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Abstract 
 
Efficiency estimation in stochastic frontier models typically assumes that the underlying 
production technology is the same for all firms. There might, however, be unobserved 
differences in technologies that might be inappropriately labeled as inefficiency if such 
variations in technology are not taken into account. We address this issue by estimating a 
latent class stochastic frontier model in a panel data framework. An application of the model 
is presented using Spanish banking data. Our results show that bank-heterogeneity can be 
fully controlled when a model with four classes is estimated.  

 

JEL classification No.: C24, C81, D24. 
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1. Introduction 

Stochastic production (or cost) frontier functions have been increasingly used to 

measure efficiency of individual producers. Estimation of these functions rests on the 

assumption that the underlying production technology is common to all producers. However, 

firms in a particular industry may use different technologies. In such a case estimating a 

commom frontier function encompassing every sample observation may not be appropriate in 

the sense that the estimated technology is not likely to represent the ‘true’ technolgy. That is, 

the estimate of the underlying  technology may be biased. Furthermore, if the unobserved 

technological differences are not taken into account in estimation, the effects of these omitted 

unobserved technological differences might be inappropriately labeled as inefficiency.  

 

To reduce the likelihood of these types of misspecification, researchers often estimate 

frontier functions by classifying the sample observations into certain categories using 

exogenous sample separation information. For instance, Mester (1993) and Grifell and Lovell 

(1997) grouped banks into private and savings banks. Kolari and Zardkoohi (1995) estimated 

separate costs functions for banks grouped in terms of their output mix. Mester (1997) 

grouped sample banks in terms of their location. Polachek and Yoon (1987) allowed for 

different regimes in estimating the earning frontier functions of employers and employees. In 

the above studies, estimation of the technology using a sample of firms is carried out in two 

stages. First, the sample observations are classified into several groups. This classification is 

based on either some a priori sample separation information (e.g., ownership of firms 

(private, public and foreign), location of firms, etc.) or applying cluster analysis to variables 

such as output and input ratios. In the second stage, separate analyses are carried out for each 

class/sub-sample.1  

 

To account for heterogeneity, we advocate using a single-stage approach, i.e., a latent 

class stochastic frontier model (hereafter LCSFM) that combines the stochastic frontier 

approach and a latent class structure. Recently, a few studies have combined the stochastic 

frontier approach with the latent class structure in order to estimate a mixture of frontier 
 

1 It is worth noting that this procedure does not use information contained in one class to estimate the 
technology of firms that belong to other classes. However, in most of the empirical applications this inter-class 
information may be quite important because firms belonging to different classes often come from the same 
industry/sector. Although their technologies may be different, they share some common features. Since this kind 
of information is not exploited, it is possible to say that two-stage procedures are not efficient.  
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functions. In particular, Caudill (2003) introduces an expectation-maximization (EM) 

algorithm to estimate a mixture of two stochastic cost frontiers in the presence of no sample 

separation information.2 Greene (2002) proposes a maximum likelihood LCSFM using 

sample separation information and allowing for more than two classes.  

 

The main feature of the models proposed by both Caudill and Greene is that they 

assume independence of the efficiency term over time.3 This assumption doesn’t allow one to 

test whether the efficiency is time-invariant or not, which is not particularly appealing in a 

productivity growth study.4 We avoid this problem by developing a panel data LCSFM in 

both efficiency and latent class components.  

 

An application of the proposed model is presented using data on the Spanish banking 

system in which different types of banks coexist. For example, one can distinguish between 

savings and private banks, which have been regulated differently and have been traditionally 

specialized in different services. In addition, there are different types of banks within the 

private banking sector (large multiple-line banks, small regional banks, non-commercial 

banks that specialize in interbanking activities, etc.). Since our data are not detailed enough to 

split the sample completely into various types of banks, the latent class model is especially 

suitable for analyzing the Spanish banking industry. 5 

 

The rest of the paper is organized as follows. Section 2 describes the proposed model. 

Section 3 describes the data. Section 4 reports the empirical results. Section 5 contains a 

summary and some concluding remarks. 

