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Abstract
Electrospun fibrous mats have a wide range of applications, and characterizing their mechanical
behavior is an important task. In addition to the mechanical properties of the individual fibers,
other factors can alter the overall mechanical behavior of the mat. In this study, we use
computational and experimental methods to investigate the effect of interfiber bonding on the
failure and rupture of typical fibrous mats. A non-linear finite element model of a mat is
simulated with randomly distributed fibers with different porosities. The percentage of bonding
between intersecting fibers is controlled by an auxiliary code. The results reveal that interfiber
bonding increases the stiffness of the mat, and the toughness of the mat increases as well.
Interestingly, a large percentage of interfiber bonding at a predefined porosity of a mat does not
increase the elastic modulus of the mat, nor does it have considerable effects on the failure
behavior. Moreover, the effect of interfiber bonding increases with a mat’s porosity. The findings
of this study could help tune the mechanical properties of fibrous mats used for different
applications.
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1. Introduction

Electrospinning is an advanced method that can be used to
design and fabricate a fibrous structure from nanofibers [1–3].
This method uses a high voltage electric force to produce
polymeric fibers with ultrafine diameters ranging from a few
nanometers to several micrometers [1, 4]. During electro-
spinning, a charged polymer jet is deposited onto a groun-
ded collector. Depending on the collector type, stationary
or quickly rotating, a mat with randomly oriented fibers or
aligned fibers can be created, respectively [5–9]. Unique char-
acteristics such as flexibility, high surface-to-volume ratio,
permeability, and absorptivity of the electrospun mats make
them ideal for many applications such as composite fibers, fil-
tration structures, wound dressing, catalytic supports, energy
harvesting, photonic and electronic devices, drug delivery, and
tissue scaffolding [1, 10–14]. The mechanical behavior of a
bulk fibrous mat greatly depends on the individual fibers, and

many experimental studies have characterized this depend-
ency according to the non-trivial microstructure [4]. Literat-
ure shows that the mechanical properties of an electrospun
mat are tunable by changing the characteristics of the poly-
mer [15–17], the diameter of the constituent fibers [18–22],
fiber alignment [23], porosity (or fiber packing density) [24–
27], and bonding at the cross-points of the fibers [28–30]. Even
after considering those parameters, it remains challenging to
link the overall bulk material behavior to the small-scale con-
stituent elements. Recently, along with experimental stud-
ies, various computational models have tackled this import-
ant challenge [4]. Proposed multi-scale modeling techniques
(e.g. statistical models, neural networks, molecular dynamics
(MD), and finite element) link the behavior of the bulk mater-
ial to the microstructure architecture [28, 31–35]. Simulations
show that the diameter and material behavior of the individual
fiber, along with the orientation of fibers, interfiber bonding,
the curvature of fibers, and porosity, are all important factors
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that have considerable effects on the mechanical properties
of fibrous mats. Among the various proposed computational
models, the finite elementmethod (FEM) has beenwidely used
in the mechanical characterization of the fibrous nonwoven
mats [23, 28, 31, 36–43]. These studies suggest that FEM sat-
isfactorily explains the elastic-plastic behavior of fibrous mats
by accounting for the mechanical behavior of the embedded
microelements. However, in prior studies, the effect of inter-
fiber bonding (fusion) between intersecting fibers on the rup-
ture behavior of fibrous mats has not been discussed very well.
Bonding at the cross-points of fibers enhances the mechan-
ical and electrical properties of mats, and it can be induced by
thermal treatment [44–47], solvent (or vapor) exposure [48,
49], or covalent cross-linking [50, 51]. In our previous study,
using a non-linear FE model, we studied the effect of inter-
fiber bonding on the elastic behavior of fibrousmats. The study
showed that bonding increases the stiffness of the mat for all
ranges of porosities; however, the bonding is more effective
at stiffening when the porosity of the mat is low. So far, the
presented models for the damage and failure of fibrous mats
have mainly focused on the discrete or FE models, without
considering the effect of interfiber bonding [40, 42, 52–57].
There are only a few studies that have discussed interfiber
bonding and failure of electrospun mats simultaneously [28,
58–60]. Wei et al [28] developed a MD model to predict the
deformation of an electrospun nanofiber mat by considering
the fusion among fibers and the van der Waals interaction.
The results of that study showed that the interfiber fusion has
a significant effect on the tensile strength of the mat. More
fusion points increase the strength of the mat, and over-fusion
may reduce the fracture energy. However, this study was in
the nanoscale only and not in a multiscale medium, and could
not explain why over-fusion does not show a strong influ-
ence on the tensile strength. Goutianos et al [58] used a 3D
finite element model to find the elastic modulus and strength
of a fibrous network was mostly controlled by the density and
strength of the interfiber bonding. The elastic modulus and
strength of the fibrous mat increase as the density and strength
of the interfiber bonding increase. Moreover, the mechanical
properties of the bonds and their density have a slight effect on
the failure strain. Although these models give valuable inform-
ation, they have limitations that have considerable effects on
the overall mechanical behavior of the mat. Individual fibers
are modeled by a linear elastic material model before frac-
ture, while in reality, the fibers show an elastic-plastic beha-
vior. The bonding of two fibers is bounded by user-defined
lower and upper limits for interaction distances. Lastly, bond-
ing density—the number of bonds in a given area—is a func-
tion of the porosity of the mat. In this study, to overcome
the aforementioned limitations, we propose a new multiscale
finite element model to investigate how interfiber bonding in
different porosities can change the rupture behavior of the
mat, while the realistic material’s microstructure is incorpor-
ated explicitly into the model by introducing failure properties
of the individual fibers. In the developed model, the numbers
of bonded and unbonded cross-points of fibers are controlled
deliberately, and they can be independent of the porosity. For
tuning the model, the percentage of bonding of all available

