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1. Introduction 

 

Empirical estimation of efficiency in the stochastic frontier (SF) models (developed by Aigner, 

Lovell and Schmidt (1977) and Meeusen and van den Broeck (1977)) involve estimation of a parametric 

production/cost/profit function with a composed error term consisting of a two-sided disturbance term 

that reflects exogenous shocks and a one-sided term that captures technical inefficiency.1 Although the 

theory is well developed to estimate a system of equations either in the form of factor demand or cost 

function and cost share equations, the system approach is rarely applied in the efficiency literature.2 The 

reason is that the error structure comprising noise, technical and allocative inefficiency complicates 

econometric estimation of the model. This is especially the case when one uses flexible functional forms 

to represent the underlying technology.3 Joint estimation of technical and allocative inefficiency in a 

translog cost function presents a difficult problem (Greene (1980)).4 The difficulty is that the cost 

function and the deviations of optimal shares from observed shares are complicated functions of 

allocative inefficiency. Although many attempts have been proposed, none have been entirely successful. 

Recently Kumbhakar (1997) proposed a solution for the Greene problem using a translog cost system, but 

empirical estimation of this model has been restricted to panel data models in which technical and 

allocative inefficiency are either assumed to be fixed parameters or functions of the data and unknown 

parameters (Atkinson and Cornwell (1994); Maietta (2000)). In this paper, we show that relatively simple 

econometric tools can be used to estimate technical and allocative inefficiency and perform exact 

inference in this model without assuming technical and allocative inefficiency as fixed parameters. Thus 

the main contribution of the paper is to show how to estimate a well-specified translog system (in which 

the error terms in the cost and cost-share equations are internally consistent) in a random effects 

framework. 

More specifically, here we consider a Bayesian approach to address the Greene problem. 

Bayesian analysis of a stochastic frontier function was first proposed by van den Broeck, Koop, 

Osiewalski, and Steel (1994). The Gibbs sampler has been proposed as an effective numerical technique 

by Koop, Steel, and Osiewalski (1995) where it is shown that Gibbs sampling has an advantage over 

importance sampling. Koop, Osiewalski, and Steel (1997) proposed measuring technical inefficiency in 

panel data models where technical inefficiency is time-invariant. Fernandez, Koop, and Steel (2000) 

                                                 
1 For a review of the efficiency literature see Bauer (1990), Greene (1993, 2001), Kumbhakar and Lovell (2000), and Koop and 
Steel (2001). 
2 On the contrary, estimation of a cost system is a common practice when measurement of input elasticities, returns to scale, 
productivity growth, etc., are sought (see, for example, Christensen and Greene (1976), Diewert and Wales (1987)). 
3 System approach with self-dual production function is used in Schmidt and Lovell (1979, 1980), Kumbhakar (1987), 
Kumbhakar et al. (1991), among many others. 
4 It is now labeled in the literature as the Greene problem (see Bauer (1990)). For a simpler functional form such as the Cobb-
Douglas it is not a problem (see Schmidt and Lovell (1979)). 
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considered Bayesian estimation of a system of equations involving a multi-output production function 

without an explicit behavioral assumption (such as cost minimization or revenue/profit maximization). 

Here we consider a system approach that is derived from a translog cost function and the cost share 

equations.  Thus, a cost minimization assumption is formally introduced in our model. We propose a 

Bayesian approach to estimate the translog cost system with only technical inefficiency, first. This model 

is different from the single equation cost function model of Koop et al. (1997). We then consider the cost 

system, in which both technical and allocative inefficiency are present. Although the former model is 

nested in the latter, estimation of the latter model is not a trivial extension of the former. Specialized 

numerical methods are needed to provide parameter inferences and measures of technical and allocative 

inefficiency. 

We show that numerical analysis of the model from the Bayesian perspective can be facilitated 

using Markov Chain Monte Carlo (MCMC) procedures. Posterior analysis of the model resembles many 

features of the standard posterior analysis in the context of multivariate regression models.  Exact finite 

sample posterior distributions are provided without resorting to asymptotic approximations. To account 

for the parametric restrictions across equations, we construct a semi-informative prior that allows for 

differing degrees of “correctness” of the restrictions.  We also provide tools for efficiency measurement in 

both with and without allocative inefficiency models. Allocative inefficiency is modeled via price 

distortions from which inferences are drawn on input over- (under-) use. In other words, we draw (firm-

specific) inferences on both price distortions and input over- (under-) use along with technical efficiency. 

The new methods are illustrated using panel data on U.S. commercial banks. 

The remainder of the paper is organized as follows. The model with only technical inefficiency is 

developed in Section 2.  This is followed by the model in which both technical and allocative inefficiency 

are modeled jointly. Section 4 deals with prior specification. The U.S. commercial banking data and 

empirical results are discussed in Section 5 while Section 6 concludes the paper. 

 

2. A model with only technical inefficiency 
  

We begin with a cost minimizing behavior where firms are allocatively efficient. Assuming that 

panel data is available and technical inefficiency is time-invariant, the cost system can be written as 

(Kumbhakar and Lovell (2000, p.155) 

iitit
a
it uvCC ++= 0lnln , i , n,...,1= Tt ,...,1=       (1) 

itjitj
a

itj vSS ,
0
,, += ,          (2) Mj ,...,2=
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where  is the actual/observed cost of firm  in year ,  is the observed cost share of input  

( ),  is the cost frontier (cost without technical and allocative inefficiencies) and  is the 

frontier cost share

a
itC

M,...,

i t a
itjS , j

j 1= 0
itC 0

,itjS

5 of input ,  are the noise components, and  is time-invariant technical 

inefficiency, which can be interpreted as the percentage increase in cost due to technical inefficiency.  

j itv 0≥iu

van den Broeck et al. (1994) and Koop et al. (1997) considered the cost function with time-

invariant inefficiency that is modeled above in a Bayesian framework. However, they used a single 

equation approach and focused on estimating technical efficiency from the cost function alone. Another 

feature of the model (in (1) and (2)) is that it resembles a seemingly unrelated regression (SUR) model. A 

careful examination of the model reveals that it is also different from both the Fernandez, Koop, and Steel 

(2000) model and the SUR model. We extend the Koop et al. model to a system and the SUR model to 

accommodate technical inefficiency. Neither the technique proposed by Koop et al. (1997) and Fernandez 

et al. (2000) nor the standard Bayesian SUR technique (Griffiths (2001)) can be applied to estimate the 

model proposed above. Fernandez et al. (2000) present a system of equations associated with the distance 

function but the formulation is ad hoc. Also, the numerical techniques presented here are different from 

those in Fernandez et al. (2000).  

 We rewrite the above cost system in a generic form (which is a panel version of the SUR equation 

system extended to include time-invariant technical inefficiency): 

 

          (3) 

MMMM

T

vβXy

vβXy
uvβXy

+=

+=
⊗++=

2222

1111 1

 

where  is an  vector of observationsmy 1×nT 6 for the mth dependent variable (  = 1,…,m M ),   is an 

 matrix of observations for the explanatory variables in the m

mX

mknT × th equation, mβ  is a 1×mk  

parameter error,  is an  random vector,  is a mv 1×nT u 1×n  non-negative random vector representing 

time invariant technical inefficiency, and 1  is a T 1×T  unit vector. Thus, n is the number of firms and 

each of these firms is observed for T time periods. The first equation in (3) is the translog cost function, 

and the remaining 1−M  equations are the associated cost share equations. We rewrite (3) as 

 

                                                 
5  One cost share equation is dropped to avoid a singularity problem. 
6  It is straightforward to accommodate unbalanced panels. We assume technical inefficiency is time invariant.  
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where     is an     vector of zeros, and the notations y and X are obvious. Regarding 

stochastic components  we assume that 

)1(0 −MnT 1)1( ×−MnT

(i) v , where ),0(~ nTnTMnTM IN ⊗Σ Σ   is an  MM ×  contemporaneous covariance matrix;  

(ii) u , i.e., u follows a half-normal distribution,),...,1(0,),0(~ 2 niuIN iui =≥σ 7 

(iii) v  and  are mutually independent, as well as independent of  u X . 

