
Topological Analysis (1)

Hiroki Sayama sayama@binghamton.edu

Network data import & export

- read_gml
- read_adjlist
- read_edgelist
 - Creates undirected graphs by default; use "create_using=NX.DiGraph()" option to generate directed graphs

- Import Supreme Court Citation Network Data into NetworkX (<u>http://jhfowler.ucsd.edu/judicial.htm</u>)
 - Import as an undirected graph
 - Import as a directed graph

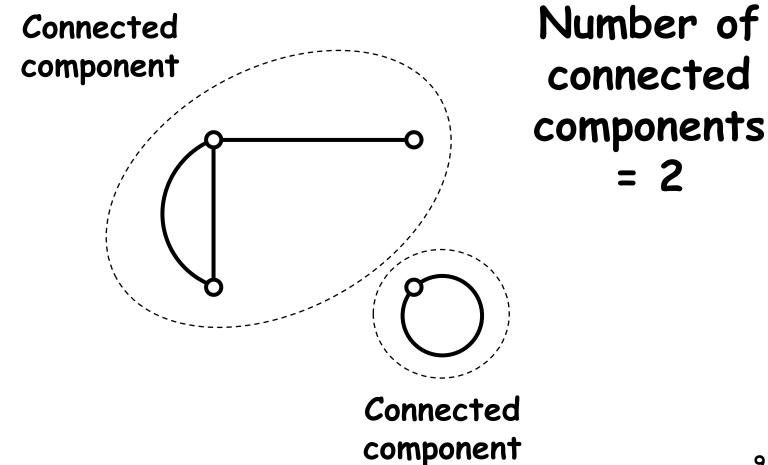

Network visualization

- "nx.draw"
- Various layout functions
 - Spring, circular, random, spectral, etc.

 For visualization of large-scale networks, use "Gephi"

Network visualization & analysis tool

Basic Properties of Networks


Basic properties of networks

- Number of nodes
- Number of links
- Network density
- Connected components

Network density

- The ratio of # of actual links and # of possible links
 - For an undirected graph: d = |E| / (|V| (|V| - 1) / 2)
 - For a directed graph:
 d = |E| / (|V| (|V| 1))

Connected components

- Measure the following for the (undirected) Supreme Court Citation Network
 - Number of nodes, links
 - Network density
 - Number of connected components
 - Size of the largest connected component
 - Distribution of the sizes of connected components

Shortest path lengths, etc.

- shortest_path
- shortest_path_length
- eccentricity
 - Max shortest path length from each node
- diameter
 - Max eccentricity in the network
- radius
 - Min eccentricity in the network

 Draw the Karate Club network with its nodes painted with different colors according to their eccentricity

Characteristic path length

- <u>Average</u> shortest path length over all pairs of nodes
- Characterizes how large the world represented by the network is
 - A small length implies that the network is well connected globally

Clustering coefficient

- For each node:
 - Let n be the number of its neighbor nodes
 - Let m be the number of links among the k neighbors
 - Calculate c = m / (n choose 2)
 - Then C = <c> (the average of c)
- C indicates the average probability for two of one's friends to be friends too
 - A large C implies that the network is well connected locally to form a cluster 14

Exercise

- Measure the average clustering coefficients of the following network:
 - Karate Club graph
 - Krackhardt Kite graph
 - Supreme Court Citation network
 - Any other network of your choice
- Compare them and discuss
 - Can you tell anything meaningful?

Centralities

Centrality measures ("B,C,D,E")

- Degree centrality
 - How many connections the node has
- Betweenness centrality
 - How many shortest paths go through the node
- Closeness centrality
 - How close the node is to other nodes
- Eigenvector centrality

Degree centrality

Simply, # of links attached to a node

$$C_D(v) = deg(v)$$

or sometimes defined as $C_D(v) = deg(v) / (N-1)$

Betweenness centrality

 Prob. for a node to be on shortest paths between two other nodes

$$C_{B}(v) = \frac{1}{(n-1)(n-2)} \sum_{s \neq v, e \neq v} \frac{\# sp_{(s,e,v)}}{\# sp_{(s,e)}}$$