cross-points is an average calculated from SEM (scanning
electron microscopy) images. Moreover, this study explains
the underlying mechanism of the ineffectiveness of the over-
fusion in a predefined porosity.

2. Methods

2.1. Experimental method

The fiber mats used in this study are composed of poly-
methyl methacrylate (PMMA) microfibers produced by elec-
trospinning that used the processes and mechanical prop-
erties recently reported in detail by Alsmairat et al [61].
The employed PMMA solution was prepared by dissolving
PMMA powders (50 000 in molecular weight, purchased from
Sigma-Aldrich Co.) in acetone at a 23 wt.%. The electrospin-
ning setup mainly consisted of a high voltage source, flow
rate pump, syringe, and substrate. The needles have a diameter
range of 80 to 100 µm. Then, 10 kV are applied to the needle
and the resulting electrostatic force overcomes the surface ten-
sion in the PMMA. Droplets in the form of Taylor cones are
ejected from the needle and fly toward electrodes mounted on
the substrate.

By setting the solution flow rate at 10 µl min−1, microfibers
can be produced continually from the needle tip, and the fibers
randomly accumulate between two electrodes placed 2 cm
apart on the substrate. The manufactured fibers and fiber mat
were dried inside a vacuum oven for 12 h.

The diameters of the fibers, their bonding, and the mat’s
porosity were characterized by using a high-resolution SEM
(Supra 55 SEM from Zeiss). To avoid the electron charging
effect, the to-be-inspected mat specimens were coated with a
thin layer of conductive metal by using sputter coating. The
mechanical properties of the individual fibers and fiber mats
were characterized using a uniaxial micro-tensile testing pur-
chased from ADMET Inc. The mesh sample (3× 5 mm) was
attached between the tensile tester screws, and the test was
performed at 1 µm s−1.

2.2. Finite element model

To study the effect of interfiber bonding on the failure and
rupture behavior of a mat, we created a 2× 2 mm 2D non-
linear finite element model using randomly located and ori-
ented fibers. Fibers were randomly added to the model until
the ratio of non-occupied surface area by the fibers to the
whole area reached the desired porosity of the mat. The poros-
ity of the mat, expressed as a percentage, is defined as the
ratio of the pores’ surface area to the total surface area of
the model. In our model, we set the diameter of the fibers
to be 5.7 µm, which was obtained from measurements. The
diameters of the fibers inside the mat were measured using
ImageJ software with the SEM image analysis. According to
the measurements of 30 randomly selected fibers in the tested
mat, the average diameter of fibers was found to be equal
to 5.7 ± 0.6 µm. SEM images show the fibers have a uni-
form cross-section and a smooth surface. Fibers were modeled
with the beam element (B21) in the Abaqus finite element
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Figure 1. (a) A slice of a SEM image of the mat to identify unbonded and bonded cross-points. (b) Finite element model with random
location and orientation of the fibers for the case with 25% porosity. (c) Boundary condition of the finite element model.