 

 With the above distributional assumptions the likelihood function of the model in (4) is given by 

 

udupuAtrXyL
n

u
n

u ∫
+ℜ

−−− Σ−Σ∝Σ )()),((exp||),;,,( 1
2
12/11 σβσβ    (5) 

where 

n
uu uuuup

u

n

+

−

ℜ∈′−





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2
)( 2

2

2
12
σ

σπσ               (6) 

is the joint density function of  u   from  (ii) above and 
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ββββ

ββββ
β  (7) 

 

For a Bayesian analysis we need to choose the prior density function of the parameters, viz., 

 Here we choose the following conditional structure: .),,( 1
up σβ −Σ

 

)()()()()(),(),,( 1111
uuuu ppppppp σβσσβσβ −−−− Σ∝ΣΣ∝Σ                                  (8) 

where 

0,0,
2

exp)( 2
)1( ≥≥










−∝ +− qn

q
p

u

n
uu σ

σσ         (9) 

                                                 
7  Other distributions such as the exponential, truncated normal and gamma could be used. The relevance of these distributions in 
practical applications is an issue worth exploring in future research. 
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In (8) we assume, a priori, that β , Σ  and uσ  are independent. The prior on σ  in (9) is inverted gamma. 

The prior for  in (10) is Wishart with parameters 

2
u

1−Σ Σν  and . It reduces to the diffuse prior used by 

Zellner (1971, p. 242) when 

ΣA

0=Σν  and MM×AΣ = 0 . Regarding the prior on β , )(βp , we choose a form 

that can impose linear restrictions among the elements of β (that are derived from mathematical 

properties of the cost function). A suitable candidate for this is the semi-informative prior of Geweke 

(1993), i.e., 

 

H)(g,N~G q  β                 (11) 

where  is a  matrix (where  is the total number of parameters and the rank of G kq× ∑
=

=
M

m
mkk

1
qG= ), 

g  is a  vector, and 1×q H  is a  matrix whose inverse exists.  When , the prior in (11) 

allows exact imposition of the q  linear restrictions. This is, indeed, the case here because the cost 

function we are estimating satisfies some mathematical properties that are exact (see, for example, 

Diewert (1982) for the properties of the cost function). As the elements of H diverge from , the prior 

becomes increasingly vague. As 

q×q qqH ×→ 0

qq×0

∞→H , the prior becomes improper.  

 

2.1 Bayesian Inference  

 

In sampling theory one starts computing the multiple integral in (5) and maximizes the likelihood 

function with respect to the parameters. Although the multiple integral in the likelihood function (5) can 

be computed analytically, it is likely that the log-likelihood function will be prone to numerical problems. 

The same problems will be encountered in the Bayesian analysis of the posterior density function 

when the latent variables  are explicitly integrated out. This approach is called data augmentation. To 

get around such problems, we consider the posterior density function (the product of (5) and (8)) 

augmented by the latent inefficiency variables : 

u

u
 

)()()(

2
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1exp(),,,,(
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


 ′+
−⋅Σ−Σ∝Σ
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In (12) the latent variables  are treated as parameters in order to avoid the complicated likelihood 

function or posterior density function. This procedure facilitates considerably the use of MCMC 

techniques that will be used to perform inferences for this model, as we explain later. In the sampling-

theory framework, this construction can be used to implement an EM algorithm. 

u

Numerical Bayesian inference is performed using MCMC techniques8, especially the Gibbs 

sampler. The philosophy of the method is simple. Given a posterior density function )|( Yp θ  where 

],...,[ 1 ′= pθθθ  is the parameter vector, the objective is to simulate random draws { }Ss ,...,1=s ,)(θ  from 

the posterior. Once this is done the estimation problem is solved because (under quadratic loss) we can 

estimate θ  from ∑
=

−=
S

s

sS
1

)(1 θθ  and we can compute second or other moments in a similar way, if they 

exist. We consider kernel densities of the individual elements of { }Sss ,...,1,)( =θ  to form approximations 

to marginal posterior density functions of parameters. The same is true for any function )(θf  of the 

parameter vector, since we have the draws { }Ssf s ,...,1),( )( =θ . To generate draws from the posterior 

density function )|( Yp θ  we consider the conditional density functions )Y,j|(p j −θθ  (  where ),...,1 p=j

j−θ  denotes all elements of θ  except the j th element. The sequence { }S,...,ss ,)( =θ 1  so generated is 

called Gibbs sampling sequence (Gelfand and Smith (1990), Tanner and Wong (1987)) and it converges 

in distribution to the posterior under fairly mild conditions (Roberts and Smith (1994)). This means that if 

the number of draws is large, then one can use the draws{ }Ss ,...,1=s ,)(θ  as a sample from the posterior 

density function.  

In the present model we generate random drawings from the following conditionals: 

(i) datauu ,,,| σβ Σ , (ii) datauu ,,,| σβΣ , (iii) datauu ,,,| Σβσ , and (iv) u datau ,,,| σβ Σ . We repeat this 

cycle S times to generate a sequence of length S for each one of these parameters. The draws so generated 

can be considered as a sample from the joint posterior density function of the parameters. The required 

conditional density functions to implement Gibbs sampling are as follows. For the regression parameters 

we have: 

)  ,(~,,,,1 VNXyu ku βσβ −Σ                                               (13) 

 

where the conditional posterior mean is 
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   and the conditional posterior covariance matrix is 
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  111 ])([ −−− ′+⊗Σ′= GHGXIXV nT . 

 The conditional posterior density function of 1−Σ  is: 

 

 )]),([exp(||),,,,( 1
2
12

)1(
11 −

Σ

+−+
−− Σ+−Σ∝Σ

Σ

uAAtrXyuP
Mn

u βσβ
ν

              (14) 

 

which is a Wishart density function. The conditional posterior density function of  is:  uσ

     ( ) 








 +′
−∝Σ ++−−

2
11

2
exp|

u

)n(n
uu

quu
,u,y,Xβ,p

σ
σσ             (15) 

which implies 

21
2 ~,,,, nn
u

Xyu
quu

+
−Σ

+′
χβ

σ
.             (16) 

It can be shown that the conditional posterior density function of latent inefficiencies is given by 

 

niuNXyu iiui ,...,1,0     ),,(~,,,, 2
*

*
1

1 =≥Σ− σµσβ      (17) 

where    

∑
=

==
m

j

j
jii nieT

1

12
*

* ,...,1,σσµ ; 211

2
2
* 1 u

u

T σσ
σ

σ
+

= ; ,],..,[ 1 ′=−= mTmmmmm eeXye β ∑
=

−=
T

t
mtm eTe

1

1  

with ],...,[ 1 ′= mnmm eee

][ ijσ=

 for . The inverse contemporaneous covariance matrix is expressed as 

. Finally, the u 's are independent in (17). To derive this result, notice that from (12) we can 

decompose the posterior as , in which the second part is 

irrelevant. We follow the technique presented in Tsionas (1999) to draw from (17). This technique utilizes 

acceptance sampling based on an exponential blanketing density whose parameter is chosen to maximize 

the acceptance rate. 