 

 
2 See, in addition, Beard, Caudill and Gropper (1991, 1997) for applications using a non-frontier approach. 
3 That is, they model the efficiency terms in a “cross-sectional” framework where a firm observed in two 
periods is treated as two separate firms. It should be noted, however, that in Greene (2002) the panel structure of 
the data is not ignored when the latent class part is developed since the class probabilities of observations 
belonging to the same firm are fixed through time. 
4 These models do not estimate the inefficiency term consistently since its variance does not vanish as the 
sample size increases. See Schmidt and Sickles (1984) and Greene (1993) for a detailed discussion on this issue.  
5 Sáez, Sánchez and Sastre (1994) show, using confidential data, that savings banks concentrate on retail 
banking, providing checking, savings and loans service to individuals (especially mortgage loans), whereas 
regional banks are more involved in commercial and industrial loans. Another difference between these two 
groups is the fact that savings banks are more specialized than other banks in long-term loans, which do not 
require  continuous monitoring. 
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2. Panel Data Specification of a Latent Class Stochastic Frontier Model 

 

To determine efficiency, the technology of banks belonging to each class must be 

modeled. Here we assume that the techology is represented by a dual cost function. In 

particular, we assume that the cost fuction for class j is of the translog form, viz., 

jitjitjititit vutwyCC ||),,,(lnln ++= β       (1) 

where subscripts i = 1,…,N; t =1,…,Ti; and j =1,…,J stand for firm (bank), time and class, 

respectively; Cit is actual total cost; yit and wit are, respectively, vectors of outputs and input 

prices; and βj is the vector of parameters to be estimated for class j. For each class, the 

stochastic nature of the frontier is modeled by adding a two-sided random error term vit|j, 

which is assumed to be independent of a non-negative cost inefficiency component uit|j.  

 

Additional structures must be imposed in order to estimate (1) by the maximum 

likelihood method. In particular, the noise term for class j is assumed to follow a normal 

distribution with mean zero and constant variance, . The inefficiency term u2
vjσ it|j is modeled 

as the product of a time-invariant firm effect, ui|j, and a parametric function of time (among 

other variables), λit. The term ui|j is assumed to come from a non-negative truncated normal 

distribution with zero mean and variance .  2
ujσ

 

Several forms for the function λit have been proposed in the literature. A common 

feature of them is that they are exclusively functions of time (i.e. λit=λt). We adopt an 

exponential form for λit, but allow other variables that might explain differences over time 

and/or among firms (e.g., public, private, etc.) to be included in λit. We specify the 

inefficiency uit|j component, in general terms, viz., 

   ( ) 0≥⋅=⋅= jijijitjijitjit |u,|u'zexp|u)(|u ηηλ    (2) 

where )',...,( Hjjj ηηη 1=  is a 1×H vector of parameters and )',...,z(z Hititit η1=  is a 1×H  

vector of variables that, in addition to time, might affect inefficiency.6 This specification 

                                                 
6 It should be noted that the time variation in this model is deterministic and evolutionary, which might or might 
not be restrictive. 
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nests several other parametric functions proposed in the literature as special cases. We get 

the specification proposed by Battese and Coelli (1992) when )tT(zit −= . By specifying  

 one gets the specification proposed by Kumbhakar (1990). Finally, the Lee and 

Schmidt (1993) specification is obtained if z

)'t,t(zit
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With these distributional assumptions, the log density for firm i, if it belongs to class 

j, can be written as (see Battese and Coelli, 1992)  
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 εit = εit(βj) = lnCit - lnC (yit, wit, t, βj); σj
2 = σvj

2 +σuj
2; γj = σuj

2 /σj
2; and θj = (βj, σj

2, γj, ηj) are 

the parameters associated with the technology of class j, and Φ(·) is the standard normal 

distribution function.7   

 

Note that the conditional (on class j) log density in (3) is defined for all the time 

periods over which firm i is observed, while in Greene (2002) it is defined for firm i at each 

time t. Thus, the overall contribution of firm i to the conditional likelihood in Greene is 

obtained as , where )(LF)(LF jit
T
tjij

i θθ 1=Π= )(LF jit θ  is the conditional likelihood function 

for firm i at time t. This, however, cannot be done in our model because firm observations are 

not independent over time. This is the only difference between our model and the one 

proposed by Greene (2002). That is, while in Greene the inefficiency term varies freely over 

time (i.e. u  is i.i.d.), the inefficiency function in our specification varies systematically 

over time in a deterministic fashion (i.e.. u

jit |

jiit |uitj (·)| ⋅= λ ). The rest of our model (the part 

associated with the latent class structure) is identical to that of Greene. 

