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ABSTRACT

In this paper, we use locd maximum likdihood (LML) method to edtimate stochastic frontier models. This
method permits us to remove many of the standard deficiencies of econometric SF modds. In paticular, we
rdax the assumption that dl firms share the same production technology and provide completely firm-specific
parameter estimates and inefficiency measures. We aso introduce noryparametric heteroscedasticity in both the
noise and inefficiency components, alow for nonparametic inefficiency effects. A cost frontier is estimated for
asample of 3691 U.S. commercia banks for the year 2000 to illustrate the new technique.
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1. Introduction

Since the publication of the semind papers by Aigner e d. (1977) and Meeusen and van den
Broeck (1977), econometric edimation of dochedtic frontier (SF) modes became a standard
practice in efficiency measurement studies. Although SF modds can be edimated ether by
sampling theory or Bayesan techniques, efficiency measurement in these modds rely heavily
on the choice of functiond forms ddributiona assumptions, fixity of parameters of the
underlying production technology, and so on. Some of these are drong assumptions and, in
practice, one is dways subject to the critidism that empirica results depend on these
assumptions. For example in a recent survey Yatchew (1998) argues that economic theory
rady, if ever, gedfies precise functiond forms for production or cost functions.
Consquently, its implications are not, drictly spesking, tesable when abitrary parametric
functiond forms are gpecified. To the extent tha the production or cost functions are
misspecified, it is possble tha a true theory can be rgected, and estimates of efficiency will
be biased.

An dterndtive to the SF gpproach is the delerminisic non-parametric gpproach, viz., the Daa
Enveopment Andyss (DEA) popularized by Chanes e d. (1978). While the S modds
assume edific functiond forms for the production or cost frontiers and adopt strong
digtributiond assumptions on the noise and inefficiency components, the DEA modds do not
meke such assumptions. However, it cannot separate ‘genuine inefficiency’ from ‘noise.
Snce the gaidicd theory is wdl devdoped for SF modds, one can meke ddidicd
inferences about parameters and functions of interest, based on edtimated parameters and
data, induding inefficdency. For DEA modds the datidicd theory is not wel developed
(dthough some progress have been made in tems of bootsrgpping (see, for example, Smar
and Wilson (2000)), as a result of which most gpplied ressarchers are unable to make
datements regarding the detidtical properties of the estimated functions such as input
eladticities, scale economies, efficiency, ec.

Park, Sckles, and Smar (1998) have conddered semiparametric efficient edimation of SF
pand modds under dterndive assumptions on the joint didribution of random firm effects
and the regressors. This approach is certainly useful, provided there is no uncertainty about
linearity of the modd. More recently, Caas et d. (2002) have proposed a norrparametric
esimator based on the FDH concept. The new edimator is more robust relative to DEA but it



will not envelope dl the data This is, essantidly, a sochedtic DEA edimator for which the
authors provide an asymptotic theory (Smar and Wilson (2000) ).

Our purpose in this paper is not to improve on esimaing techniques for linear stochediic
frontier models as in Park e d. (1998) but to propose eficient estimating techniques for non-
paameric dochedsic  frontier modds with abitrary  heteroscedadticity, and  arbitrary
dependence of efficiency on covariates. We use the locd maximum likdihood (LML)
method, which is a non-parametric technique in the sense that it makes the parameters of a
given paametric modd dependent on the covariges via a process of locdization. For
examnple, if b is a non-parametric function b(x,), the familiar lineer modd y, =x® +u,

becomes effectively a non-parametric modd.

We take advantage of the LML methodology in estimaing SF modds in such a way tha
many of the limitaions of the SF modds origindly proposed by Aigner e d. (1977),
Meeusen and van den Broeck (1977), and their extensons in the last two and a haf decades
are rdaxed. Firg, we rdax the functiond form assumption. By meking the parameters of the
underlying production technology functions of data, we make the technology completdy
flexible. Second, we introduce non-parametric heteroscedadticity in the one-gded inefficency
component as wdl as in the noise component, indead of assuming Specific functiond forms
for heteroscededticity. Third, we dlow for unspecified, nonparametric dependence of
inefficiency (both the mean and the variance) on a vector of exogenous variables. By doing
so the propose method is adle to provide completdy non-parametric inefficiency estimates.
This is because the observationspecific edimates of inefficiency depend neither on the
assumption that dl firms share a globd tednology nor on the asumption that the
inefficdiency digribution is the same for dl producars Thus, the man contribution of this
paper is in the edimation of S modds free from many (if not dl) of the redrictive
assumptions that are currently used. The remova of dl these deficencies turns S modes
into non-parametric modds comparable to the DEA. Moreover, we can goply standard

econometric toolsto perform estimation and draw inferences.