- s: start node, e: end node
- $\#sp_{(s,e,v)}$: # of shortest paths from s to e that go though node v
- $\#sp_{(s,e)}$: total # of shortest paths from s to e
- Easily generalizable to "group betweenness" 19

 Inverse of an average distance from a node to all the other nodes

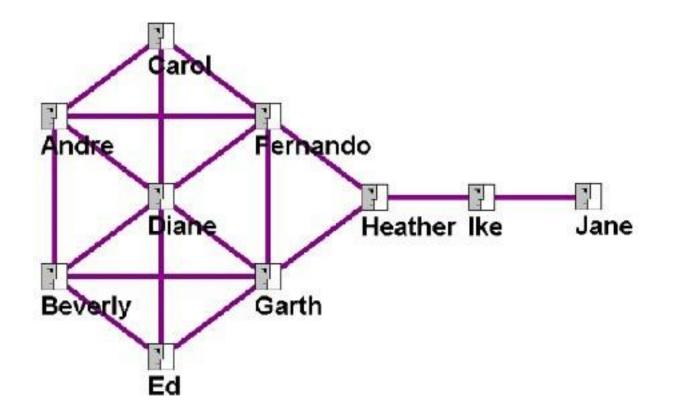
$$C_{c}(v) = \frac{n-1}{\sum_{w\neq v} d(v,w)}$$

- d(v,w): length of the shortest path from v to w
- Its inverse is called "farness"
- Sometimes " Σ " is moved out of the fraction (it works for networks that are not strongly connected)

20

 NetworkX calculates closeness within each connected component

Eigenvector centrality


 Eigenvector of the largest eigenvalue of the adjacency matrix of a network

> $C_{\rm E}(v) = (v-th \ element \ of \ x)$ $Ax = \lambda x$

- λ : dominant eigenvalue
- $\cdot x$ is often normalized (|x| = 1)

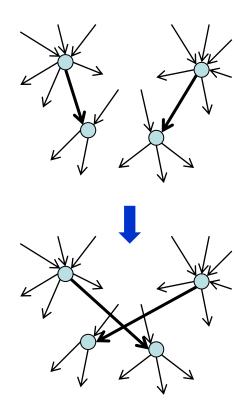
 Who is most central by degree, betweenness, closeness, eigenvector?

Which centrality to use?

- To find the most popular person
- To find the most efficient person to collect information from the entire organization
- To find the most powerful person to control information flow within an organization
- To find the most important person (?)

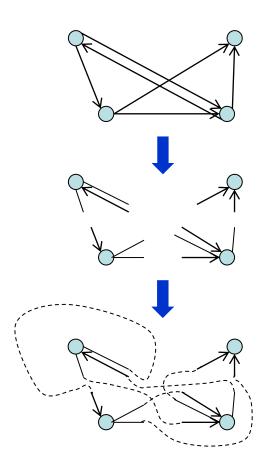
 Measure four different centralities for all nodes in the Karate Club network and visualize the network by coloring nodes with their centralities

- Create a directed network of any kind and measure centralities
- $\boldsymbol{\cdot}$ Make it undirected and do the same
 - How are the centrality measures affected?


Randomizing Network Topologies

Randomizing networks

- Construct a "null model" network samples to test statistical significance of experimentally observed properties
 - Randomized while some network properties are preserved (e.g., degrees)
 - If the observed properties still remain after randomization, they were simply caused by the preserved properties
 - If not, something else was causing them


Randomlization method (1)

- Double edge swap method
 - 1. Randomly select two links
 - 2. Swap its end nodes
 - (If this swap destroys some network property that should be conserved, cancel it)
 - 3. Repeat above many times

Randomlization method (2)

- Configuration model (Newman 2003)
 - 1. Cut every link into halves (heads and tails)
 - 2. Randomly connect head to tail
 - This conserves degree sequences
 - (Could result in multiple links and self-loops)

Other randomization methods

Keeping only #'s of nodes and edges

- · Degree sequence method
- Expected degree sequence method

Exercise

- Randomize connections in the Karate
 Club graph
- Measure the average clustering coefficient of the randomized network many times
- Test whether the average clustering coefficient of the original network is significantly non-random or not