                                                 
7 For estimation purposes the model above is, however, re-parameterized in terms of Ψj = σvj

2/σuj
2 which is a 

useful indicator of the relative importance of noise to inefficiency.  
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In a latent class model, the unconditional likelihood for firm i is obtained as the 

weighted sum of their j-class likelihood functions, where the weights are the probabilities of 

class membership. In this formulation, the probabilities reflect the uncertainty that the 

researchers might have about the true partitioning in the sample. That is, 

1,10,)()(),(
1

=Σ≤≤⋅= ∑
=

ijjij

J

j
jijjiji PPPLFLF δθδθ   (4) 

where θ = (θ1,…,θJ), δ = (δ1,…,δJ) and the class probabilities are parameterized as a 

multinomial logit model, 

0,,...,1,
)'exp(

)'exp(
)(

1

===
∑ =

JJ

j ij

ij
jij Jj

q

q
P δ

δ

δ
δ    (5) 

where qi is a vector of firm-specific, but time-invariant, variables. The overall likelihood 

function resulting from (3) to (5) is a continous function of the vectors of parameters θ and δ, 

and can written as: 

∑ ∑∑
= == 








⋅==
N

i

J

j
jijjij

N

i
i PLFLFLF

1 11
)()(ln),(ln),(ln δθδθδθ    (6) 

Under the maintained assumptions, maximum likelihood techniques will give 

asymptotically efficient estimates of all the parameters.8 A necessary condition for identifing 

the parameters of the latent class probabilities is that the sample must be generated from 

either different technologies or different noise/inefficiency terms. That is, J, the number of 

classes in equation (6), is taken as given. If J is larger than the “true” number of classes (i.e., 

if we try to fit a model with “too many” classes) the model will be overspecified and the 

parameters cannot be estimated.  

                                                 
8 Note that here both the technology and the probability of particular group membership are estimated 
simultaneously. Since these class probabilities might be a priori nonzero, all the observations in the sample 
should be used to estimate the underlying technology for each class. In contrast, the standard two-stage 
procedures implicitly restrict the class probabilities to be equal one for a particular class and zero for the others. 
This precludes using observations that were allocated to one particular group to estimate other class frontiers. 
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The estimated parameters can be used to compute the conditional posterior class 

probabilites. Following the steps outlined in Greene (2002) the posterior class probabilities 

can be obtained from9 

∑
=

⋅

⋅
= J

j
jijjij

jijjij

PLF

PLF
ijP

1
)()(

)()(
)|(

δθ

δθ
    (7) 

This expression shows that the posterior class probabilities depend not only on the 

estimated δ parameters, but also on the vector θ, i.e., the parameters from the cost frontier. 

This means that a latent class model classifies the sample into several groups even when 

sample-separating information is not available. In this case, the latent class structure uses the 

goodness of fit of each estimated frontier as additional information to identify groups of 

firms.  

 

In the standard stochastic frontier apporach where the frontier function is the same for 

every firm, we estimate inefficiency relative to the frontier for all observations, viz, 

inefficiency from )|( iituE ε  and efficiency from E[exp(-uit)|εi].10 In the present case, we 

estimate as many frontiers as the number of classes. What remains an issue here is how to 

measure the efficiency level of an individual firm when there is no unique technology against 

which inefficiency is to be computed. There are two ways to solve this problem.  

 

First, we can examine the posterior probability for each firm and assign it a class 

based on the highest probability (assuming that there is no tie). Once the class assignment is 

done, inefficiency for that firm is computed using the frontier assigned for that class as its 

reference technology. Note that this method ignores all other class probabilites although the 

                                                 
9 It is to be noted that although Greene (2002) works with a density function for each firm i at time t, he 
proposes estimating the posterior class probability for the complete set of observations pertaining to firm i. That 
is, as in equation (7), he proposes estimating P(j|i) instead of P(j|i,t). This seems to support our strategy of 
constructing the whole model from the firm’s point of view, and not from the density function of each 
observation i at time t. This difference does not seem to be important because the expression used here and the 
one proposed by Greene for estimating P(j|i) are equivalent, except for LFij(θj) which in Greene is estimated as 
the product of Ti independent density functions, whereas here it is estimated using equation (3). Since the 
likelihood functions are different the estimated parameters are likely to be different. Thus although the same 
formula is used to compute the posterior probabilities – the estimated probabilities are likely to differ. 
10 Here εi denotes the vector of the Ti values of εit associated with firm i. See Kumbhakar (1990) and Battese 
and Coelli (1992, eq. 3) for more details. These authors extend the Jondrow et al. (1982) result that allows 
computation of individual inefficiencies in a panel data framework.  
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(posterior) class probabilities are not zero. This scheme of arbitrary weighting and 

somewhat ad hoc selection of the so-called reference technology can be avoided by using the 