package. An auxiliary Python code was developed to find all
cross-points of intersecting fibers to control the percentage of
interfiber bonding. In this study, the bonding percentage is
defined as the percentage ratio of the number of bonded cross-
points to the total number of cross-points in the model. Five
different cases with 5%, 10%, 25%, 50%, and 100% bonding
between cross-points of fibers were considered. For the cases
with 5%, 10%, 25%, and 50% bonding, 5%, 10%, 25%, and
50% of cross-points, respectively, were selected randomly and
bonded together while the rest of the cross-points were free
to move independently. For the case with 100% bonding, all
cross-points of the intersecting fibers were bonded. The bond-
ing concept in the model mimics the interfiber fusion (weld-
ing) in the experiment. A tie constraint was used to model per-
fect bonding (no relative motion) in the cross-points. Using
ImageJ software, the porosity of the mat is calculated from
the SEM image. A few slices of the SEM image were used
to calculate the average porosity of the mat. The percent-
age of the bonding between fibers is calculated manually by
counting the bonded and unbonded intersections. Figure 1(a)
shows a slice of the SEM image of an electrospun PMMA
mat. As figure 1(a) shows, the bonded and unbonded cross-
points can be distinguished in the SEM image. In the bon-
ded cross-points, fibers are fused. The porosity and the per-
centage of bonding between fibers were found to be roughly
equal to 50%. Figures 1(b) and (c) show a sample finite ele-
ment model with 50% porosity and the boundary condition
of the model, respectively. The top and bottom edges of the
model were assumed to have symmetric boundary conditions.
The left edge of the model was fixed in ‘X’ and ‘Y’ direc-
tions, and the model was stretched uniaxially from the right
edge.

A maximum strain criterion was established to determine a
point when the fracture of fibers starts. Every fiber that reaches
the maximum strain will begin to fail and tear. The equations
(1)–(3) show the formulation of the fracture [62].

εplD =

(
η,

′
ε
pl
)

(1)

η =−p
q

(2)

where the εplD is the equivalent plastic strain at the onset of
damage, the η is the stress triaxiality, p is the pressure stress,

q is the von Mises equivalent stress and
′
ε demonstrates the

equivalent plastic strain rate. The damage initiates when the
following condition occurs:

ωD =

ˆ
dεpl

εplD

(
η,

′
ε
pl
) = 1 (3)

where ωD is a state variable that increases uniformly with
plastic deformation.

3. Results and discussions

A (PMMA) mat is used in our study because of its availab-
ility, light weight, and low cost. It is a biocompatible poly-
mer commonly used in medical applications [63, 64] and areas
such as photovoltaic and triboelectric generators [65, 66]. A
SEM image of the produced PMMA fiber mat manufactured
by electrospinning is shown in figure 2(a). The SEM charac-
terization showed the electrospun PMMA fibers possessed a
solid uniform circular cross-section and their diameters could
be controlled within a range from sub-micron to ~100microns.
Our recent tensile measurements, which are depicted by the
stress-strain curve in figure 2(b), show that individual electro-
spun PMMA microfibers possess Young’s modulus of about
1.28 GPa and a tensile strength of about 16.31 MPa [61]. Fig-
ure 2(c) shows the representative stress–strain curve of one
PMMA mat with Young’s modulus of about 8.21 MPa and
tensile strength of about 0.14 MPa.

The elastic-plastic material property of a single fiber was
obtained from the experiment and used in the FEmodel, figure
2(b). According to the experimental data and a trial-and-error
method, the fracture strain and fracture energy for a single
fiber were found to be 0.02 (mm/mm) and 0.0004 (Nmm),
respectively, to be used in FE model. The dashed line in fig-
ure 2(b) shows the fitted elastic-plastic behavior of the single
fiber. To minimize the effect of randomness in the results, we
ran three models with different random locations and orienta-
tion of fibers for each of the five cases. All of the results shown
in this section are the average obtained from the three models
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Figure 2. (a) SEM image of one electrospun Poly (methyl methacrylate) (PMMA) mat. (b) Representative engineering stress–strain curve
of a single electrospun PMMA fiber (reproduced from [61]. © IOP Publishing Ltd. All rights reserved.) and the corresponding FE-fitted
curve. (c) Representative engineering stress–strain curve of one electrospun PMMA mat from experimental tests and FE model with 50%
porosity and 50% bonding. The model has 50% porosity and 50% interfiber bonding.

Figure 3. Evolution and progress of the fracture in a model with 50% porosity and 50% bonding. Numbers at the bottom of figures show
the magnitude of the applied tensile strain. Blue to red shows greater stress.

for each case. Figure 2(c) shows the stress-strain curve of the
experimental test and FE model for a mat with 50% poros-
ity and 50% bonding. From figure 2(c), the FE model predicts
the rupture behavior of the mat with good accuracy. Figure 3
shows the stress distribution and the progress of the fracture
in the mat for a model with 50% porosity and 50% bonding.
The fracture starts at a small strain and progresses quickly. For
the mat in figure 3, until a 3.5% strain there is no tearing, and
the load is distributed throughout all the fibers. After a 3.5%
strain, fracture begins at the right-bottom corner of the mat
and propagates in such a way that by the time 4.1% strain is
reached most of the mat is torn.