The remainder of the paper is organized as follows. Loca estimation is reviewed in section 2.
Locd ML edimaion of SF modds is presnted in section 3. Some computationd and
practical issues are discussed in section 4. In section 5 we illugrate the LML technique by



edimating cog frontiers usng a sample o U.S. commercid banks. The paper concludes with
asummary of the main findingsin section 6.

2. Local estimation

Suppose the modd is y, = f (x,) +e, where ¢ is an unknown function to be estimated non-

parametricaly, and x, is a scdar explanaory varidble The Nadaraya-Watson estimator of
the unknown function (Pagan and Ullah (1999), pp. 7983) minimizes the citerion

3 é. Ky
a (v - m)K,(x-x with respect to m, and provides the solution m (x) =-= where

av,
K,°K,(x, - x). This esimator fits a congant to the data and performs weghted LS to
edimate this condant. The weights depend on x, and the modd is effectivdy non
parametric. Alternaively, indead of fitting a congant one can fit a linear modd in which case
the rdevant criterion to minimize would be é_ (yi- a- bxi)th(xi- x). The resulting

edimates a(x) ad b(x) depend on x and are dso nonparametric and can be computed

using weighted LS across anumber of x points

Fan (1992, 1993), Fan and Gijbes (1992) and Ruppet and Wand (1994) have extensvey
investigated the locad linear estimator’ Gozdlo and Linton (2000) provided a generdizaion
of the loca linear esdimator based on an anchoring modd ¢ (x;q) . Their locd nonlinear lesst

guares edimaior  edimates g locdly by minimizng the citeion  function
3 (v, - £ (x:0)) K, (x - x). They showed that the asymptotic variance and the asympiotic
bias of f(xi;d) do not depend on the paticular kernd, and anchoring modds that are
globdly coser to the true non-parametric modd (i.e, the distance between ¢ (x;q) and the
true modd ¢ (x) is smdl for dl x) endow the local esimator with better bias performance.
There are, however, many ways to combine parametric and non-parametric information (see,
for example, Pagan and Ullah (1999, pp. 106-108)) but locd egdimaion seems particulaly
well auited for econometric applications. One usudly has a good idea what the modd should



be (for example a Cobb-Douglas or trandog production function) but we cannot dam thet
this is exactly an appropriate functiond form globdly. By locdizing the parameters of these
moddsit is possble to congtruct non-parametric estimeators of the unknown functiond form.

It is not possble to gpply directly the loca NLS dgorithm of Gozalo and Linton (2000) in the
cae of dochadtic frontiers. This is because the didribution of the dependent varigble
conditiond on the parameters and the covariates does not admit a factorization that reduces
the modd to a specification that can be estimated by locd NLS method. As a result of this we

congder aLML gpproach.

To fix idess, suppose we have a parametric modd that specifies the dendty of an observed
dependent variable y, conditiond on a vector of observable covariates x, 1 x | r*, a vector
of unknown parameters gl QI rR™, and let the density be I(y;;%.9). The parametric ML

estimator isgiven by

q =argmax: q Inl(y;:%.q)

alQ i=1

The problem with the parametric ML edimator is thet it reies heavily on the parametric
modd that can be incorrect if there is uncertainty regarding the functiond form of the modd,
the dendty, ec. The LML edimation technique is a way to dlow for nonparametric effects
within the parametric modd. A naurd way to convet the parameric modd to a
nonparametric one is to meke the parameter q function of the covariates x,. Within LML
this is accomplished as follows For an abitray x1 x , the LML esimaor solves the

problem

A () = argmax: § Inl(y;; X,a)Ky, (5 - X)
q i=1
where k,, is a kemnd that depends on a matrix bandwidth + . The idea behind LML is to

chooe an anchoring parameric modd and maximize a weghted log-likdihood function thet
places more weight to observaions near x rather than weight each obsarvation equdly, as

! See Hastie and Loader (1993) for areview.



the paameric ML esimaor would do. By solving the LML problem for severd points
x1 x , we can congruct the function d(x) that is an edimator for q(x), and effectively we

have a fully generd way to convet the parametric modd to a nor{parametric gpproximation
to the unknown moadd.

LML esimation has been proposed by Tibshirani (1984) and has been applied by Gozdo and
Linton (2000) in the context of nonparametric esimation of discrete response modes, using
the probit as an anchoring modd (see dso, Pagan and Ullah (1999, p. 286)). Their edimator
effectivdly removes the assumption of a paticular didributiond form. LML edimdtion is a
naturd extension of locd linear estimation (Pagan and Ullah (1999, pp. 93-106)).