Mm ,..,1=

,|(up β Σ

1Σ−
i

),|,,(),,, 11 XypXy uu σβσ −− Σ⋅

                                                                                                                                                             
8 For a review of MCMC methods in econometrics, see Geweke (1999). 
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To set up the Gibbs sampler we draw random numbers from conditional posterior density 

functions (13), (14), (15),  (16) and (17). This task is straightforward because these density functions are 

from well-known families like the normal, truncated normal and Wishart. Therefore, the Gibbs sampler 

provides a straightforward numerical approach to Bayesian analysis of a translog cost system involving 

technical inefficiency.  

 

 

2.2 Efficiency measurement 

 

In this section, we describe efficiency measurement based on the concept of posterior predictive 

efficiency developed by van den Broeck et al (1994). Consider a yet unobserved firm for which the data 

on the dependent variables are in  (a 0y 1×MT  vector) and the data on the explanatory variables are in 

0X (a  matrix), i.e.,  kMT ×



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
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0
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MM X

X
X

y

y
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and  is 0
my 1×T  vector and  is MT0

mX mk×  matrix ( =1,…,m M ). Define ∑
=

=
M

m

m
meT

1

102
*

*
0 σσµ ,  

∑
=

−=
T

t
mtm eTe

1

010 ,  and . Mm ,...,1= ],...,[ 00
1
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From (17) the conditional posterior density function of the latent inefficiency for the yet 

unobserved firm is 

),(~,,,,, 2
*

*
0

01
0 σµσβ NXXyu u

−Σ , u       (18) 00 ≥

  

Let  be the efficiency of the firm, )exp( 00 ur −= )1,0(0∈r . Then 
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rrXXyrp u  ,        (19) )1,0(0 ∈r

It is necessary to integrate out the model parameters (viz., β  and 1−Σ ) to obtain the marginal density 

function of .  For this we write (19) as  0r

111 ),,,(),,,,,(),,( −−− Σ⋅⋅ΣΣ= ∫ dddXypXXyrpXXyrp uu
o

uo
o

o σβσβσβ       (20) 
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An approximation of (20) can be computed using the standard estimator  

),,,,,(),,( )(,
1
)()(

1

1 o
suss

S

s
o

o
o XXyrpSXXyrp σβ −

=

− Σ∝ ∑     (21) 

 

where { is the set of posterior draws.  The posterior predictive density function 

in (21) can be presented graphically to draw inferences about the efficiency level of a yet unobserved 

firm, after normalization to make it a proper density function. 

},...,1;,, ),(
1
)()( Sssuss =Σ− σβ

In practice it is important to report efficiency measures for the observed firms as well.  The 

density function of Xyui ,,,, 1 σβ −Σu  is given in (17). Thus, if  

)exp( ii ur −=                                                                                                            (22) 

then a straightforward modification of (19) can be used to obtain the firm-specific efficiency density 

function. 

Moments of r  can be computed easily, and the density can be approximated using 

the standard estimator  based on the set of posterior draws. The mean and/or median of 

i ),|( Xyrp i

r  can be used to 

predict efficiency. We do this as follows: Given the draws { }Ss ,..,1,) =u s
i
(  for the th iteration of the 

Gibbs sampler, we compute 

s

( ))()( exp s
i

s
i ur −= . Since  is a draw from the conditional density function )(s

iu

Xyr ui ,,,, 1 σβ −Σ  it follows that  

∑
=

−=
S

s

s
ii rSr

1

)(1               (23) 

represents average firm-specific technical efficiency. 

 

2.3 Prior elicitation 

 

Given the functional forms of the prior density function, in practice, we have to choose the 

hyperparameters to match whatever prior knowledge we may have. Although it is difficult to have prior 

notions about parameters like β  or Σ  (other than restrictions imposed by economic theory) it is 

sometimes possible to utilize prior information about inefficiency. Given the prior in (9) for parameter 

uσ  the objective in this section is to choose the hyperparameters n  and q  in some satisfactory way. 

Since , we have )1,0(),exp( ∈−= iii rur
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We can either treat u  as a model parameter and use the prior in (6) or consider it to be a part of the 

model. Both the interpretations give the same posterior results. The prior of 

i

uσ in (9) depends on the 

hyperparameters n  and q . These parameters may be elicited as follows. To facilitate prior elicitation, we 

used numerical quadrature to compute the mean r  and variance 2s  of the marginal prior for values in the 

range ]100  ,1[∈n  and ]5  ,001.0[∈q . Then we computed the following regressions (with 5,000 

observations) to approximate prior elicitation.9 

 
2ln090.1ln032.3163.6)ln( srq ⋅+⋅+= ,                           (25) 800.02 =R

2ln024.1ln022.2157.1)/ln( srqn ⋅−⋅+−= ,                      (26) 999.02 =R

 

For any desired prior mean efficiency and prior variance, these regressions can be used to obtain 

approximately the right values of the hyperparameters n  and q . More precise prior elicitation can be 

accomplished using exact quadrature methods with the implied prior probability density function for 

efficiency, . Alternatively, it can be approximated using simulation techniques. Given a sample of 

values 

)(rp

{ }S,...,1σ

exp(

ss
u ;)( =

))(su−

 from the prior, one could draw from , compute 

, and approximate the marginal prior  using a histogram of the 

|),0(~|| )(2)()( s
u

s
u

s Nu σσ

)(s)(sr = )(rp r . 

It can be shown that the posterior density function is finitely integrable and that parameters and 

efficiency measures have finite first and second moments. The most important result is that with cross-

sectional data and a flat prior on  the posterior does not exist, and we need a prior that keeps 1−Σ Σ  

probabilistically "away from zero". Posterior moments exist under standard conditions. A Technical 

Appendix detailing these statements is available upon request. 

 

3. A model with both technical and allocative inefficiency  

 

In this section, we consider a model that allows for both technical and allocative inefficiency. 

Perhaps the simplest way to deal with allocative inefficiency is to argue that the share equation residuals 
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represent deviations from first-order conditions and, therefore, they represent allocative distortions.  This 

modeling approach, however, fails to take into account the link between allocative inefficiency and its 

impact on cost. Here we follow Kumbhakar (1997) who, following the definition of allocative 

inefficiency from Schmidt and Lovell (1979), derived the exact relationship between allocative 

inefficiency and cost therefrom in the context of the translog cost function. It solves the Greene problem 

theoretically. No estimation technique is, however, offered. And we are not aware of any application 

where the Greene problem is solved using a flexible cost function and treating allocative inefficiency as 

random. In a sampling theory framework empirical application of the Kumbhakar (1997) model is 

difficult because of the computational complexity of the model, especially when allocative inefficiency is 

represented by random variables à la Schmidt and Lovell (1979).  