second method, viz.,  

∑
=

⋅=
J

j
itit jEFijPEF

1
)(ln)|(ln        (8) 

where P(j|i) is the posterior probability to be in the jth class for a given firm i (defined in (7)), 

and EFit(j) is its efficiency using the technology of class j as the reference technology. Note 

that here we don’t have a single reference technology. It takes into account technologies from 

every class. This is the strategy suggested by Greene (2002) to get firm-specific estimates of 

the parameters of the stochastic frontier model. The efficiency results obtained by using (8) 

would be different from those based on the most likely frontier and using it as the reference 

technology. The magnitude of the difference depends on the relative importance of the 

posterior probability of the most likely cost frontier, the higher the posterior probability the 

smaller the differences.  

 

3. Data and sample  

The LCSFM discussed in the previous section is applied to a panel of Spanish banks 

observed for the period 1992 to 2000. The number of banks in Spain decreased steadily over 

the last ten years because of a large number of mergers and acquisitions.11 Due to a change in 

the structure of the public balance sheets in 1992 that reduced the amount of information 

reported by banks, and the fact that the majority of mergers took place in the early 1990s, we 

use an unbalanced panel of 169 banks for the period 1992-2000.  

 

Three sets of variables are required to estimate the model introduced in Section 2. 

These are: the variables in the stochastic cost frontier (i.e., Cit, yit ,t and wit); the zit variables 

in the parametric function of the inefficiency component; and the qi variables in the class 

probabilities.  

 

The variables used in the stochastic cost frontier are defined in the same way for every 

group of banks. We follow the banking literature and use the intermediation approach 
 

11 While a merger implies that a new bank is born with the disappearance of two banks, in an acquisition only 
one disappears and no new bank is born. 
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proposed by Sealey and Lindley (1977) to define inputs and outputs. The intermediation 

approach treats deposits as inputs and loans as outputs. In our application we include four 

types of outputs, viz., bonds, cash and others assets not covered by the following outputs (y1); 

interbanking loans (y2); loans to firms and households (y3); and non-interest income (y4). The 

last output is not commonly used in the intermediation approach. We include non-interest 

income in an attempt to capture off-balance-sheet activities such as brokerage services, 

management of financial assets or mutual funds for the customers. These activities are 

becoming increasingly important to Spanish banks.12  

 

Total cost includes both interest and operating expenses. The interest expenses explain 

about 71% of total cost and they come from demand, time and saving deposits, deposits from 

non-banks, securities sold under agreements to repurchase, and other borrowed money. The 

operating expenses that represent the remaining 29% of total cost includes labor expenses and 

other general operating expenses, such as rent and occupancy cost, communication expenses, 

or travel and reallocation expenses. Since comprehensive information about the amount of 

physical assets and other operational inputs is not available in our database, we do not 

distinguish between labor and other operational expenses. Accordingly, we include two input 

prices in our cost functions. These are: loanable funds price, measured by dividing interest 

expenses by total amount of deposits and other loanable funds (w1); and operational inputs 

price, measured by dividing total operating expenses by total number of employees (w2). The 

descriptive statistics of these variables are reported in Table 1. All monetary variables were 

deflated using the GDP deflator index, and are expressed in thousands of Euros (using 2000 

as the base year).  

 

Regarding the parametric part of the inefficiency component, we consider three zit 

variables. The first variable is the time trend (t). Using time only, the specification of (.)itλ  

corresponds to the Battese and Coelli (1992) form. Since (.)λ  is a function of time with only 

                                                 
12 Our measure of nontraditional banking activities is not without problems. First, we cannot distinguish 
between variations due to changes in volumes and variations due to changes in prices. Second, non-interest 
income is partly generated from traditional activities (such as fees from service charges on deposits or credits) 
rather than nontraditional activities alone. Since comprehensive information on the degree of off-balance-sheet 
services is not available, we prefer to describe them in an approximate way. Many recent efficiency studies also 
include fees or non-interest income as an output (for example, Lang and Welzel (1996), Resti (1997) and Rogers 
(1998)). 
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one parameter, efficiency either increases, decreases or remains constant. The second 

variable, DA, is constructed as follows: It takes a value of zero if the bank doesn’t acquire any 

financial institution, and its value is increased by one every time the bank acquires another 

bank. Since an acquisition involves structural changes (closure of branches, staff relocation, 

etc.), we expect an increase (from one period to the next) in inefficiency when an acquisition 

takes place. The third variable, DS, is a dummy variables that takes a value of one if the 

financial institution is a savings banks, and zero otherwise. The coefficient of this variables 

allow us to test whether savings banks are as efficient as the private banks.  