Propaties of the LML edimator are andogous to the properties of locd nonlinear least
guares (Gozado and Linton, 2000) or the locd likdihood edimator of a dendty (Chepter 2 in
Pagan and Ullah, 1999). Furthermore, standard normd asymptotics gpply to the functiond
fits More spedificaly, the asymptotic vaiance of the edimated functionf (x;q(x)) is
independent of the anchoring parametric modd, o it should be the same as the variate of
the Nadaraya-Wason and locd linear edimators. Naturdly, the asymptotic variance depends
on the bandwidth parameter n . However, it does not depend on the joint didribution of
regressors <0 it is desgn-adaptive. The behavior of the bias depends on the distance of the
anchoring modd ¢ (x;q) from the nonparametric modd, t(x). For example if the true
function is dose to a functiond form 4 (x), locd edimation anchoring on g (x) Wwill have
better bias performance rdative to the linear form for example. An important property is that
if the anchoring modd is approximatdy true (for some parameter vdue and for every x ) then
there is no upper bound on bandwidth parameter and, therefore, one could choose higher
bandwidth vaues to get faster converge to the asymptotic didribution. Gozdo and Linton
(2000) illusrate these properties nicdy in the context of locd likdihood andyss with an
anchoring probit model 2

2 Hal and Simar (2002), show that there can be no unique solution to the nonparametric frontier problem in the
presence of measurement error. However, they argue that a useful non-parametric gpproach can be developed
when measurement error variance is smdl. This result holds when error didtributions are completely unknown.
Our approach differs from Hal and Smar since we maintain normdity assumptions on error terms (dthough we
dlow for ahitrary heteroscedagticity and inefficiency effects), and use a parametric anchoring moded that is
globaly "close" to thefrontier.



3. Local Maximum Likelihood estimation of stochastic frontier models

Suppose we have the following stochastic frontier cost mode!
Vi =X® +V. +U; v, ~ IN (0,S7),u, ~IN (MW?),u 30 fori=1.,n, bl r"

where y is log cos and x; is a vector of input prices and output§;viend u, are the noise and
inefficiency components, respectively. Furthermore, v, and o, ae assumed to be mutudly
independent as well as independent of x, . This modd is heavily parametric. Firgt of dl, it is
linear in x,, dthough one can make it nonlinear without any mgor problem. Second, it
mekes drong didributional assumptions on the twosded (v) and one-sded (U) error terms.
Third, it assumes that the parameter vector b that describes the underlying production
technology, and more importantly m and w do not dgpend on x, . Although some SF models
assume thaa m ad w ae liner or logliner functions of some covariates these
specifications are ad hoc. It is well known that the end results (parameter estimates as well as
edimated efficiency) depend to a grest extent on functiond form assumptions, as wdl as
assumptions about the covaristes entering in these functions For these reasons, many

empirical researchers are relictant to use the SF modes in efficiency studies and adopt DEA
formulationsingtead.

To meke the frontier modd nonparametric, we adopt the following draegy. Condder the
usud parametric ML edimator for the norma (v) and truncated normd (u) stochagtic cost
frontier modd that solves the following problem (Stevenson, 1980):

q =argmax: 3 Inl(y;%.q)

qlQ i=1

where

) _ -1 §S2Y+W(yi'xi(b)\
(Y %,0) =[F ()] Fg SW2+s?

u 2 € (y-xb-mu
i2p (WP +s )| expa ~— 1
)1/2 H[ p( )] pg’ olw? +5s 2 H




y =mmaw, and F denotes the dandad normd cumulaive didribution function. The
paraneter vector is q =[b.s.wy ] axd the paameter space is Q=r“" r, " r, r.Locd

ML edimation of the correponding nonparametric modd involves the following deps
Firg, we choose akernd function. A reasonable choiceis

L (d) =(@2p)y " [1/2exp(-17d¢l'1d),d| R™,

where m is the dimendondity of g, H =n > , h >0 is a scda bandwidth, and s is the

sample covariance matrix of x,. Second, we cloose a paticular point x| x , and solve the

following problem:

q~(x) =argmax :
alQ

% InF(y)+InFes2y Wiy - X(b)u-lln@v +s ) % - X0 - m°l gK h(% - %)

g sw2+s?H)”? | W2+82

£ s

A lution to this problem provides the LML parameter esimates b(x),S (x),W(x) and
y (x) . Also notice that the weights « , (x, - x) do not involve unknown parameters (if n is

known) so they can be computed in advance and, therefore, the estimator can be programmed

in any standard econometric software:*

Following ae some of the reasons why the LML etimae of the SF modds is an
improvement over the exising dtemndives. Firdt, the parameter estimates b (x) depend on x
0 we compledy solve the functiond form misspecification problem in dochestic frontier