Assume jξ  represents (time-invariant) allocative inefficiency for the input pair (j,1)  so that the 

relevant input price vector (often labeled as shadow price vector) to the firm is (  = 

( , 

≡*w ),...,,( **
21 Mwww

1w )exp( 22 ξw ,…, ))exp( MMw ξ , where Mξξ ,...,2  are random variables. Kumbhakar (1997) showed 

that the translog system (with a single output) can be written as follows.10 
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it uvGCC +++= lnlnln * , ni ,...,1= , t T,...,1=         (27) 

                                           (28) itjitj
a

itj SS ,
0
,, η+=

 
where , , , and u  are the same and defined in Section 2. The arguments of C  are and 

while those in  (defined in Section 2) are and The 

a
itC a

itjS ,
0
,itjS

0
itC

itv i
*
it

*
itw

ity itw .ity itj,η and ln Git are functions of allocative 

inefficiency, Mξξ ,...,

ln *
itC

2

(AL =

 (defined below). We rewrite (27) as ln  

where can be interpreted as the percentage increase in cost due to 

allocative inefficiency.

iit
AL
itit uvCCC +++ ln0

0
,jS it

AL
it GC ln, itj ,η

a
it = ln

it

)0
ititit GC ln+ln−ln C

11 For a translog functional form , , ln and are: 0
itC

( )

,lnlnlnln

lnlnlnlnlnln

,
2

2
1

,

,,2
12

2
1

,0
0

twtyttyw

wwyywC

itj
j

jtitytttt
j

ititjjy

j j
itkitjjkityyityitjjit

∑∑

∑ ∑∑

+++++

++++=

ββααγ

βγγαα
k

                                                                                                                                                            

     (29) 

tywS jt
k

itjyitkjkjitj βγβα +++= ∑ lnln ,
0
, ,       (30) 

 
9  If one needs highly precise priors then it is necessary to conduct the simulation that will give the exact priors. 
10 The multiple output generalization of this result is straightforward. 
11 This is non-negative given strict concavity of the cost function. 
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AL
it ,,,,2

1
,,, lnlnlnln ξβξγξξβξβξα ∑∑∑∑∑ ∑∑ +++++= , (31) 

∑ −=
j

ijitjit SG )exp( ,
*
, ξ ,                                 (32) 

where 

∑∑ +≡+++=
k

kjkitjjt
k

itjyitkjkjitj StywS ξββγβα 0
,

*
,

*
, lnln .         (33) 

Finally, 

{ }
)exp(

)exp(1

,

,
0
,

,
ijit

k
kjkijititj

itj G

GS

ξ

ξβξ
η

∑+−
= .                        (34) 

 

Thus, itj,η  are the deviations of the actual cost shares from their optimum values, and are non-linear 

functions of allocative inefficiency, Mξξ ,...,2 , and data.  

If we denote the vectors of all observations on log cost and 1−M  cost shares by , 

the matrix of cost function regressors (observations on log prices, log output, their squares and 

interactions) by , the matrix of cost share equation regressors (observations on log prices and log 

output by , then we can write the translog cost system in (27) and (28) as 

Myyy ,...,, 21

1X

2X

 

TuvGXy 1),(ln)( 1111 ⊗+++= βξβξ  

(35) 

jjjj vXy ++= − ),(12 βξηβ , Mj ,...,2=  

 

where we have appended error terms v  ( 2j ) in the share equations to capture, for example, 

measurement errors in cost share equations. The matrix

j ≥

)(1 ξX  denotes  when are replaced by 

 so that 

1X itjw ,

)exp( ,,
*

, ijitjitj ww ξ≡ 1X11 )0(X M =− .  Finally, β  denotes the entire parameter vector. The system 

in (35) is a nonlinear seemingly unrelated regression model with nonlinear random effects. 
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We continue to assume, as before, that )  ,0(~ TMnT INv ⊗Σ . Furthermore, we assume that 

( )Ω′= − ,0~],...,[ 1,,2 MiMii Nξξξ 12, . Then the above model represents a system of nonlinear 

regression equations with random effects. We write the system compactly as  

ni ,...,1=

( ) ( ) 






 ⊗
+++=

− nTM

Tu
vXy

)1(0
1

,βξφβξ                              (36) 

where ],...,[ 1 ′′′= Mβββ , ( ) ( )
( ) 








=

βξη
βξ

βξφ
,

,ln
,

G
, ( ) ( )









⊗

=
−12

1

1MX
X

X
ξ

ξ  

 

We assume that v ),0(~ nTnTM IN ⊗Σ , ),0(~ )1( nMn IN ⊗Ω−ξ , and both are independent of 

each other as well as independent of X .  Regarding the priors we have 

 

)()()()(),,,( 1111 −−−− ΩΣ∝ΩΣ ppppp uu σβσβ . 

 

The priors on uσ , , and 1−Σ β  are the same as in (9), (10) and (11), and we choose a Wishart 

prior for , viz., 1−Ω

 

( )1
2
12/)(11 exp||)( −

Ω
−−− Ω−Ω∝Ω Ω Ap Mν  

 

where Ων  and  are parameters of the prior density function. The augmented posterior density function 

of the model is 

ΩA

( ) ),,|()(exp
2
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)),,(exp(),|,,,,,(
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2
12/)(1

2

)1(1
2
12

)1(
111

ΩΣΩ−Ω








 ′+
−×

⋅Σ−Σ∝ΩΣ

−−−−

++−−
+−

−−−

u
mn

u

nn
u

Mn

u

ptrQ
uuq

uAtrXyup

σβξ
σ

σξβξσβ
 (37) 

where  and ∑
=

′=
n

i
iiQ

1

)( ξξξ ),,( uA ξβ  is similar to (7) except that we have the ξ  terms in it, viz.,  

 

                                                 
12 It is easy to assume a non-zero mean for the ξ's. Allowing for a non-zero mean, say µ, required somewhat tight priors at least in 
our application. Although µ is clearly identified from the share equation constant terms, it does not appear that we have "proper 
empirical identification" to use a term suggested to us by an anonymous referee. For that reason, we opt for setting µ = 0 in this 
application, reflecting our prior notion that average allocative inefficiency is likely to be small.  
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where ),()(),,( βξφβξβξ mmmmm Xyue −−= , .,...,1 Mm =  The prior density functions for parameters 

other than Ω  are the same as before. 

 

 The kernel posterior density function of parameters is  

 

∫ ∫
ℜ ℜ

−−−−

+

ΩΣ=ΩΣ
n n

dduXyupXyp uu ξξσβσβ  ),|,,,,,(),|,,,( 1111  , 

which doesn’t have a closed form analytical solution.13 For this reason, inference in this model is a 

challenge.14  

 

3.1 Bayesian inference  

 

To perform Bayesian analysis of this model we utilize MCMC methods associated with the posterior 

distribution. In other words, we construct a Markov chain defined by conditional density functions of 

parameters. In this Markov chain, random draws are made from each posterior conditional distribution. 

The conditional posterior distributions required for implementing MCMC techniques are as follows.  

 

                                                 
13  It is possible to integrate explicitly the augmented posterior with respect to Σ  and Ω but the resulting expressions are highly 
complicated, depend on the latent variables u and ξ, and thus it is not clear how this could be useful in estimation. 
14 Alternative computational approaches to estimating nonlinear random effect models are available in the statistics literature, 
although systems of nonlinear equations are hard to find. Pinheiro and Bates (1995) discuss the theory and computational 
techniques for nonlinear random effect models, and conclude that adaptive Gaussian quadrature is one of the best methods to 
obtain approximations to the integrated likelihood function (the integration is with respect to ξ ). However, when  is defined in 
more than one dimension, Gaussian quadrature is subject to curse of dimensionality. Laplace approximation is another 
alternative, and has been investigated by many authors, including Vonesh and Chinchilli (1997), Wolfinger (1993), and 
Wolfinger and Lin (1997). In the related literature on generalized nonlinear models with random effects, numerical quadrature 
techniques have been considered and analyzed by Longford (1994), McCulloch (1994), Liu and Pierce (1994), and Diggle, Liang, 
and Zeger (1994). These techniques have, however, unknown degrees of accuracy with respect to approximating the likelihood 
function. It is clear that an error 

iξ

ε  in the computation of integrals with respect to a given  for a particular observation is 

magnified to 
jξ

εNJ  for the log-likelihood if we have  observations and  's, where J = M-1. Thus the error can be 
substantial. In addition, if  is large the curse of dimensionality will interfere with our inability to use these techniques in 
practically relevant applications. 