 

Finally, we consider the firm-average value of five variables, apart from an intercept, as 

determinants of the latent class probabilities. As customary in cluster analysis, the variables 

included in the class probabilities are four balance sheet ratios, viz., loans to firms and 

households (LNB), interbanking loans (LB), time and saving deposits (DNB), and deposits from 

banks (DB). We also include the labor to branch ratio (LBR) to identify a set of non-

commercial banks that operate in highly populated cities with large branches.  

 

In summary the final specification of the cost frontier model (ignoring the j-class 

subscript for notational simplicity) can be writen as  
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where  

   u [ iSAit uDDt ]⋅+⋅+−= 321 )1(exp ηηη     (15) 

Finally, the latent class probabilities are specified as 

∑
=

+++++

+++++
= J

j ijBijNBijBijNBijj
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10

                                                

 

4. Empirical Results 

In estimating a latent class model one has to address the problem of determining the 

number of classes. The AIC and BIC (Schwartz's criterion) are the most widely used in 

standard latent class models to determine the appropriate number of classes. 13 We have 

computed AIC and BIC (Schwartz's criterion) statistics in order to select the class size (see, 

for example, Fraley and Raftery, 1998).14 Both statistics favor the model’s goodness of fit but 

put a penalty on the number of parameters in the model. Hence, they can be used to compare 

models with different number of classes. The best model is the one with the lowest AIC or 

the highest BIC. Table 2 reports the AIC and BIC values. The AIC (BIC) values decrease 

(increase) as the number of classes increase from one to four, indicating that the preferred 

model is that with four classes.15 This result is also in line with the testing ‘down’ strategy 

suggested by Greene (2002). The likehood ratio test suggested by Greene rejects models with 

3, 2, and 1 classes (testing down from 4 to 3, 3 to 2, and 2 to 1 classes).  

We also examine the class selection issue from the efficiency point of view. Since 

estimated efficiency is likely to be biased if differences in the cost frontier and/or the same 

error structures are not controlled, one would expect the efficiency levels to increases as the 

number of classes increases. This is clearly confirmed by the average efficiency scores, 

shown in Table 3, which are obtained by estimating models with one, two, three and four 

classes. As expected, the efficiency levels rise as the number of classes increases, indicating 

that unless bank-heterogeneity is properly taken into account estimated inefficiency is likely 

to be biased (due to model misspecification) upward. This misspecification is especially 

serious when a simple model with only one group is estimated. The problem, however, seems 

 
13 These statistics in our latent class framework can be written  as: 
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14 The book Applied Latent Class Analysis edited by Hagenaars and McCutcheon (2002) has several 
applications where the AIC and BIC are used. Many applications in marketing, psychology, social sciences, and 
other disciplines are cited in there.   
15 We tried to estimate a model with five classes, but failed to achieve convergence. We take this as evidence 
that a model with five classes is overspecified. 
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to vanish when a model with four classes is used. Thus, we limit our discussion to the four-

class model.  

 The estimated class probabilities for the highest probability classes and the main 

features of banks in each class are summarized in Table 4. The posterior class probabilities 

are, on average, very high (90 percent or more). It is worth noting that the highest values are 

obtained for the third and fourth classes, where the prior class probabilities are also high.  The 

classification resulting from these probabilities shows that the largest group (third class) is 

mainly formed by commercial banks, which concentrate on retail banking, providing savings 

and loans services to individuals and loan services to industrial or commercial firms. In 

particular, this group includes almost all the savings banks in the sample and a set of private 

banks, formed by regional banks which employ a high proportion of deposits to fund loans 

and multiple-line or universal banks. The average size of these banks is much larger than the 

banks in other classes because that the largest financial banks in Spain belong to this group. 

The other three groups are mainly formed by non-commercial banks that specialize in 

activities related to the interbanking market. A detailed examination of this group would 

allow us to identify two different types of non-commercial banks. The first type includes a set 

of personal banks which capture a high proportion of deposits to fund loans to other banks. 

The second type is formed by business banks that are specialized in loans to non-banks 

supported by deposits from other banks. A common feature of all the non-commercial banks 

is that they usually operate in high population cities with large branches. 