% The cost function specification is discussed in details in section 5.2.
4 An dternative, that could be relevant in some gpplications, is to locdize based on a vector of exogenous

varidbles z, instead of the x; 's. In that case, the LML problem becomes

(f (2)= argAmax :
alQ

i ®)U - x®b - m?2U
1 - mwww??&wﬁ g iy vs2)- 30BNk (2 - )

1 e

-

where z are the given vaues for the vector of exogenous variables The main feature of this formuletion is that
the b parametersaswelas S , W, andy will now befunctionsof z instead of x .



modds in the following sense. If we have a regresson modd y, =x® (x,) +e, With
e, ~ IN (0,S7°(x,)) where b(x,) axd s (x,) ae non-parametric functions of X, then the modd

is effectively non-parametric.®

Second, variances of both u and v (i.e, s? and w?) are made functions of x and ae
edimated non-parametricaly. This means that effectivdly we have heteroscededticity of
unknown form in both the noise and inefficency comporents. Thus the present formulation
generdizes Caudill, Ford and Gropper (1995), Hadri (1999), Kumbhekar and Lovdl (2000)
in the nonparametric direction without imposng any functiond form assumptions on the
dructure of heteroscedadticity so far as the vaiance of the inefficiency component is
concerned. The variance of the noise term is often viewed as risk. That is, a producer with
higher variance of the noise component v is conddered to be riskier (compared to an
otherwise identicd producer) from production/cost point of view. Such risks can often be
explaned by some spedific inputs (Kumbhekar and Tveterds, 2002). Furthermore, it is likely
that such risks vary among producers. Since s 2 is a non-paramelric function of X, we can
clam that our modd captures producer-specific production/cost risk so long as the covariaes
are producer-specific. One can aso examine effects of covariates on risk without assuming
any functiond fornf on the risk function s 2. Such margind effects are producer-specific and
aso vary with covariates.

Third, ance y is made a function of x, we have inefficiency effects of non-parametric form.

Thus the present modd generdizes Kumbhakar, Ghosh and McGuckin (1991) and Baitese
and Codli (1995) formulaion of determinants of inefficiency in the non-parametric direction.

Fourth, the modd generdizes the "thick frontig” concept (Berger and Humphrey (1991)).
The thick frontier modd fits a parametric modd (for example the trandog cogt function) to
quatiles of average cost and, therefore, it provides parameter estimates (of the usud trandog
cogt function) that are specific to quartiles. In the context of the present specification, we are
dle to make dl paamees (not just regresson paameers) obsavation-specific. A

®> The modd aso generdizes the random coefficient stochadtic frontier model of Tdonas (2002) without making
any strong digributiona assumptions on the coefficients or assuming that the coefficients do not depend on
covariates.

6 Following Just and Pope (1978), Kumbhekar and Tveterd (2002) assumed specific functiona for the risk
functionin estimating production functions without taking inefficiency into account.



disadvantage of thick frontiers is the assumption that dl firms within a given quartile share
the same technology, and face the same st of paramees of inefficency edimates.
Futhermore, it is not possble to test any hypothess using results from different quartiles.

4. Some computational/practical issues

The LML method proposed here is somewhat computationdly intensve (o (n?) -intensive),
egpecidly locdization is performed & x=x, for dl i=1..,n. Since for eech x we have
good dating vaues from the parametric ML edtimation convergence of nonlinear edimation
dgorithms” will typicdly be fast. In practice when the sample contains a large number of
obsarvations one may make a choice of “interesing” points x1 x where the LML estimator
is computed. For example fird, we may dassfy the dependent vaiable y, into
deciles/percertiles, and find the correponding x,'s for the given decilelpercentile. Then we
chooe xi a the median of x's for the given decilepercentile, and solve the LML
optimization problem for each one of these x's. Effectively, we have parameter estimates that
ae dedlepercentile-specific  provided that medians of explangory vaiddles ae
representative for the given decile/percentile. In this way, we can reduce computetiond costs
gonficantly snce it is required is to solve only tenvhundred LML optimization problems
Since good dating vaues are avalable from the parametric ML estimator, this is unlikdy to
place enormous computational burden upon empirical research.

Ancther practicd issue is the choice of the bandwidth parameter n . This parameter can be
chosen by crossvdidaion. To do this fird, we solve the LML problem with al data except
for observation  , and definefor some xT x ,

d’(i)(x,h):argirgax:é In1(y;; %, 0K, (% - X)
q it]

fordl j=1..,n. Thepoint x can be the overdl median of the data. Then we choose n to

minmize

"Widely used agorithms are BHHH and BFGS.