N J jξ

J
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3.2 Conditional posterior of β  

 

The conditional posterior density function for β  is 

 

),,|()),,(exp(),,,,,,|( 11
2
111 ΩΣ⋅Σ−∝ΩΣ −−−−

uu puAtrXyup σβξβξσβ           (38)   

 

This density function is not from any known family so random number generation is difficult. One can, 

however, use the Metropolis-Hastings algorithm (Tierney (1994)). Our objective is to generate random 

draws from a distribution with density  but a direct sampling is not possible. However, there is a 

density  from which random number generation is easy. So we proceed as follows. Given an initial 

condition , we generate a candidate . The next draw will be either  or the candidate . 

More specifically, we set  with probability 

)(xf

~ gy

)(xg

0(x ) )(x )0(x y

yx =)1(
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
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
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=
)(
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xxf
yfyxα
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(/)
(/)

) g
gy , else we set 

. We continue this process until we get  draws. Apparently, for this procedure to work,  

must be a good approximation to , otherwise we will be rejecting a lot of the candidates, meaning 

that effectively we will be unable to explore , as desired. The method is applied in the current setting 

in the following manner. Let 

)0(x)1(x = S

,

)(xg

)(x

(f

f

)(x

,u

f

,,| u yΣσξβ  be the exact posterior conditional, and 

),, Xy,,,u u|(g Σσξβ  be the posterior corresponding to the multivariate Student-t proposal density15 for 

β  when 0) =,( βξφ . Suppose the current draw is .  )(β i

 Define ( )












ΣΣ

ΣΣ
=

),,,,,|(/),,,,,|(
),,,,,|~(/),,,,,|~(,1min~, )()(

)(

XyugXyuf
XyugXyuf

u
i

u
i

uui

σξβσξβ
σξβσξβ

ββα . Then, with probability 

( )β~ ββα ,)(i  we accept the proposal ~ , else we maintain the current draw . If the acceptance rate of 

this proposal is not satisfactory, we can always modify the proposal to some extent. For example, we can 

multiply its covariance matrix by a certain constant that can be tuned to maintain a satisfactory acceptance 

rate.  

)(iβ

This proposal is attractive because it automatically allows for imposition of all theoretical 

restrictions via the prior )(βp . In our application, the acceptance rate of this proposal is near 70%. We 

                                                 
15  It is necessary to maintain the acceptance probability bounded so the degrees of freedom of the Student-t should be less than 
the degrees of freedom of the usual approximate Student-t posterior for β. In our empirical work we sample from Student-t with 
40 degrees of freedom but have found that normal proposals produce only trivial changes.  
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also impose the monotonicity and concavity restrictions at each sample point using the rejection method, 

exactly as in the model with only technical inefficiency. 

 

3.3 Conditional posterior of Σ  

 

The posterior conditional density function of Σ  is given by 

 

))],,([exp(),,,,,,|( 1
2
12

)1(
111 −

Σ

+−+
−−− Σ+−Σ∝ΩΣ

Σ

uAAtrXyup
Mn

u ξβξσβ
ν

     (39) 

      

which is the density function of a Wishart distribution. Given u,,ξβ  the matrix ),,( uA ξβ  is a known 

constant. So generating random draws from the above density function is straightforward.  

 

3.4 Conditional posterior of Ω  

 

The posterior conditional density function of Ω  is 
 

( )1
2
1

2/)(111 )]([exp),,,,,,|( −
Ω

−+−−− Ω+−Ω∝ΣΩ Ω ξξσβ
ν

QAtrXyup
Mn

u           (40)   

 
which is also the density function of a Wishart distribution since )(ξQA +Ω  is a given matrix of 

constants.  

 

3.5 Conditional posterior of uσ  

 

The posterior conditional density function of uσ  satisfies 

211
2 ~,,,,,,| nn
u

Xyu
uuq

+
−− ΩΣ

′+
χξβ

σ
                                                                       (41) 

from which random number generation is simple.  

 

3.6 Conditional posterior of u  

 

For latent technical inefficiency, it can easily be shown, using the techniques developed in the 

previous section, that 
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−= , Mm ,...,1=  is a 1×n  vector with 

]),,(),...,,,([),,( 1 ′= eueue mnmm uβξβξβξ , M,...,m 1=  

and the inverse contemporaneous covariance matrix is expressed as Σ . This distribution of  is 

truncated normal, and since the 's are independent in their joint posterior conditional distribution, 

random draws can be generated sequentially for each i

][1 ijσ=−
iu

iu

n,...,1=  as in Tsionas (1999).  

 

3.7 Conditional posterior of ξ  

 

Finally, we consider the posterior conditional density function of ξ  given by 

 

( )1
2
11

2
111 )(exp)),,(exp(),,,,,,|( −−−− Ω−⋅Σ−∝ΩΣ ξξβσβξ trQuAtrXyup u     (43) 

 

Generating random draws from this joint density function is not straightforward because the density 

function is not from any known form. One promising possibility to obtain a reasonably good proposal 

density function is to linearize the cost share equations (i.e., to make them linear in theξ 's). The resulting 

approximate posterior of each iξ  will be normal so in practice we can use a Student-t proposal density 

function16 to maintain the acceptance probability bound. We can easily obtain a random draw from this 

posterior, and use a Metropolis rule to maintain the correct posterior. The normal approximation is, in 

fact, very simple to use. The task is to linearize the cost function and share equations with respect to ξ  

and use the approximation to obtain a multivariate normal or Student-t density function for the ξ 's that 

can be used as proposal density function for the Metropolis-Hastings step. In Appendix A we show that 

partial derivatives of the cost function with respect to ξ 's are exactly zero, so we can use only the share 

equations to derive the linear approximation so the normal approximation has a particularly simple 

                                                 
16  We use a Student-t with 10 degrees of freedom but we have found the results remain the same when we use a normal proposal. 
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structure for the translog cost system. The acceptance rate of the Metropolis chain is over 85% for the 

data we analyzed, which is a satisfactory approximation.17 Let iξ  be the current draw from the 

approximate density function. Let ),,,,|( ΩΣβξ Xyf i  be the exact conditional density function of iξ  

given the data and the parameters, and ),,,|( Ωβξ Xyg i

,|(~

 be the normal approximation, i.e., the pdf of the 

multivariate normal resulting from the normal approximation. Clearly, both density functions are 

available in closed form. The candidate ),,, ΩΣβξξ Xyf ii

)

 will either be accepted or rejected in 

favor of the previous draw, say , according to the following rule. Let 0(
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Either we accept this draw with probability a , or reject it and take  as the draw. The 

overall acceptance rate of this procedure is over 85% in the data set we have analyzed. It is necessary to 

ensure that the approximation to the exact conditional posterior of 

)0(
iξ

 is satisfactory. We cannot claim 

that this will always be the case but we suspect that when this is not so, the approximation can be 

improved adaptively by linearizing around a point  (different from zero) that could be the current 

posterior mean of .iξ
18  

 

3.8 Joint measurement of technical and allocative inefficiency 

 

The previous model is capable of providing measures of technical and allocative inefficiency for 

each firm, and for a yet unobserved firm (in which case we make posterior predictive inferences, i.e., 

predictive inferences conditional on the observed data). Our problem here is as follows. Suppose ,(f θ  

                                                
17 Following the sampling theory literature we could have used Gaussian quadrature to integrate out ξ's from the likelihood 
function or the posterior distribution, and then use the Metropolis-Hastings algorithm (MHA) to provide inferences for β, Σ, Ω. 
The required posterior would not, of course, be available in closed form. We did not opt for this technique because the MHA 
does not take account of the special features of the problem, namely linearity of the system conditional on ξ's. Moreover, for 
complicated posteriors, the MHA can result in high autocorrelation of the draws, making reliable exploration of the posterior a 
troublesome task. 
18 We have tried this approximation in our application and found that the acceptance rate increased slightly. However, we decided 
not to use it in reporting the final results since the original proposal performed rather well. Another advantage of the algorithm is 
that it can be vectorized easily to generate all iξ 's at once by exploiting properties of the normal distribution. Consequently, 
fitting the nonlinear translog random effect model is not considerably more time consuming compared to the translog system with 
only technical inefficiency.  
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represents any function of the parameters θ  (inclusive, perhaps, of any latent variables like  and u ξ ) 

and the data D . The objective is to estimate the posterior expectation  

Given draws ,  from the posterior density function 
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Next, we describe the procedure to obtain technical and allocative inefficiency measures. 