 

Table 5 reports average cost efficiency estimated using the highest probability cost 

frontier as a reference technology. Since the estimated posterior probabilities for the highest 

probability classes are very high, the efficiency levels reported in this table are quite similar 

to those (not shown in Table 5) computed using (8). This table shows that the average cost 

efficiency of the Spanish banking sector as a whole is 82.8 percent. There are, however, 

substantial differences in efficiency levels among classes. While the average efficiency in the 

first class is 88.3%, it decreases to 65.2% in the second class. On the other hand, the 

efficiency in the largest (third) class is, on average, 86.3%. 16  

 
16 In a previous version of this paper, we also carried out a cluster analysis using the variables included in the 
latent class probabilities as sample-separating information. The classification obtained using this set of variables 
was quite different from those obtained using the LCSFM. This suggests that the LC methodology uses the 
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 The parameter estimates are presented in Table 6.17 To estimate the cost frontiers we 

normalize all the variables by their respective geometric mean. In this way, the translog form 

represents a second-order Taylor approximation, around the geometric mean, to any generic 

cost frontier. Since the cost function is homogeneous of degree one in input prices, we need 

to impose parametric restrictions to ensure that the estimated cost function satisfies this 

property. In practice, linear homogeneity restrictions are automatically satisfied if the cost 

and input prices are expressed as a ratio of one input price. Here we use wages (price of 

labor) as a numeraire.  

 

The estimated cost frontier elasticities are found to be positive at the point of 

approximation. Since all elasticities are positive at the geometric mean, the estimated cost 

frontiers are increasing in outputs and input prices. The cost frontier should also be concave 

in input prices. The second derivative of cost frontier with respect to loanable funds price, 

evaluated at the sample geometric mean, is negative in all cases. Since our cost frontiers 

include only two inputs and we imposed homogeneity of degree one in input prices, this 

implies that the Hessian matrix is a negative semidefinite matrix. Therefore, these results 

confirm (positive) monotonicity of all cost frontiers and indicate that the estimated cost 

frontiers are concave at the geometric mean. 

 

Variations in cost (over time) that are  not explained by other explanatory variables, are 

usually attributed to exogenous technical change, measured by tC ∂∂− /ln . Thus, a positive 

sign on it means technical progress (cost diminution over time, ceteris paribus). The results in 

Table 6 show a technical progress for banks included in classes two and three. No significant 

shifts in the cost frontier were found in other classes. In addition to technical change, the 

estimated cost frontiers provide a measure of scale economies. Returns to scale can be 

                                                                                                                                                        
goodness of fit of each estimated frontier to take into account differences (for instance, in mortgage vs. bussines 
loans, short-term vs. long-term loans, or in demand deposits vs. time or saving deposits) that cannot be 
controlled by using only sample-separating information. If these differences require different levels of 
monitoring or different cost structures, and they are not controlled for, the misspecification can be mistakenly 
identified as inefficiency.  
17 The estimation routines were programmed in Gauss. It is noteworthy that these parameters were obtained by 
maximizing (6) directly using the BFGS method. The gradient methods might not work in other applications 
since, in general, estimation of a latent class model is a difficult task. In these situations, the EM algorithm can 
be used. Further details on this algorithm can be found in Greene (2001).   
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kestimated as one minus the sum of output cost elasticity ( k yCRTS ln/ln1 ∂∂∑−= ). At 

the sample mean, this measure is only a function of  the first-order output coefficients. The 

sum of these coefficients is less than unity for all groups of banks indicating the presence of 

increasing returns to scale. Many of the past banking studies found similar results.  

 

We now examine the behavior of cost efficiency among banks and over time. While we 

cannot reject the null hypothesis of time-invariant efficiency (i.e., H0: η1 = 0) in the first and 

fourth classes, it can be rejected in the second and third classes. The positive sign on the 

estimated value of 1η  in these classes indicates a decline in efficiency level of the banks in 

these classes. Since variations in cost efficiency over the period 1992-2000 are significant for 

most of the Spanish banks, this result suggests that efficiency change should be included in 

bank productivity growth studies. As expected, the sign on the coefficient of DA is positive 

and statistically different from zero (at the 10% level) in all classes. This means that 

inefficiency increases when acquisitions take place resulting in closure of branches, staff 

relocation, etc. The value of this coefficient is larger for banks in the fourth class, which 

indicates that costs of mergers for banks in this class are higher compared to those in other 

classes. Finally, the estimated coefficients on DS are positive but not statistically different 

from zero, indicating that savings banks are as efficient as private banks.  

 

Finally, we examine the coefficients of the latent class probability functions.18 In 

general, these coefficients are statistically significant thereby indicating that the variables 

included in the class probabilities do provide useful information in classifying the sample. 

