Comparison between experimental data and analytical 
prediction for cantilever nanotube in small deformation regime
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Fig. 7. Comparison between experimental data and theoretical prediction in the small deformation regime.
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Comparision between experimental data and analytical

prediction of cantilever nanotube in finite kinematics regime
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Fig. 8. Comparison between experimental data and theoretical prediction in the finite kinematics regime.
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comparison between analytical prediction and experimental data. The analytical
model includes finite kinematics, the van der Waals force and charge concentration
at the free end of the nanotube cantilever. For these predictions, the following
parameters were employed: length of the nanotube, L ¼ 6:8mm; initial gap between
nanotube and electrode, H ¼ 3mm; R ¼ Rext ¼ 23:5 nm; Rint ¼ 0; E ¼ 1TPa: The
pull-in voltage from the analytical analysis is 47.8V, while the pull-in voltage
experimentally measured is 48V. It is clear that the experimental and theoretical
predictions are in good agreement. It should be noted that the value of Rext was
estimated from high-magnification SEM images.
5. Closure

We have investigated carbon nanotube-based NEMS devices and, in particular,
the electrostatic actuation of cantilever nanotubes by means of both experiments and
modeling in the small deformation and finite kinematics regimes. The experimental
measurements of nanotube cantilever deflection in the finite kinematics regime are
the first of their kind. Likewise, for the first time an analytical model is derived,
which is able to describe the local and global deformation of the nano structure as a
function of applied voltage. The model takes into account the cylindrical shape of
the deflected nanotube, in the evaluation of its electrical capacitance, the influence of
the van der Waals forces, large kinematics, as well as the concentrated charge in the
free end of the nanotube cantilever. Comparisons between analytical predictions and
experimental results in both regimes show excellent agreement within the resolution
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of SEM metrology. Of all the effects contributing to the deformation and pull-in of
the device, the concentration of charge at the end of the cantilever was identified as
the most dominant, with an error of 13.4% when its effect is omitted. The finite
kinematics effect is less pronounced, with an error of 7.0% when neglected. These
errors were computed for the geometry and material examined in our experiments.

The methodologies here reported are completely general and as such are expected
to be useful in the characterization of electromechanical properties of nanotubes and
nanowires, as well as in the optimal design of nanotube-based NEMS devices.
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