Measurement of technical inefficiency in the present model is exactly the same as in the model without 

allocative inefficiency presented in section 2. Define )exp( ii ur −=  to be the efficiency index of firm 

. The firm-specific efficiency measure is provided by the mean of the posterior density function 

of , viz., . This measure can be obtained by averaging , where  denotes the th 

draw for . Once a draw  from the conditional posterior of u

ni ,...,1=

ir

ir i becomes available, this can be 

computed easily. The posterior predictive density function can also be obtained easily. Since s 

half normal, the density function of  can be obtained easily. The marginal density function of  is 

then given by  where ,  denotes the 

posterior draws for 

∑
=1

)( )|(
S

s

s
uirp σ−1S

. 

  Regarding allocative inefficiency we follow a similar procedure. First, the departure of observed 

prices from shadow prices, namely the 's, are of interest. Given the posterior draws for , say , a 

firm-specific measure is provided by s
ij
)(

,ξ  where  indicates the number of draws. This 

gives the percentage deviation of observed prices from shadow prices for input pair (  for firm i . The 

deviations themselves can be estimated from 

S

∑
=

S
s
ij

1

)(
,λ−=

s
ij S 1

,λ , where , .  ),i sexp(, jij ξλ = S,...,1=

Another measure of interest is the percentage increase in costs due to allocative inefficiency for 

each firm. This is given by  and depends on the data, the AL
itCln ξ s and the parameters in β . Clearly, 

this measure can be computed for each draw of β  and ξ . It can be averaged with respect to the draws, 

and provide temporal and firm-specific measures for  or . A posterior predictive density 

function for , referring to an as of yet unobserved (or a typical) firm is computed as follows. Given 

a vector of prices and output for that firm (for example, the sample averages of these variables)  is 

AL
itCln AL

itC

ALCln

ALCln
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computed for each draw, and then averaged with respect to the draws. This provides information 

regarding the distribution of allocative inefficiency for a typical firm conditional on the data, and can be 

used for predictive purposes. Parameter uncertainty is fully taken into account in these computations in 

standard Bayesian fashion since these measures are averaged against the posterior distribution of 

parameters. The implication, of course, is that we do not have to resort to asymptotic approximations of 

the "plug-in" variety. Similar principles are followed to compute the firm-specific measures for . ALCln

TE
jj x=

== u
aC

Further information can be obtained from Bayesian inferences regarding whether certain inputs 

are under- or over- utilized. This information is not provided by the ξ 's alone. Since ∂ and 

where and denote technically efficient and optimal (both technically and 

allocatively efficient) quantities of input x

wC ∂/*

OP
jj xwC =∂∂ /0 TE

jx OP
jx

j (with firm and time subscripts omitted) and 0
*C , 

non-optimal use of input xj relative to input x1 (for example), can be obtained from the formula19  

 
  ( ) ( ) .,...,2for/1//1)exp()//()/( 0

11
0

11 mjSSxxxx jjj
OP

j
TE

jj =++−== ηηξκ  
 

Consequently, if )(<>jκ 1 then input xj is over- (under-) used relative to input x1. Note that these 

measures are firm-specific and time-varying. Using the MCMC algorithm we have one draw for each of 

the jκ . This draw depends on all parameters of the system. The final measure is obtained by averaging 

across all draws using the standard estimator. This operation is equivalent to integrating parameter 

uncertainty out. 

It is clear that the model developed in this section provides all the information that we need to 

evaluate technical and allocative inefficiency for each firm in the sample using a cost system (consisting 

of the cost function and cost share equations). There are four basic advantages of the model we proposed 

in this section. First, technical and allocative inefficiency are modeled in a way that is consistent with the 

cost minimization problem of standard microeconomic theory. Second, all inferences are for the given 

data, so no asymptotic approximations are used. Third, using a systems approach ensures that we obtain 

more precise estimates of technical efficiency relative to a single equation approach. Finally, it solves the 

Greene problem from an empirical point of view.20  

                                                 
19 Alternatively, one can define non-optimal use of input xj from   OP

j
TE
jj xx /=κ

( ) .,...,1for)exp()(/1)exp( 00 mjSS kk
k

kjjj =−++−= ∑ ηηηξ  Thus, if 1)(<>jκ then input xj is over-used (under-used). 

20 An anonymous referee mentioned that a fixed effects model would also have these advantages. While this is true, we argue that 
there are situations (for example, cross-sectional models) where one cannot use a fixed effects model. Furthermore, in a fixed 
effects model technical inefficiency is defined relative to the best firm in the sample. This is, however, not the case in the present 
model.   
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4. Prior specifications  

 

In our empirical application we use two priors (A and B). Both priors have 1=n . Prior A has 

1.0=q  and prior B has 1=q . Prior median efficiency is 71% and 41.8% respectively. We choose 1=n  

because n  represents the number of observations in a fictitious experiment that provides a random 

sample nuu ,...1  with variance nq / . Therefore, prior information exists but is not particularly precise. 

For the semi-informative prior to accommodate the restrictions implied by economic theory we 

assume  where . This prior is extremely tight and practically implies exact 

imposition of the restrictions. The exact form of the restrictions for this application is presented in 

Appendix B. Since these are mathematical restrictions to be satisfied by any cost function, we decided to 

impose these constraints exactly. Nonetheless, we argue that the proposed method allows one to use 

different degrees of correctness. We use informative priors for both 

),0(~ 2
qq ING εβ 510−=ε

Σ  and Ω  which are both inverted 

Wishart with 1== ΩΣ νν  degree of freedom and scale matrix . These priors are proper 

but very diffuse.  

I5−AA 10Σ == Ω

 

5. Data and empirical results 

5.1 Data 

 

The data for this study is taken from the commercial bank and bank holding company database 

managed by the Federal Reserve Bank of Chicago.  It is based on the Report of Condition and Income 

(Call Report) for all U.S. commercial banks that report to the Federal Reserve banks and the FDIC. In this 

paper we used  the data for the years 1996-2000 and selected a random sample of 500 commercial banks.  

The commercial banking industry is one of the largest and most important sectors of the US 

economy. The structure of the banking industry has undergone rapid changes in the last two decades, 

mostly due to extensive consolidation. Justification of mergers and acquisitions is often provided in terms 

of economies of scale and efficiency. Here we focus on the efficiency arguments by estimating a flexible 

cost system. Previous banking efficiency studies (see the survey by Berger and Humphrey (1997)) based 

on cost function estimation mostly focused on technical inefficiency. The reason for this is that estimation 

of the translog system with both technical and allocative inefficiency was not feasible before. From this 

perspective, this is the first banking study in which a translog cost function system with technical and 
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allocative inefficiency are jointly estimated without making them deterministic functions of data and 

unknown parameters. 

