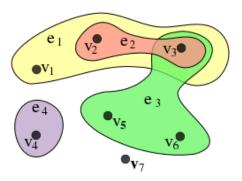

Higher-Order Interactions in Networks



Hiroki Sayama sayama@binghamton.edu

Higher-order interactions

- Interactions among more than two nodes (i.e., relationships that cannot be captured by simple pairwise edges)
- Typical modeling frameworks:
 - Hypergraphs
 - Simplicial complexes

Images from Wikipedia

Heads up (2)

- This is even much newer than temporal or multilayer network research!!
- Tools for higher-order interaction modeling and analysis are very limited
- Can be even more math-intense than temporal or multilayer network research

- Categorical relationships among objects (e.g., memberships in sets)
- Communications among multiple participants (e.g., group discussions)
- Multiple-species interactions in ecosystems

Hypergraphs

Hypergraph

- A generalization of a graph in which a "hyperedge" can join any number of nodes
 - i.e., a hyperedge is a set of nodes
 - It is no longer dots and lines!

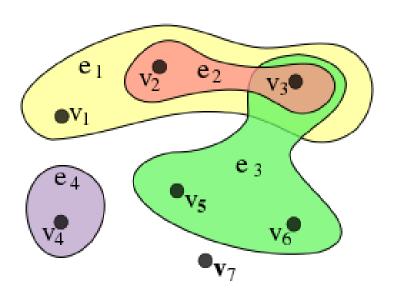
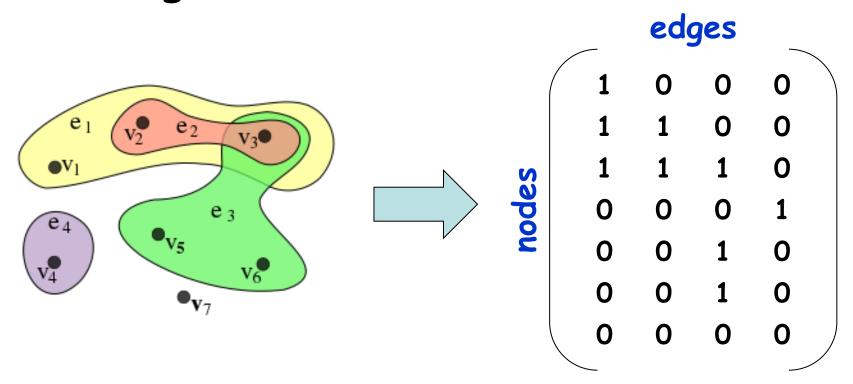
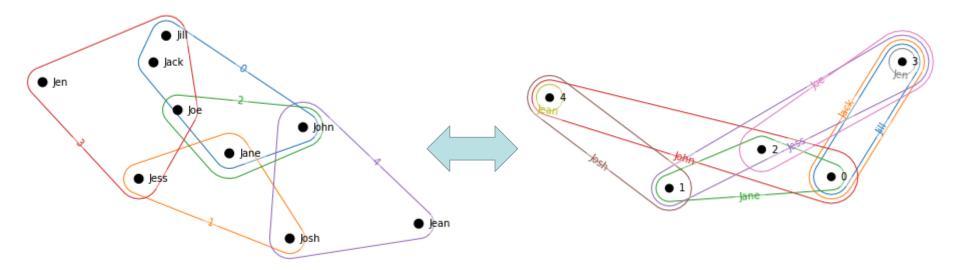
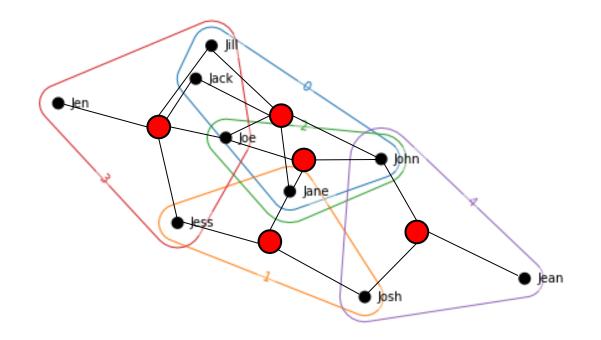



Image from Wikipedia

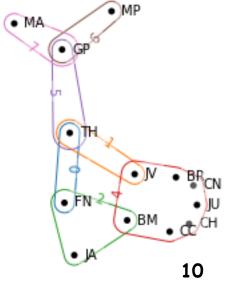

Matrix representation

Hypergraph can be represented by a rectangular incidence matrix


Duality of hypergraphs

 Every hypergraph has its "dual" obtained by swapping roles of nodes and edges (i.e., transposing its incidence matrix)

Representation as bipartite graphs


 Hypergraphs can be converted to ordinary graphs by creating new nodes to represent hyperedges

HyperNetX

- Developer team led by our Systems Science alumnus Cliff Joslyn! 🙂
 - pip install hypernetx import networkx as nx import hypernetx as hnx
 - You may need to install additional packages too

HyperNetX basics (1)

Hyperedges as dictionaries

hnx.draw(g)

HyperNetX basics (2)

- g.nodes
- g.edges
- g.shape
- g.incidence_dict
- g.incidence_ matrix()
- g.degree(node)
- g.neighbors(node)
- g.size(edge)

- g.dual()
- g.connected_
 components()
- g.s_components(s)
- g.distance(i, j, s)
- g.edge_ distance(k, l, s)

etc...