2

(yj - y](h))

. mozs

j=1

where y,(h) denotes the fitted value of y; based on n . For stochadtic frontier models, this

problem is paticulaly essy because cross-vdidaion can be implemented without actudly
solving the LML optimization problem.®

Other practica issues are relted to the specification of an anchoring modd for the regression
pat as wdl as anchoring modds for the one-sded eror term. One can ether fit Cobb-
Douglas or trandog modds depending on whichever modd specification provides a better fit
of the daa The choice will dso influence computationd burden dnce trandog modds
involve many parameters Another important condderation is that anchoring modds must be
ale to incorporate paameric curvaure and monotonicity  redrictions.  This s
draghtforward for the Cobb-Douglas but more complicated for the trandog, where such
restrictions have to be imposed at each observed data point.

So far as the choice of an anchoring modd for the one-sded error is concerned, one can
choose from the hdf-normal, truncated normd, exponentid, and gamma didributions The
hdf-normd didgribution is a specd case of the truncatled norma didribution when
y =m=0. Gamma didributions (Greene (1990), Ritter and Smar (1997), TSones (2000))
are difficult to work with and, therefore, may not be wel suited as anchoring modds in non
parametric stochedtic frontier models since iterative nortlinesr edimation dgorithms may fall
during the course of fitting the modd to a paticular point. An exponentid didribution
(specid caxe of the gamma didribution) would be a reasonable competitor of a hdf-norma
goecifiction. Therefore, in tems  of ‘wdl-behaved modds the truncatled normd
gpecification is the most generd and has the added advantage that it dlows to parameterize
the mean in teems of the explanaiory varidbles in a non-parametric fashion. In practice, the
likdihood functions resulting from a truncated normd digribution for the one-sided error
tend to be fla in the direction of y (Greene (1994), Ritter and Smar (1997)) that might

cause convergence problem (it might converge to unreasonable vaues). One way to solve this

8 It is known that crossvdidation is not a panacea in bandwidth selection. For larger vaues of the bandwidth

parameter N, we are effectively placing more weight on distant points from x , and in the limitas h ® ¥ we
recover the parametric ML estimator. Therefore, it is a good idea to keep the bandwidth parameter redtively
“gndl” in order to recover the locd properties of the true nonparametric function. Gozalo and Linton (2000)
a so recommend bandwidth selection based on the asymptotic distribution of functiond fits.

10



problem is to adopt a pseudo-prior didribution for y as in van den Broeck, Koop,
Odewdski and Sted (1994), which is to assume that y ~ N (0,a°) Where a >0 is the "prior™
dandard deviation of the y parameter. This results in a quas Bayes edimator. Locd quas
Bayes edimators result when the anchoring ques Bayes edimaor is locdized to each
observation or to a group of observations by some rule. We find that this choice makes the
optimization problem more regular and convergence is much fagter. Since we have more than
3600 obsarvaions in our gpplication, the pseudo-prior should have a minimd effect on find
edimates. The introduction of pseudo-prior should not meke the empiricd researchers,
especidly the nonpractiioners of Bayesan methods, fed unessy given its advantage in
reguaizing the LML optimization problems Hamilton (1994, p. 689) employed smilar
methods in the context of estimation of finite norma mixture modds using sampling theory.

5. An application to U.S. commercial banks

The aove mehodology is goplied to andyze cost efficiency of the U.S. commercid banks
The commercid banking industry is one of the largest and most important sectors of the U.S.
economy. The gructure of the banking industry has undergone rgpid changes in the lagt two
decades, modly due to extensve consolidation. The number of commercid banks has
declined over time and concentration a the nationd level haes increased. The number and Sze
of large banks has dso increesed. Judification of mergers and acquistions is often provided
in terms of economies of scde and efficiency. Thus, it is important to ask: (i) are large banks
necessaxily more efficient? (i) Do large banks operate beyond their efficient scae? Answer
to these quedions depends on the edimation technique (parametric vs. non-parametric) used,
functiond form chosen, etc? Since the banking industry conssts of large number of smal
banks and assts are highly concentrated in a few very large banks heteroscedediicity is
likdy to be present in both the noise and inefficiency components™ Moreover, the
production technology among banks is likely to differ.* These problems are avoided in the

 There are numerous dtudies that address scde economies and efficiency. See, eg., McAlliger and McManus
(1993), Berger and Mester (1997), Berger and Humphrey (1992), Boyd and Graham (1991), Mukherjee et d.
$2001), Whedock and Wilson (2001), among others.

% 1t is well known that if inefficiency componert is heteroscedastic and one ignores it, both parameter estimates
and edimated inefficiencies will be inconsstent (see Kumbhakar and Lovel (2000, Chepter 3.4)).
Consequently, estimated of economies of scae are likely to be wrong.

1 Although, in a parametric setting one can test this using the Chow test for structural change (parameter
stahility) in which banks are grouped under small, medium, large, etc, there is no universaly accepted criterion
for grouping banks and deciding how many groups are to be chosen. McAlliser and McManus (1993) argued
that returns to scale estimates are biased when one fits a single cost function for al the banks.