In the banking literature there is controversy regarding the choice of inputs and outputs. Here we 

follow the intermediation approach (Kaparakis et al. (1994) in which banks are viewed as financial firms 

transforming various financial and physical resources into loans and investments. The output variables 

are:  installment loans (to individuals for personal/household expenses) (y1), real estate loans (y2), 

business loans (y3), federal funds sold and securities purchased under agreements to resell (y4), other 

assets (assets that cannot be properly included in any other asset items in the balance sheet) (y5). The 

input variables are: labor (x1), capital (x2), purchased funds (x3), interest-bearing deposits in total 

transaction accounts (x4) and interest-bearing deposits in total nontransaction accounts (x5).  For each 

input the price is obtained by dividing total expenses on it by the corresponding input quantity. Thus, for 

example, the price of labor (w1) is obtained from expenses on salaries and benefits divided by the number 

of full time employees (x1). The same approach is used to obtain w2 through w5. Total cost is then defined 

as the sum of the expenses on these five inputs. To impose the linear homogeneity restrictions, we 

normalize total cost and all the prices with respect to .  5w

 

5.2 Empirical results 

5.2.1 Technical efficiency 

  

The model for technical efficiency only with a single output is outlined in equation (1). Here we 

write it out fully for five outputs and five inputs using the translog functional form 
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The assumptions on the noise components (v1,…,v5), and technical inefficiency component, u are as 

before and are not repeated here.  

In Figure 1 we provide the posterior predictive technical efficiency as well as kernel density 

estimates for firm-specific technical efficiency measures for both priors A and B. We considered two 

models: (i) the translog cost system with only technical inefficiency, and (ii) the translog cost system with 
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both technical and allocative inefficiency. In Figures 1a and 1b we provide the posterior predictive 

technical efficiency distributions, which give the density function of technical efficiency for a typical or 

yet unobserved firm. The results from the two systems (with and without allocative inefficiency) are quite 

similar. This doesn’t mean that allocative inefficiency can be ignored.21 Since the overall cost efficiency 

is the product of technical and allocative efficiency, i.e., OE AETE ⋅=  (Farrell (1957)), and both TE 

and AE are less than unity – the estimated TE in the technical inefficiency only model (where OE = TE 

by construction) is likely to be biased upward.  In Figures 1c and 1d we report kernel densities of firm-

specific efficiency measures. For each bank in the sample, its technical efficiency measure is the mean of 

the distribution of technical efficiency of that bank, conditional on its data, and unconditional on the 

parameters. In other words, parameter uncertainty is accounted for in estimating technical efficiency. 

Figures 1c and 1d present the kernel densities of these bank-specific efficiency means. Results from both 

models show that efficiency values below 70% are highly improbable.22  

In Figure 2 we report efficiency rankings (technical) of banks from models with only technical 

inefficiency and with both technical and allocative inefficiency. Generally, the correlations between these 

rankings are fairly high but for some specific banks large differences are observed. Thus, if the focus is 

individual bank efficiency the high correlation of efficiency ranking between models may not be useful in 

choosing between models. 

 

5.2.2. Allocative efficiency 

 

We now discuss results obtained from the system with both technical and allocative inefficiency. 

The density functions of allocative inefficiency (price distortion) ( jξ ) are reported in Figure 3a and 3b, 

and some summary measures are reported in Table 1. Each graph23 provides the kernel density estimate of 

bank-specific average of jξ . It may be useful to describe again how these density functions arise. For the 

th bank in the sample the Gibbs sampler provides a random draw during iteration  for 

input pair  Recall that this is a draw from the distribution of 

i )(
)(
s

jiξ

ji)

Ss ,...,1=

).1,( j (ξ  conditional on the data and all 

                                                 
21 Note that ignoring allocative inefficiency, if any, makes the model misspecified that results wrong parameter estimates since 
the allocative inefficiency component in a translog cost function depends on outputs and input prices in a non-linear fashion.  
22  We examine convergence of our MCMC sampling schemes using Geweke's convergence diagnostics, as well as by running 
multiple chains starting from over-dispersed initial conditions and checking whether final marginal posteriors are close. Models 
with or without allocative inefficiency seemed very robust to initial conditions and passed convergence tests. Additionally, we 
have examined autocorrelation functions of posterior draws. To reduce the autocorrelation, we use the batching technique that is 
standard in the simulation literature. Batch means display practically zero autocorrelations. Results in graphical form are 
available upon request. 
23  We do not report posterior predictive distributions for allocative inefficiency measures since we are interested mostly in 
inferences regarding the banks in our sample. 
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other parameters of the model. What we need is the density function of ji)(ξ  conditional on the data only. 

To average out parameter uncertainty we compute ∑
=

−=
S

s

s
jiji S

1

)(
)(

1
)( ξξ  which provides a price distortion 

measure for each input and each bank. Figure 4 presents kernel densities of ji)(ξ  across banks for any 

given input . These density functions do not vary widely with the prior of the technical 

efficiency parameter 

4,...,1=j

uσ . They are concentrated around zero (so we can claim that, banks on average do 

not seem to have significant relative price distortions) but they differ in terms of spread and overall shape. 

For labor (input 1), relative price distortions can be as large as 8% in absolute value. For other inputs, the 

spread is much lower and distortions range from minus 4% to plus 4%. The difference in spreads reflects 

the fact that for labor (relative to input 5) banks seem to misperceive prices to a greater extent compared 

to other inputs. Finally, the fact that these density functions are not particularly tight means that banks are 

quite heterogeneous in terms of allocative inefficiency.  

1κ

Cln

The density functions of jκ (relative over- (under-) use of each input) are reported in Figures 3c 

and 3d, and their summary measures are reported in Table 1. These density functions are kernel density 

estimates of bank-specific measures derived following the formula given in the previous paragraph. These 

density functions are mostly centered around unity meaning that, on average, banks do not make many 

allocative mistakes in using their inputs. The considerable spread suggests that banks are highly 

heterogeneous in their relative input mis-allocation. More specifically,  ranges from 0.836 to 1.182 

suggesting that banks may under-utilize labor (relative to input 5) by as much as 17.4% or over-utilize it 

by as much as 18.2%. The remaining jκ  ranges roughly from 0.92 to 1.08 suggesting under-utilization 

by 8% and over-utilization by 8%. Thus we observe the presence of considerable allocative inefficiency 

in the sample banks. 

When banks fail to allocate their inputs properly, costs will increase. We label this as the cost of 

allocative inefficiency. In Figure 4 we provide kernel densities of bank-specific measures of percentage 

increases in cost due to allocative inefficiency, . The density functions of are highly skewed 

to the right. On average, allocative inefficiency increased cost by 10% (meaning that on average, cost 

allocative efficiency is 90%), although there are fewer banks for which this is much higher. From the 

practical point of view optimal use of inputs is driven by the motive of attaining high cost efficiency. 

Since some inputs are costlier than others a relatively cheap (expensive) input can be over- (under-) used 

more than some other inputs that are relatively costly. Here we show how to obtain information on 

allocative inefficiency (defined in terms of price distortion), non-optimal input use and finally the cost of 

non-optimal input use, along with cost of technical inefficiency. 