Connectedness in hypergraphs

- Connectivity can be measured at different levels of node sharing between hyperedges
 - Denoted by the "s" parameter in HyperNetX
 - E.g. "s = 2" means paths/distances are measured by assuming that only hyperedges that share 2 or more nodes are incidental to each other

Exercise

- Create and visualize a hypergraph model of your social surroundings by considering multiple groups (hyperedges) you belong to:
 - Research groups
 - Project teams
 - Family
 - Friend groups 1, 2, 3, ...

etc...

- Analyze structural properties of the hypergraph model you just created
- Create and visualize its dual
- Who are connected from you with s=2, s=3, etc.?

Simplicial Complexes

Simplicial complex

• A more formal, structured way of representing multinode interactions using combinations of "simplices" (plural of "simplex") - Edge: 1-simplex - Triangle: 2-simplex

etc...

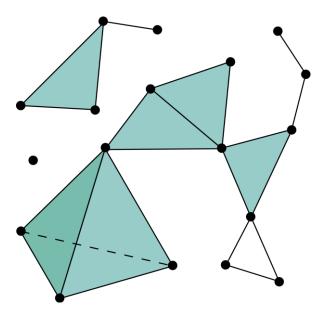
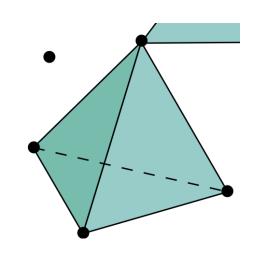
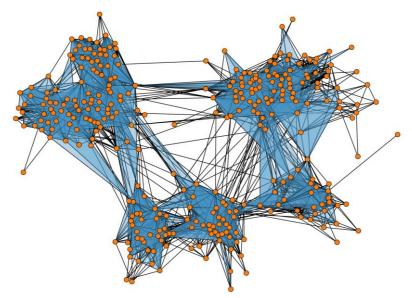



Image from Wikipedia

Properties of simplicial complexes

- Defined as a set of simplices
- All "subfaces" (i.e., lower-dimensional parts) of each simplex are also included in the simplicial complex
 - E.g. if a tetrahedron (3simplex) is in a simplicial complex, then its four triangles and six edges must also be included in the set

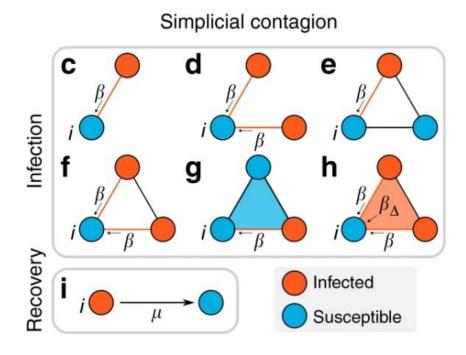


Hypergraph vs. simplicial complex?

- Hypergraphs are more open-ended and flexible than simplicial complexes
- Simplicial complexes assume any lower-dimensional interactions should also be present
 - A triad interaction means there must also be three dyad interactions too
 - Hypergraphs do not represent such assumptions

Simplicial complex in NetworkX

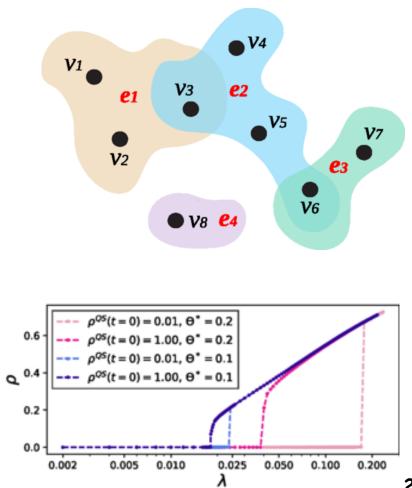
- You will need to do most of work yourself, but there are some tools available:
 - "py-draw-simplicial -complex" by Iacopo Iacopini https://github.com/ iaciac/py-drawsimplicial-complex



Exercise

- Rewrite the "social surroundings" hypergraph data you previously created into a simplicial complex (i.e., a set of simplices)
- Visualize it using py-draw-simplicialcomplex

Application example (1): Dynamics on simplicial complexes


- Iacopini, I., et al. (2019) Nature Communications, 10(1), 1-9.
 - Contagion that takes into account the effects of triads shows an abrupt (explosive) jump of infection at a critical threshold

Application example (2): Dynamics on hypergraphs

(b)

- de Arruda, G. F., et al. (2020).
 Physical Review Research, 2(2), 023032.
 - Similar dynamical properties (e.g., bistability and explosive transition) are observed for hypergraphs

- Higher-order interactions in networks are still a VERY new topic in network science, so many concepts and methods are still being rapidly developed and tested
- Some of those may not survive
- This means you have a good chance to make big contributions to this area!!