11



non-parametric LML modd that makes parameters bank-specific without usng any ad hoc
specification.

5.1 Data

The daa for this dudy is teken from the commercid bank and bank holding company
database managed by the Federd Reserve Bank of Chicago. It is based on the Report of
Condition and Income (Cdl Report) for dl U.S. commercid banks that report to the Federd
Reserve banks and the FDIC. In this paper we usad the data for the year 2000 and sdlected a
sanple of 3691 commercid banks. Median vdue of assats of these banks is 76 million
dollars. The didributions of bank assets and banks are shown in Figure 1. The top 7% of the
banks control more than 60% of the total assets while the bottom 10% of the banks control
about 1% of total bank assets. About 20% of the top banks control more than 85% of the
asets. Thus, the didribution of assets across banks is highly skewed. As a realt of this it
vay likdy that the paamees of the underlying technology (cogt function in our case) will
differ among banks.

Figure 1: Distribution of assets/banks

0.70

OPercent banks
EPercent assets

0.60

0.40

Percent

0.30

0.20 1

:

T ead

<10 10--25 25--50 50--75 75--100  100--200 200--300  300--500 >500

Assets (mil. $)

In banking literature there is controversy regarding the choice of inputs and outputs. Here we
follow the intermedigion gpproach (Kaparekis e d. (1994) in which banks are viewed as
finencd firms trandforming various finendad and physcd resources into loans and
invetments. The output vaiddles ae ingdlment loans (to individuds for

12



persond/household expenses) (y1), red edtate loans (y2), business loans (y3), federd funds
sold and securities purchased under agreements to resdl (ys), other assats (assets that cannot
be propely included in any other asst items in the bdance shest) (ys). The input vaigdles
ae labor (x), capitd (x), purchased funds (xg), interest-bearing depogts in tota transaction
accounts (Xs) and interest-besring deposts in totd nontransaction accounts (xs).  The input
prices are cdculated in the usud way. The price of labor (W) is the average wage/sdary per
employee and is obtained from expenses on sdaies and bendfits divided by the number of
full time employees Smilaly, the price of physcd capitd, w, = (expenses on premises and
fixed assats)/the dollar vaue of premises and fixed assets; the price of purchased funds, ws =
(interest expense on money maket depost accounts + expense of federa funds purchesed
and securities sold under agreements to repurchase + interest expense on demand notes issued
to US Treasury and other borrowed money)/dollar vdue of purchesed funds), price of
interest-bearing  depodts, wy; = (interest expense on interest-bearing categories of tota
transaction accounts/dollar value of interest-bearing categories in tota transaction accounts,
the price of interest-bearing depodts in totd nontransaction accounts, ws = (interest expense
on totd depodts — interest expense on interest-bearing categories in total transaction accounts
— interet expense on money maket depost accounts)/dollar vaue of interest-bearing
deposits in totd nontransaction account. Tota cogt is then defined as the sum of cogt of these
fiveinputs.

5.2. Reaultsfrom the localized Cobb-Douglas model

We choose a Cobb-Douglas functiond form primarily because a smple OLS fit of a Cobb-
Douglas cogt function resulted in a reasonably good fit (r? of about 0.93). We have dso
fited a trandog, but the Schwarz criterion drongly favored the Cobb-Douglas specification.
Therefore, for the data & hand, the Cobb-Douglas cost function provides an acceptable locd
fit. Moreover, use of the CD function avoids the muticollinearity problem that aises with a
flexible functiond form such as the trandog and the Fourier functiond forms Since we
locdize the paraneters a each point, flexibility is not a problem. In other words, the use of
the CD function gives a cler meaning to each and every coefficient and esch of these
coefficients are made bank-specific through locdization. We choose the n parameter by
usng crossvdidation in the rdevant range of tha paameter. To minimize computationa
cods, we peform crossvdidaion usng median vadues of vaidbles by decles of the
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dependent variable as our target varidbles. Therefore, for each vdue of h we peformed only
ten locd ML edimations

We exparimented with both haf-norma and truncated normd didributions on the one-Sded
error term. Results from the truncated norma specification are found to be better then those
from the hdf-norma specification. Because of this result we report results based on the
truncated normd didtribution on the ingfficiency component. The results are based on a CD
cog function (note the change the notation of the dependant variable), viz.,
C=x®b +v +u, whee as before v, ~iNn (0,s*)and u, ~IN (MW, v, 30 i=1.,n,
b1 R™. Here Cis totd cogt (in naturd log) and the x vaiables contain m(5) outputs and k
(®) input prices (Al in naturd log). Furthermore, to impose liner homogenaty (in input
prices) redrictions on the cogt function we normdize totd cost and the input prices by one
input price (W) before taking logs. Thus, the estimated cost function is
C=b,+@ by Iny, +Q b, (W, /w;)+v, +u

i i3

when C =In( total cost / wy). Totad number of parametersin b (i.e, k+m) is10.

