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Thermal atomic force microscope (AFM) nanolithography enables many nanofabrication applications, but
it requires special thermal probes. In this paper, we developed a vibration-assisted sample heating
approach to implement the nanomachining of poly(methyl methacrylate) (PMMA) with a regular AFM
probe with low stiffness (~0.16 N/m). The joule heating softens the PMMA, which lowers the normal
force. The in-plane vibration with high frequency was applied to reduce the adhesion force between
the AFM tip and the PMMA with elevated temperature, which enhances nanomachining performances.
By using this approach, uniform nanopatterns with controllable dimensions were fabricated on PMMA
films with small setpoint force.

Published by Elsevier Ltd on behalf of Society of Manufacturing Engineers (SME).
1. Introduction

Driven by many applications, atomic force microscope
(AFM)-based nanomanufacturing has been applied to perform
nanometer-scale surface modification using the fabrication
capability of the sharp tip on the probe [1,2]. As an alternative
low-cost and low-effort technique for high-resolution optical and
electron-beam lithography, it enables fabrications of nanostruc-
tures in the sub-50 nm regime [3], which include metals
(aluminum and copper) [4], metalloid (silicon) [5], and polymers
(Poly(methyl methacrylate)(PMMA)) [6–10].

One of the nanopatterning methods is vibration-assisted
nanomachining [11,12]. In-plane and out-of-plane vibrations of
the samples enable tunable nanomachining processes [3,8,13]
and complex geometries [7,14] with reduced tip wear [15].
Vibration-assisted nanomachining is able to increase the pattern-
ing speed and to enhance the nanomachining performance. But,
to our best knowledge, it has not been integrated with thermal
energy, which has the potential to further reduce the force and
tip wear when fabricating the same patterns.

Another method is the thermo-mechanical writing [16,17].
Generally, thermal fields can facilitate the patterning of soft
materials such as polymers, reduce tip wear during mechanical
deformation, and therefore assist thermo-mechanical processes
[18]. However, the adhesion force between various types of AFM
tips and samples can be significantly higher as temperature
increases [19–21], which degrade the manufacturing performance.
Stiff AFM probes can avoid the adhesion for thermal mechanical
nanomanufacturing but they usually generate uncontrollably
deeper and irregular trenches [21]. It is not easy to apply small
but accurate normal forces on samples because of their large spring
constants. Thermal fields applied in AFM can be either cantilever
heating [22–24] or sample heating [25]. Compared with cantilever
heating, sample heating method has the potential to improve the
lithography speed and efficiency by eliminating the thermal trans-
fer process between the tip and the sample when the entire sample
surface is heated.

In this paper, we present an external-energy-assisted (mechan-
ical vibration and sample heating) nanomachining method using
soft AFM cantilevers. The integration of heating and vibration
energy were utilized to enhance the nanomachining performances.
The trench profiles became controllable and uniform without neg-
ative impacts of surface adhesion under elevated temperatures
using low-stiffness probes. Meanwhile, this method enables the
control of the fabricated pattern dimensions on demand, which is
critical for the fabrication of complex patterns with high efficiency.
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2. Experimental setup

The experimental setup is based on a commercial AFM system
(NTEGRA, NT-MDT) with sample heating function, as shown in
Fig. 1. Two one-directional shear piezo actuators (PL5FBP3, Thor-
labs) were attached on the heating stage (for generating vibrations
in both � and y directions). The nanomachining tests were con-
ducted on a 100-nm thick PMMA (950PMMA A4) film, which
was spin coated on a cleaned silicon substrate for 60 s at
4000 rpm, and was then post baked at 180 �C for 90 s. The sample
was fixed on the top of actuators and heated up to 45 �C by using
the sample holder. We used double-sided adhesive sheets (Therm
O Web) for the attachment between sample holder, piezo stack,
and the sample. The input sinusoidal signal was transferred from
a function generator to actuate the xy piezos. An amplifier with a
gain of 20 was incorporated in the system to obtain larger vibration
amplitude and thus larger trench width.

The employed AFM probes (CSG10 from NT-MDT) possess a
nominal tip radius of ~10 nm and a nominal spring constant of
0.16 N/m. Each employed AFM probe was calibrated using a
thermal-tuning method. Constant forces were applied on the sam-
ple surface during the lithography process in contact mode.

The AFM tip-sample adhesion force F, is calculated based on the
measured force-distance curves [26] and is given as

F ¼ SP � DFLð Þ=SR � K ð1Þ
where SP is the setpoint (nA), DFL is the cantilever deflection (nA),
SR is the sensor response (nA/nm), which refers to the gradient
between Points A and B in Fig. 2(a), and K is the measured spring
constant (N/m).

3. Experimental results and discussions

A comparison of the adhesion forces between an AFM tip and a
sample surface was performed with and without vibration (2 MHz)
under different temperatures of the sample holder (30, 35, 40, and
45 �C). The temperatures of the sample holder are closed loop con-
trolled. But there are thermal losses after transferring onto the
sample surfaces. We measured the temperatures of sample surface
using a thermocouple after being stable: 30, 35, 40, and 45 �C of the
sample holder corresponds to 28, 30, 32.5, and 37 �C of the sample
Fig. 1. Diagram of exp
surface. As previously mentioned, the adhesion force is calculated
from the straight-line fit of the force-distance curve. The tip wear
during the measurement of the force-distance curves is ignored,
and the sensor response and the force constant are assumed to
be the same between different measurements. The comparison of
the adhesion force can be transformed into the comparison of
the distance between Points B and C in Fig. 2(a).