Figure 4 shows the average stress–strain curve of the mat
for the cases with 5%, 10%, 25%, 50%, and 100% bonding and
50% porosity for all models. The effect of interfiber bonding
on the mechanical behavior of the mat is obvious by compar-
ing the lowest-percentage bonded case with the fully bonded
case. For the case with 100% bonding, the elastic modulus of
the mat is considerably higher than the cases with low percent-
ages of bonding. In other words, interfiber bonding increases
the stiffness of the mat [67]. This observation is in agreement
with other experimental and modeling studies [43, 58, 67, 68].
Furthermore, fracture starts later for the case with 100% bond-
ing. Therefore, bonding not only increases the stiffness of the
mat, but also increases the fracture energy. This is because in

the cases with low percentages of bonding, fibers reach crit-
ical strain earlier than the case with 100% bonding. Thus, the
fracture of fibers starts with a smaller strain for the cases with
lower percentages of bonding. Interestingly, there are no sig-
nificant differences in the mechanical behavior of cases with
100% and 50% bonding. This result is in agreement with the
MD model of the behavior of electrospun nanofiber mats with
the fiber–fiber fusion and van der Waals interaction at nano-
scale [28]. This observation can be explained by the different
responses of the elastic modulus of the mat in affine and non-
affine deformation conditions. In dense fibrous networks (low
porosity), the deformation is approximately affine [69] and the
mat behaves as a nearly homogeneous material, while deform-
ation is highly non-affine in low-density (high porosity) [70,
71]. Shahsavari et al [72] showed that the elastic modulus is
independent of the cross-linking density at the affine limit, but
is very sensitive to this parameter in the non-affine regime.
Increasing the bond density in a predefined porosity reduces
the fiber segment length, which causes fibers to deform axi-
ally rather than bend [59]. Therefore, the high percentage of
the bonding in a predefined porosity shifts the mat to the affine
deformation, and consequently bonding loses its effectiveness.
Figure 4 makes clear that a 50% porosity, increasing the bond-
ing percentage from 5% to 10% significantly increases the
elastic modulus, while increasing the bonding percentage from
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Figure 4. Stress–strain curve of the mat with 0%, 10%, 25%, 50%, and 100% bonding in cross-points. The porosity of all models is 50%.

Figure 5. Histogram of length of segments of fibers for cases with (a) 75% porosity, (b) 50% porosity, and (c) 25% porosity.

50% to 100% has a negligible effect. As a result, the effect-
iveness of the interfiber bonding is dependent on the porosity
of the mat. The transformation between affine and non-affine
deformation can be characterized by measuring the length of
segments in the different percentage of bonding for different
porosities, figure 5. Segment length is defined as the distance
between the two connected bonded cross-points. As seen in
figure 5, at any predefined porosity, increasing the percentage
of bonding produces many smaller segments. As the result,
small segments intrinsically prefer to be stretched and rotated
rather than bent, and consequently the mat tends to have the
affine deformation. As it is clear, at 25% porosity, there are
many more small segments than at 50% and 75% porosit-
ies. The low density of interfiber bonding in a predefined
porosity produces scatter locations for the stress concentration,
while a high density of interfiber bonding removes stress con-
centrations and shifts the mat to isotropic material behavior.
Therefore, as figure 4 shows, a mat with a low density of

interfiber bonding fails in the smaller strains than the mat with
a high density of interfiber bonding.

Figure 4 also indicates that the effect of interfiber bonding
on the mechanical behavior of the mat noticeably decreases
in bonding percentage beyond 25%. The stress–strain curve
of the mats with different percentages of bonding shows that
for low interfiber bonding the mechanical behavior of the mat
is highly dependent on the percentage of interfiber bonding,
while this dependency decreases quickly as the percentage of
bonding increases. This result is in agreement with the recent
study by Theng et al [73]. This study showed that the effect
of cross-link percentage (bonding percentage) in a predefined
porosity diminishes enormously after a cross-link percentage
threshold of 30%.