ALCln AL
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We have tried several prior tightness parameters for the regression parameters, β , viz.,ε  ranging 

from  to 0.1 without noticing large differences in final results related to technical and allocative 

inefficiency. We have also tried larger values for the prior tightness parameter. In these cases the results 

started to differ notably. This type of outcome is quite reasonable. With small values of the prior tightness 

we can interpret the model as a cost-share system, at least in an approximate sense. We necessarily lose 

this interpretation as the value of prior tightness increases. In this case the interpretation of technical 

efficiency becomes ambiguous so it should be expected that the results become more sensitive on the 

prior. 

1210−

 

6. Conclusions  

 

In this paper we developed Bayesian tools for making inferences on firm-specific technical and 

allocative inefficiency using a system approach. The system considered here is based on the cost 

minimization behavior of producers. The main contribution of the paper is the estimation of a well-

specified translog system (in which the error terms in the cost and cost-share equations are internally 

consistent) in a random effects framework. This solves the Greene problem by using a model that is 

theoretically consistent and estimating it without treating the inefficiencies as parametric functions of the 

data and unknown parameters. First, we analyzed the model with only technical inefficiency and then we 

introduced allocative inefficiency. The model with only technical inefficiency is a standard seemingly 

unrelated regressions system conditional on the latent inefficiency variable. The model with both 

technical and allocative inefficiency is a nonlinear seemingly unrelated regression with nonlinear random 

effects. We showed that simulation-based numerical Bayesian analysis can be used to provide inferences 

on parameters and more importantly on functions of interest, viz., technical efficiency, allocative 

inefficiency, price distortions for each input, non-optimal input use for each input, etc., for each firm. The 

new techniques are applied to a panel of U.S. banks. We compared the results obtained from two system 

approaches, namely with and without allocative inefficiency. Results show some important differences in 

efficiency estimates across models.  
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APPENDIX A. Random draws from conditional posterior density function of ξ  

 
In this Appendix, we show how to derive the normal approximation to the conditional posterior of 

ξ , and then use a Metropolis update to maintain the correct posterior density function. We assume that u  
is known and we set it to zero without loss of generality (meaning, it is subtracted from ). In general, 
any nonlinear system with random effects can be written as 

1y

 
itiitit vfy ,1,1,1 );( += βξ  

 
                                        itMiitMitM vfy ,,, );( += βξ ,  ;,..,1 ni = Tt ,..,1=  

 
where ),0(~ 1 Ω−Mi Nξ  and ),0(~],....,[ ,,,1 Σ′≡ MitMitit Nvvv

i
 independently, and  denotes a given 

nonlinear function for the 
itmf ,

m th equation, firm  and year t . We can take a first-order Taylor expansion 
with respect to ξ , consider all observations for the th firm, and write the system in obvious notation as i
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is . Apparently, the 's are functions of the data as well as )1( −M imZ ,×T β . If we combine this linear 
system with the distributional assumption about iξ  we have 
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Therefore, we can use standard results from mixed estimation to obtain 
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This represents the normal approximation to the posterior conditional density function of any 
nonlinear system with time-invariant random effects. In practice instead of a normal density function we 
use a Student-t with 10 degrees of freedom.  
 

These general results must now be specialized to the translog cost-share system we analyze. The 
task is to find the first derivatives of the cost function and share equations with respect to the ξ 's, and 
evaluate them at 10 −= Mξ . Omitting  subscripts and error terms for simplicity, the cost function is ti,
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and  is the usual translog cost function. Clearly, assuming all restrictions implied by the theory in 
place, we get 
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ALCln , the cost function contributes nothing to the 

conditional posterior of ξ  up to a first order of approximation. This is particularly important because the 
cost function is the most complicated function of the system, and omitting the cost function from further 
consideration results in computational gain.  Next, we consider the share equations. These are given by 
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After some algebra, the derivatives of the allocative inefficiency term with respect to ξ 's are  
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These partial derivatives are simple functions of the data and β , and can be computed very easily at no 
cost conditional on the s'β . Therefore, we can set up the matrices , and these matrices can, in turn, be 
used to obtain a draw from the approximate multivariate Student-t posterior conditional density function 
of 

iZ

iξ 's.  
 

Appendix B. Prior restrictions imposed by economic theory  
 

Consider the translog cost function: 
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where  is the  vector of log prices, ln  is the wln 1×m q 1×s  vector of log outputs, 0α  is a constant, 
θα ,  and δβ ,  are  and  vectors, and A, B, D are matrices of dimensions , 1×m 1×s nm× ss×  and 

 respectively. The share equations will be in the form sm×
 

tqGwFmS λ+++= lnln        (B.2) 
 
where  is the  vector of input shares, F, G are matrices of dimensions m  and S 1×m m× sm×  
respectively, and λ  is an  vector. 1×m
 

We impose exactly the restrictions that A and B are symmetric. Homogeneity implies 
 

01' =Am , 1  1     ,0' =DS 1' =αm
 
where 1  denotes the  unit vector. Moreover, we have the cross-equation restrictions m 1×m
 

α=m , F = a, G = D, λθ =  
 

In the system (B.1)-(B.2) we have a total of 110 unrestricted parameters; provided we impose 
exactly the symmetry restrictions on A and B as well as homogeneity we have to account for the 44 cross-
equation restrictions in (D.6)-(D.9). Given our conventions, if γ denotes the 110 1×  unrestricted parameter 
vector the restrictions are as follows: 
 

0267 =−γγ  0489 =−γγ  

0768 =−γγ  0990 =−γγ  

0869 =−γγ  01391 =−γγ  

0970 =−γγ  01692 =−γγ  

01071 =−γγ  01793 =−γγ  

01172 =−γγ  01894 =−γγ  

04273 =−γγ  05295 =−γγ  

04374 =−γγ  05396 =−γγ  

04475 =−γγ  05497 =−γγ  

04576 =−γγ  05598 =−γγ  

04677 =−γγ  05699 =−γγ  

0378 =−γγ  05100 =−γγ  

0879 =−γγ  010101 =−γγ  

01280 =−γγ  014102 =−γγ  

01381 =−γγ  017103 =−γγ  

01482 =−γγ  019104 =−γγ  

01583 =−γγ  020105 =−γγ  

04784 =−γγ  057106 =−γγ  

04885 =−γγ  058107 =−γγ  

04986 =−γγ  059108 =−γγ  

05087 =−γγ  060109 =−γγ  

05188 =−γγ  061110 =−γγ  
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Since all restrictions are linear, they can be put in the form gG =γ  where is , and G 11044× g  

is . Based on this formulation a semi-informative prior can be specified in the form 144×
~ 44N ),( HgGγ  where H  is 44 .  44×

 
 

Table 1. Posterior results for functions of interest* 
 
 

 Prior A Prior B 
Posterior 
predictive 
technical 
efficiency 

0.963 
(0.032) 
 

0.963 
(0.035) 
 

Firm-specific 
technical 
efficiency 

0.868 
(0.247) 
 

0.859 
(0.257) 
 

ALCln  0.099 
(0.088) 

0.098 
(0.088) 

1ξ  -0.0016 
(0.033) 

-0.0016 
(0.033) 

2ξ  -0.0056 
(0.011) 

-0.0055 
(0.011) 

3ξ  0.0029 
(0.024) 

0.0028 
(0.024) 

4ξ  0.0011 
(0.008) 

0.0009 
(0.008) 

1κ  1.0038 
(0.059) 

1.0038 
(0.058) 

2κ  1.017 
(0.026) 

1.017 
(0.027) 

3κ  0.991 
(0.035) 

0.991 
(0.034) 

4κ  0.996 
(0.025) 

0.996 
(0.025) 

 
* The entries are the posterior means. Posterior standard deviations appear in parentheses. 
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