Fig. 2(b) shows the results of the adhesion force comparison
experiments from 35 to 40 �C. With no vibration, the adhesion
force between the tip and the sample surface keeps increasing as
the temperature increases. In the meantime, the adhesion force
becomes smaller as the vibration is applied, and the decrease of
adhesion force between experiments with and without vibration
increased from 49%, 52%, 53%, to 59% under 30, 35, 40, and 45 �C,
respectively. Therefore, the effect of vibration on reducing tip
adhesion becomes more significant under high temperature.

To further investigate the effect of different parameters on the
nanopattern geometry, we designed a factorial experiment with
vibration amplitude and loading force as two factors, each with
two levels. The high level and low level of loading force are
20 nA and 10 nA (about 339 nN and 169 nN, respectively). The
two levels of vibration input amplitude are 3.5 V and 7 V, which
correspond to the actual output amplitude of 70 V and 140 V,
respectively, on the piezo. The vibration frequency is 2 kHz, and
the direction of vibration is vertical to the machining direction.
All the experiments were performed under 40 �C, with a tip moving
speed of 0.5 mm/s. Fig. 3 shows the AFM image of the nanoma-
chined patterns with different levels of amplitude and loading
force.

According to the analysis of variance (ANOVA) results based on
data in Table 1, both the vibration amplitude and setpoint have sig-
nificant impacts on trench width (with p-values of 0.000 and 0.001,
respectively). The p-value of the interaction between two factors is
found to be 0.269, which shows that the interaction does not have
statistical significance. Trench width increases along with the
increase of setpoint and amplitude, which improves the machining
efficiency. Uniform trenches with controllable depth and width
also indicates an improvement in machining performances.
According to the calculated regression equation, the trench width
and depth can be predicted by the applied vibration amplitude
and setpoint, which are given as follows:
erimental setup.



Fig. 2. (a) A typical force-distance curve that is used to calculate the surface adhesion force. (b) Comparison of the adhesion force with and without vibration under different
temperatures (vibrational frequency and amplitude are 2 MHz and 80 V, respectively).

Fig. 3. (a)–(d) AFM images of nanomachining patterns on PMMA film: (a) Amplitude = 3.5 V, setpoint = 10 nA; (b) Amplitude = 3.5 V, setpoint = 20 nA; (c) Amplitude = 7 V,
setpoint = 10 nA; (d) Amplitude = 7 V, setpoint = 20 nA. (e)–(h) Cross-sectional profiles of trenches in (a)–(d) under different amplitudes and loading forces, respectively.
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Width nmð Þ ¼ �5:2þ 9:46 � Amplitude Vð Þ þ 0:05 � Setpoint nAð Þ
þ 0:1057 � Amplitude Vð Þ � Setpoint nAð Þ;

Depth nmð Þ ¼ �16:77þ 5:24 � Amplitude Vð Þ þ 0:634

� Setpoint nAð Þ þ 0:0267 � Amplitude Vð Þ
� Setpoint nAð Þ:

The results show that the feature depths increase along with the
widths. The tip has an inverted pyramid shape, larger vibration
amplitude may horizontally push the edges of the soft tip and thus
generate a normal force that can vibrate the tip up and down, lead-
ing to the depth increase.

4. Conclusions

In this study, we investigated the external-energy-assisted
nanomachining of PMMA that uses AFM probes with very low
spring constants. We introduced the joule heating to facilitate
the nanomachining process due to the softening of polymers as
temperature increases. In-plane vibration was applied to the sam-
ple to increase the machining efficiency and to decrease the surface
adhesion that increases along with the temperature. We also inves-
tigated the effect of vibration amplitude and loading force on the
trench width and depth. Trenches will become wider and deeper
as the increase of vibration amplitude, which may because of the
torsion of the AFM cantilever during nanomachining. The contribu-
tions of this study are twofold. First, we enable the nanomachining
with a soft contact cantilever on polymer surfaces under elevated
temperatures, while very few studies used AFM tips with similar
stiffness in nanomachining and obtained more than 10 nm depth
of trench on the polymer surface. Second, we applied vibration
on the xy plane to reduce the surface adhesion generated by ther-
mal effect, to increase machining efficiency, and to improve the
overall performance that includes better finish and uniform
trenches.



Table 1
Experimental trench widths and depths under different amplitudes and setpoints.

Amplitude (V) Setpoint (nA) Width (nm) Depth (nm) Amplitude (V) Setpoint (nA) Width (nm) Depth (nm)

3.5 10 30.0 8.1 7 10 75.0 30.1
3.5 10 30.0 8.1 7 10 60.0 30.2
3.5 10 34.0 9.7 7 10 74.0 23.4
3.5 10 40.0 9.4 7 10 70.0 25.9
3.5 10 32.0 7.6 7 10 70.0 31.3
3.5 10 35.0 7.7 7 10 79.0 31.2
3.5 10 35.0 10.0 7 10 71.0 24.8
3.5 10 30.0 9.9 7 10 65.0 23.9
3.5 10 29.0 8.5 7 10 55.0 28.5
3.5 10 26.0 9.7 7 10 70.0 31.9
3.5 20 45.0 12.3 7 20 72.0 30.3
3.5 20 40.0 21.5 7 20 80.0 36.5
3.5 20 40.0 16.0 7 20 81.0 35.0
3.5 20 30.0 16.2 7 20 80.0 33.7
3.5 20 38.0 19.3 7 20 69.0 32.0
3.5 20 34.0 18.3 7 20 71.0 26.7
3.5 20 36.0 18.2 7 20 80.0 42.2
3.5 20 35.0 13.5 7 20 80.0 44.8
3.5 20 35.0 12.3 7 20 77.0 32.3
3.5 20 30.0 13.7 7 20 78.0 49.8
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