We report the frequency didribution of esimated parameters in Figure 2. The hisograms for
the parameters show different patterns ome are unimodd while others are bimodd but none

is symmetric). For example, the cost dadticities with respect to outputs (b, ,i =1,...,5) are

yi1
skewed to the right for yi, s, Y4 and ys The didribution is bimodd for y,, ys and ys. The
edimaed dadicities vay subgantidly among banks, sometimes as much as 100% from the
sndles to the highest. A dmilar picture comes out of the cost dadticities with respect to
input prices (with an exception of ws that shows minimum variaion among banks). Two of
the three parameters associaied with the didributions of the noise and inefficiency
components show large variaions among banks. The edimates of s, and y show large
variaions while the oppodte is true for s,. These large variations in estimated coefficients

show why egtimating asingle set of parametersfor dl banks might not be agood idea

We compute scde economies (SCE) as SCE = é’[;ﬂln C/1Iny, :é;byi(% X). Since dl

the parameters are obsarvaion-specific, the SCE measure is bank-specific as wdl. Thus,
dthough we dat from a CD cogt function, the SCE measure is fully flexible The SCE
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measures are reported in Figure 3 in a higogram. It can be easlly seen from the histogram that
economies of scde is not exhausted (SCE being less than unity thereby meening thet returns
to scde is greater than unity) for most of the banks. Returns to scde (RTS=1/SCE) is less
than unity for less than 5% of the banks This result contradicts some ealier sudies that show
little or no scae economies left for medium and larger banks From Figure 4 that plots SCE
agang assts (in logarithm) we find that the benefits of scde economies tend to be lower (in
genad) for large banks. This can be seen from the scater plot that shows a podtive
relaionship between SCE and log assets. However, we find that RTS is aove unity (SCE <
1) for most of the banks. Examining the scaiter plot aove the line with SCE = 1 (not drawn)
(i.e, banks for which RTS < 1), we find no pattern between SCE and log assets. That means
no strong evidence is found to support the finding (mostly from parametric studies that use a
gngle cog function for dl banks) that largelvery large banks are operaiing beyond ther
opimum dze. In other words, our results support the conventiond wisdom that judifies bank
mergers to exploit benefits of scale economies.

Now we condder messurement of inefficiency. Suppose we locdize with respect to
obsarvation j and denote the resulting LML edimates of the frontier parameter parameters
by b, s, m,,wW,.Snce u,~Nnmw’), u, 30 the conditiond distribution d u, given
the data has mean given by

_Sulo & G )

= é zi U
2 = )]
1+l (i @F(Zi,(j)) a
_ei,(J’)I (i

where ;. = + M)

(0
S(J') S(J)I(i)

u

mi () )

L FWG /8y ey Ty xBy,, for each =1,

and f,F denote the doandad normad probability dengty and didribution function

respectively. Therefore, m, ,, Is the ineffidency messure'? for obsarvaion i when we

(D)

locdize with respect to observaion j. A reasonable inefficiency measure for observation i

is provided by m; =§ m, W, which is a weighted average of al m, ;, based on the LML
weights. Naturdly, the dominaing dement in this average will be m,, , the inefficiency

measure of a paticular observation when we locdize with respect to this obsarvaion. This
inefficiency edtimate is derived completdly from firmspecific parameter estimates of b, ms
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and w and cean be viewed as a nonpaameric estimae of inefficiency for the particular
obsarvation. The firmspecific cogt efficiency measures can be obtained from exp(- ).

We report estimates of cogt efficiency in Figure 5. Modd efficiency is found to be quite high
and about hdf of the banks are found to be operating a the efficiency level of 90% or more.
To explore this issue further we plot estimates of codt inefficiency againgt log assets in Fgure
6. From the scatter plot of banks we find some (week) evidence to support the hypothesis that
large banks are more fficient (a wesk inverse reationship between inefficiency and log
asts is observed from the scaiter plot). Thus, one could argue that the cost advantage from
merger of large banks may not be very high (Berger and Humphrey (1992)), especidly from
efficiency point of view.