For example, the positive sign on the coefficient of the deposit ratio in the second and third 

classes suggests that the higher the deposit ratio, the higher is the probability of a bank to 

belong to these classes. Similarly, the significantly negative value on the labor to branch ratio 

coefficient in the third (first) class indicates that the probability of membership in these 

classes decreasess when the branch size increases. Perhaps this explains why banks belonging 

to the third and first classes operate with small branches (as shown in Table 4). It is also to be 

                                                 
18 To be precise, if we want to analyze the effects of different variables on the probability of class membership 
we should focus on the marginal effects instead of the coefficients. Since the sign of the marginal effects 
depends on the sign of the estimated coefficients and we are not interested in the size of these effects, we have 
focused only on the estimated coefficients. 
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noted that none of the coefficients in the first class are significant at the 5% level (although 

some of them are statistically different from zero at the 10% level). 

 

5. Conclusions 

Estimates of cost efficiency based on a single class model are likely to be biased if 

firms in an industry use different technologies. In order to reduce the likelihood of model 

misspecification, researchers often classify the sample into groups using sample separation 

information and then carry out separate estimation on the sub-samples. In the present paper, 

we propose using a single-stage methodology that involves estimating a latent class 

stochastic frontier model that allows cost efficiency to vary over time in a parametric form. 

Both efficiency and latent class structures are developed in a panel data framework . 

 

We include an application of the methodology using the Spanish banking data. Bank 

heterogeneity seems to be controlled when a model with four classes is estimated. This 

decision is also confirmed by the AIC and BIC. Although there are substantial differences in 

efficiency levels among classes, the average cost efficiency of the Spanish banking industry 

is found to be around 82.8 percent. Technical progress is found in models with 2 and 3 

classes. These models also show a declining trend in technical efficiency. This finding 

suggests that efficiency change should be an important factor in bank productivity growth 

studies. Finally, we find that savings banks are as efficient as private banks, and that 

structural changes (closure of branches, staff relocation, etc.) resulting from acquisitions 

processes led to a significant reduction in cost efficiency. 
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Table 1. Cost Frontier Variables: Descriptive Statistics 

 Mean Max Min St.Dev. 
y1 1649945 4952474 451 68334229 
y2 1397305 3886538 1(1) 36232525 
y3 2748801 6561083 1(1) 91895929 
y4 43639 117438 1(2) 1431196 
w1 6.060 5.337 0.031 136.960 
w2 87.513 189.338 15.543 3210.884 

Costs 276648 718232 65 7129464 
Notes:   (1) this variable took the value 0 in one case, that was replaced by the value 1. 

(2) this variable took the value 0 in 12 cases, that were replaced by the value 1. 
 
 

 

Table 2. Selection statistics. 

No of classes No of parameters AIC BIC 

One 27 15.72 676 

Two 60 1.72 2462 

Three 93 1.22 2615 

Four 126 0.86 2707 

 

Table 3. Average efficiency indexes with different number of classes. 

Year Four classes Three classes Two classes One class 

1992 84.4 84.3 85.2 68.5 
1993 84.1 83.8 84.5 66.9 
1994 84.0 83.6 84.1 65.1 
1995 83.3 82.7 83.0 63.1 
1996 83.2 82.3 82.4 61.6 
1997 82.8 81.7 81.6 59.4 
1998 82.1 81.1 80.8 57.2 
1999 81.3 79.9 79.5 54.7 
2000 80.1 78.4 77.6 52.0 

All 82.8 82.2 82.0 61.2 
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Table 4. Prior and posterior class probabilities and class characteristics 
(Averages in percentage). 

Class Firms Prior Posterior LB (1) DB
(1) LNB

(1) DNB
(1) LBR (2)

1 18 21.1 90.7 34.57 14.35 39.30 65.68 9.18 

2 18 26.9 89.6 12.57 32.53 67.54 51.80 12.38 

3 92 75.6 96.4 21.44 14.19 53.35 73.30 6.60 

4 41 69.2 97.5 39.78 41.96 40.3 35.56 26.17 

Notes: (1) Balance sheet ratios; (2) Labor to Branch Ratio. 
  
 

 

Table 5. Average efficiency indexes. 

 
 Overall sample Class 1 Class 2 Class 3 Class 4 

Year Mean Obs. Mean Obs. Mean Obs. Mean Obs. Mean Obs. 