Results in figure 4 can only be applied to the specific poros-
ity (50%) of the mat. It is expected that the effectiveness of the
interfiber bonding can be a function of the porosity. Figure 6
shows the effect of bonding on the mechanical behavior of the
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Figure 6. Effect of bonding on the mechanical behavior of the mat at different porosities.

mat at different porosities. First, as expected, mats with low
porosity (large density of fibers) are stiffer and stronger than
more porous mats [43]. As porosity increases, the stiffness
of the mat decreases fairly linearly. By comparing the 100%
bonding case with 25%, 50%, and 75% porosity, we can see
that all cases start to tear at the same strain, relatively equal to
0.028 (mm/mm). This result indicates that porosity has a neg-
ligible effect on the maximum elongation of the mat in a fixed
interfiber bonding percentage. This observation agrees with
the modeling study [58], and with the experimental findings of
[74] where while the elastic modulus, yield stress, and strength
were considerably dependent on the porosity, the yield strain
and strain to failure were independent. Goutianos et al [58]
showed that an increase in the fiber volume fraction (reduction
in porosity) and bond density has a minor effect on the strain
to failure. Figure 6 shows that the interfiber bonding is more
effective at the enhancing elastic modulus in higher porosities
than lower porosities. By decreasing the percentage of bonding
to 10% from 100%, the elastic modulus of the mat decreases
by 8.45%, 16.17%, and 20.44% for the cases with 25%, 50%,
and 75% porosity, respectively.

Figure 7 shows the dependency of the elastic modulus of
the mat to the bonding density. Bonding density is defined
as the number of bonded cross-points in a unit area. Marked
points show the percentage of bonding. Increasing bond dens-
ity for any porosity increases the elastic modulus of the mat.
However, as discussed before, for each porosity there is a
threshold for the density of bonding at which bonding loses
its effectiveness. Bonding density is dependent on the defined
porosity as well as the percentage of the bonding.

Figure 8 shows the dependency of the ultimate strength
and toughness of the mat to the bonding density. Toughness

(fracture energy) of the mat is defined as the surface area
below the stress-strain curve up to the failure strain. Tough-
ness is the ability of the mat to absorb energy and plastic-
ally deform before rupturing. Similar to the elastic modu-
lus, increasing the bonding density for different porosities
increases the ultimate strength and the toughness of the mat.
However, over-bonding cannot enhance the ultimate strength
and toughness, and there will be a plateau state. The plateau
state occurs marginally in a higher percentage of the bonding
for a mat with the low porosity (25%) than the other higher
porosities.

Finally, it is worth mentioning that the initial isotropy and
the disordered networks of the mat with point contact between
the crossing random fibers under the tension forms a highly
oriented fibrous bundle with side contact between the aligned
fibers [75]. This rearrangement results in a higher strain for
the fibers that are mostly aligned in a tension axis rather than
other fibers [76].

Similar to other computational studies, there are a few
limitations in this study; (1) perfectly bonding condition
without debonding was assumed for the fused cross-points.
In reality, if the bonding strength is not enough, bond fail-
ures and fractures can be observed [68, 77]. Therefore, not
only the percentage of bonding but also bond strength can
affect the mechanical behavior of fibrous nonwoven materi-
als. Bond damage has been identified as an important dam-
age mechanism in the different types of fibrous non-wovens
[78–80]; (2) only straight fibers were used in this study,
while it has been shown that the curliness or curvature of
fibers affects the mechanical properties of mats [32, 76, 81].
(3) The friction between unbonded and contacting fibers has
not been considered in the models. In fact, there is slippage
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Figure 7. Effect of bonding density on the elastic modulus of the mat in different porosities and the percentage of the bonding.

Figure 8. Effect of bonding density on ultimate strength and toughness of the mat for the cases with (a) 75% porosity, (b) 50% porosity, and
(c) 25% porosity.

between the unbonded and contacting fibers [82]. Studying
the aforementioned limitations could be an interest for future
studies.

4. Conclusion

In this study, we proposed a new multiscale finite element
model to investigate the effect of the interfiber bonding in
different porosities on the rupture behavior of the electro-
spun fibrous mat. The results show that increasing interfiber
bonding increases the stiffness and toughness of the mat. The
sensitivity of the mechanical behavior of the mat to bonding
decreases by increasing the percentage of the bonding. A
large percentage of bonding at a predefined porosity shifts
the mat to an affine deformation and consequently, bond-
ing loses its effectiveness. Furthermore, bonding increases the
maximum possible elongation of the mat. The study provides
an insight into the fracture of fibrous mats that can be useful
for the application of electrospun mats in technologies such

as nanomesh on-skin electronics [83], artificial extracellular
matrices [84], and wound dressings [85].
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