5.3 The Cobb-DougalsLML and theglobal trandog results. A comparison

McAlliger and McManus (1993) fitted a parametric trandog cogt function to the entire deta
st for the year 1989 and found that (i) scae economies were aosent for most of the medium
and large banks, and (ii) extreme scde economies (diseconomies) were found for very smal
(very large) banks In compaison, ther locdized trandog modd dowed much smdler
vaidions in scde economies. For the ske of comparison, we fit a dngle trandog cost
frontier for the entire data st (year 2000) in which we assume truncated normd digtribution
for the ineffidency component and normd didribution for the noise  component.
Heteroscedasticity is not induded in any of the eror components®® We find evidence of
scae economies for mgority of banks (see Figure A.1 that shows the higogram of SCE, and
Figure A.2 tha graphs scae economies againg log assats). Scale diseconomies are found for
the banks with assets more than 1.2 hillions of dollars. Thus, the presence scae economies
for mog of the banks is observed when a globd trandog cost frontier is fitted to the entire
data st. In contragt, the locdized CD cogt function results show the presence of scde

2 Thisisthe well-known Jondrow et al. (1982) estimator.

3 Note that we model inefficiency following the stachastic frontier approach whereas McAllister and McManus
(1993) did not, and our LML uses al the observations at every point of evaluation whereas they did it for only
25% of the observations.
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economies for banks of dl szes™ We a0 esimated the locdized trandog cost function and
obtained Smilar results®

To compare the edimated efficiencies derived from the LML and globa trandog modds,
fird, we compare the frequency didributions (reported in Figures 5 and A3 & wdl as
Figures 6 and A4). It can be easly seen that these frequency didtributions are quite smilar.
There are, however, differences in levds and spread. For example, the meen efficiency is
higher in the LML modd and the spread is smdler compared to the globd trandog modd. In
the LML modd we find evidence to support thet very large banks are as efficient as mogt of
the smdl banks (and in generd thee banks are more efficient than some of the medium
banks!® Snce the LML modd is more flexible and it accommodates heteroscedesticity
asociated with both eror components, the LML results are robust to functiond form
misspecification, heteroscedadticity, etc. This is however, not the case with the globd
trandog cost functions that suffers from al the problems associated with the SF modds.
Thus we credit the LML for its flexibility, which in turn gives more precise results on both
scale economies and efficiency compared to the global trandog cost frontier ™

We condude this section with the following remarks. The parametric models used to estimate
scde economies and cost efficiency of banks often led to results that are contrary to
conventional wisdom. For example the common sense argument used in favor of merger is
that large banks teke advantage of economies of scde On the contrary, empiricd findings
(based on parametric moddls) show that the large banks have exhausted economies of scae
and they are gengdly less efficient than their smdler counterparts. Some of these findings
might have resulted from assuming a sngle parametric cost function gpplicable to dl the
barks (smdl, medium, large €c.) in the sample. If the cost function parameters are bank-
gecific then udng a dngle cost function dmost surdy introduces bias in  parameter
edimaes. These biases are likdy to give inaccurae estimates of scde economies and cost
efficency (McAlligter and McManus (1993)).

Y There are only a few banks for which we observe diseconomies of scale, and these banks are from dl assets
categories. That is, the banks operating beyond their efficient scale show no strong correlation with assets.

B Space condrain doesn't permit us to report al these results, which can be obtained from the authors upon
request.

The global trandog modd show large spread in efficiency among the very large and very small banks.
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6. Conclusons

In this paper, we rdaxed many rigiditiesassumptions associated with estimation of stochadtic
frontier modds Frde, we made the parameric dochedic frontier (SF) modds completely
non-paranetric by usng the principle of locd maximum likdihood (LML) edimation. This
technique permitted us to remove the assumption of a rigid functiond form for the
technology, and provide complady firmspecific paameaer etimaes and inefficiency
measures that are not dependent on the assumption that dl firms share the same technology.
Second, we introduced non-parametric  heteroscedadticity in both the noise and inefficiency
components in the composed earor SF modds. Third, we dlowed for non-parametric
inefficiency effects thereby relaxing the assumption that inefficiency effects are log-linear.

We used both the Cobb-Douglas and trandog locdized modds to esimate the stochedtic cost
frontier usng a sample of 3691 U.S. commercid banks for the year 2000. We find that (i)
cog dadicities with respect to outputs and inputs vary subgantidly among banks (ii) scde
economies are present for most of the banks. Furthermore, we don't find any evidence to
support thet large banks are less efficient compared to the smdl banks.  Thus, in generd we
find evidence to support conventiond wisdom (i.e, large banks are more efficient and can
exploit economies of scde). Although a flexible parametric cogt function generates
obsarvaion-specific dadticities, scde economies, cost efficiency, e, these so cdled flexible
functions are found to violate propertties of cogt functions & many points, and often give
unreligble estimaies of scde economies. Results from these modds don't adways support
conventiond wisdom believed by many bankers

o Agan the efficiency results based on the trandog LML ae similar to the Cobb-Douglas LML results. Since
we aso find amilar result for scae economies, one can perhaps argue thet the functional form for the anchoring
model is not that important.
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Figure 4

Plot of SCE against log(assets) (local ML)
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