1992 84.4 145 86.1 16 69.7 14 88.8 85 77.7 30 
1993 84.1 147 86.2 16 70.9 16 88.3 83 78.8 32 
1994 84.0 144 88.1 15 69.8 15 87.7 80 79.7 34 
1995 83.3 144 88.4 15 67.2 16 86.9 77 80.5 36 
1996 83.2 142 88.6 15 65.9 16 86.3 75 82.1 36 
1997 82.8 139 88.8 15 64.6 16 85.4 74 83.1 34 
1998 82.1 134 89.5 14 63.2 16 84.9 72 82.1 32 
1999 81.3 128 89.5 14 59.4 15 84.1 69 81.9 30 
2000 80.1 122 90.2 14 56.5 16 83.2 62 81.5 30 

All 82.8 1245 88.3 134 65.2 140 86.3 677 80.8 294 
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Table 6. LCM Parameter Estimates 

 Class 1 Class 2 Class 3 Class 4 

Parameters Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. Estimates Est./s.e. 
Cost frontier         

lny1 0.218 15.841 0.206 11.603 0.198 43.531 0.158 8.016 
lny2 0.218 17.831 0.108 10.213 0.185 47.703 0.292 19.708 
lny3 0.508 25.799 0.482 22.279 0.452 56.068 0.467 25.692 
lny4 0.010 0.383 0.103 4.354 0.093 13.961 0.015 0.946 
lnw1 0.663 26.718 0.573 34.819 0.637 89.008 0.843 29.394 
0.5(lny1)2 0.112 5.465 -0.024 -1.744 0.105 11.886 0.124 5.668 
0.5(lny2)2 0.137 11.822 0.025 6.235 0.086 20.709 0.088 8.734 
0.5(lny3)2 0.169 10.889 0.144 11.721 0.122 11.258 0.154 16.198 
0.5(lny4)2 0.058 8.703 0.068 7.780 0.043 3.160 0.005 1.100 
0.5(lnw1)2 0.160 5.168 0.170 15.184 0.078 6.262 -0.071 -2.585 
lny1⋅lny2 -0.051 -3.346 0.013 2.610 -0.034 -7.299 -0.041 -3.499 
lny1⋅lny3 -0.059 -3.320 -0.044 -4.186 -0.035 -3.112 -0.083 -6.519 
lny1⋅lny4 -0.018 -1.886 0.018 3.336 -0.030 -4.107 0.008 0.951 
lny1⋅lnw1 -0.009 -0.679 0.005 0.571 0.044 5.861 0.002 0.080 
lny2⋅lny3 -0.064 -5.593 -0.022 -4.417 -0.055 -6.619 -0.073 -8.408 
lny2⋅lny4 -0.067 -9.945 -0.022 -5.890 0.014 2.516 0.005 1.078 
lny2⋅lnw1 0.137 14.575 -0.005 -0.658 0.031 6.599 0.031 2.047 
lny3⋅lny4 -0.043 -5.890 -0.084 -9.418 -0.035 -3.073 -0.023 -3.842 
lny3⋅lnw1 -0.001 -0.087 0.030 2.684 -0.016 -1.105 0.040 2.624 
lny4⋅lnw1 -0.055 -7.605 -0.048 -6.452 -0.028 -3.336 0.006 0.565 
t 0.009 1.751 -0.042 -7.226 -0.022 -14.695 0.005 0.502 
Intercept 11.304 349.898 11.232 188.175 11.394 1264.375 10.951 210.661 

Efficiency term         
t -0.023 -1.177 0.050 4.641 0.058 9.864 -0.036 -1.069 
DA 0.147 1.788 0.213 3.543 0.137 4.355 1.165 4.623 
DS 0.224 0.513 0.043 0.297 0.074 0.410 0.576 0.086 
σ2 0.028 2.156 0.156 2.160 0.018 4.181 0.156 2.826 
ψ 0.044 1.982 0.007 1.975 0.043 3.849 0.134 2.345 

Probabilities         
Intercept 5.987 1.342 -2.076 -0.434 -3.631 -0.821 0.000  
LB -0.076 -1.826 -0.191 -2.748 -0.129 -2.947 0.000  
DB -0.033 -0.807 0.085 1.906 0.140 2.944 0.000  
LNB -0.075 -1.757 -0.040 -0.862 -0.075 -1.931 0.000  
DNB 0.025 0.860 0.113 2.578 0.176 3.897 0.000  
LBR -0.114 -1.707 -0.025 -0.850 -0.177 -2.213 0.000  

 Number of observations = 1245 
 Log-likelihood= 1548.7302 
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