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Dynamics of Networks



Modeling and Simulation of 
Dynamical Networks

2



Dynamics of networks

• Dynamic growth and transformation of 
network topologies
– Social network formation

– Growth of the Internet and WWW

– Growth of scientific citation networks
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Dynamics on networks

• Dynamic state changes taking place on 
a static network topology
– Gene/protein regulatory networks

– Population dynamics on food webs

– Spread of disease/opinion/failure
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Adaptive Networks

• Complex networks whose states and 
topologies co-evolve, often over 
similar time scales
– Link (node) states adaptively change 
according to node (link) states
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Modeling and Simulation of 
Dynamics of Networks

6
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Dynamics of networks

• Dynamic growth and transformation of 
network topologies
– Social network formation

– Food web formation over ecological/ 
evolutionary time scales

– Growth of the Internet and WWW

– Growth of scientific citation networks

– Effects of node/link removal or rewiring



Network Percolation
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Percolation in random networks

• Number of connected components 
decreases with increasing link 
probability

• Above a critical probability pc, a giant 
connected component emerges
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Giant connected component

• Largest connected component whose 
size (relative to the total number of 
nodes N) remains positive even if N is 
very large

lim N→∞ |GCC|/N > 0

– If LCC is not giant, lim N→∞ |LCC|/N = 0
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Exercise

• Simulate the emergence of a giant 
connected component by randomly 
introducing edges one by one

• Monitor the process and see how the 
giant connected component emerges 
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Exercise

• Plot (1) the size of the largest 
connected component and (2) the 
number of connected components of a 
random network made of 10,000 
nodes over varying p
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Review: Degree distribution of ER 
networks

• Degree distribution of an ER random 
network is given by a binomial 
distribution:

P(k) = N-1Ck pk (1-p)N-1-k

• With large N (with fixed Np), it 
approaches a Poisson distribution:

P(k) ~ (Np)k e-Np / k!
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Percolation threshold

• Let s be the probability for a node to 
belong to LCC (i.e., |LCC| = sN) 

• Degree dist.: P(k) = (Np)k e-Np / k!

• Probability for a node to be separated 
from LCC is given by:

1-s = Σk=0~∞ P(k) (1-s)k

– (1-s)k is the probability for all k 
neighbors to be separated from LCC
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Exercise

• Using the following equations, show 
that s can take positive values if and 
only if <k> = Np > 1

P(k) = (Np)k e-Np / k!

1-s = Σk=0~∞ P(k) (1-s)k
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Exercise

• Choose two link probabilities, one 
below and one above pc

• Create ER random networks for each 
probability with varying N, and see 
how the size of their LCCs scales 
along N
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Exercise

• If 1-s < 1/N, that means all nodes 
are essentially included in LCC, and 
thus the network is made of just one 
connected component

• Obtain the critical threshold of <k> 
above which this occurs
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Edge Rewiring and Growth

18
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Exercise: Rewiring for “small-world”

• Create a ring-shaped network made 
of n nodes; connect each node to k 
nearest neighbors

• Visualize the network by coloring 
nodes using their closenesses

• Randomly rewire edges one-by-one

• Monitor what happens to the network 
topology and node colors
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Exercise: Preferential attachment

• Simulate the growth process of the 
Barabasi-Albert network growth model 
with m = 1, m = 3 and m = 5

• See how the process is affected by 
variation of this parameter



Exercise

• Modify the simulation code so that 
the node selection preference is:
– Independent of the node degree

– Proportional to the square of the node 
degree

– Inversely proportional to the node degree

• Conduct simulations and compare the 
resulting network topologies
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Exercise

• Modify the simulation code of the 
preferential attachment model so that 
a node whose degree exceeds a 
certain capacity limit splits into two 
(and each node inherits about half of 
the original connections)

• Conduct simulations and compare the 
resulting network topologies
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Robustness and Vulnerability of 
Complex Networks
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Robustness and vulnerability

• How do these networks respond 
to dynamic topological changes 
caused by external forces?

– Input: Removal of nodes

– Output: Changes in characteristic 
path length and connectivity
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Two types of node removals

• Error: Random removal of nodes
– Occurs stochastically

– Same error probability for all nodes

• Attack: Selective removal of most 
connected nodes
– Occurs deterministically

– The attacker knows network hubs
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Examples in real-world networks

• WWW:
– Error ⇒ Occasional server breakdown
– Attack ⇒ Server breakdown due to DoS etc.

• Warfare:
– Error ⇒ Accidental local actions
– Attack ⇒ Strategic actions to hit the 

central core of opponents

• Marketing:
– Error ⇒ Indiscriminate direct mail, spam
– Attack ⇒ Targeting on influential customers
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Robustness and vulnerability of 
scale-free networks

• R. Albert, H. Jeong & A.-L. 
Barabasi, Error and attack tolerance 
of complex networks, Nature 
406:378-382, 2000.

– Considered the effects of random errors 
& targeted attacks on scale-free 
networks (both simulated and actual ones)
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Change of diameter (experiments with 
artificially generated networks)

Fraction of removed nodes

Characteristic path length

SF networks are 
very robust to 
random failures

SF networks are 
highly vulnerable 
to attacks
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Change of diameter (experiments with 
networks based on real data)

Fraction of removed nodes

Characteristic path length
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Why such robustness / vulnerability 
occurs?

A scale-free network has 
a few hub nodes and a lot 
of non-hub (mostly 
terminal) nodes

→Random errors are likely to 
hit non-hub nodes, causing 
only limited influence

→Attacks always hit hubs, 
causing great impacts on 
the whole
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• If node removal goes on further, the 
network will eventually fall apart 
(fragmentation)

One can detect such fragmentation by 
monitoring the following:

S :   Size of LCC

<s> : Average size of all other smaller 
connected components

Fragmentation analysis
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Exercise

• Calculate S and <s> for this graph
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What S and <s> tells us

• While individual nodes drop out one by 
one from the largest connected body:

→ S decreases slowly, <s> ~ 1

• When the LCC falls apart:

→ S drops suddenly, <s> > 1

The latter indicates a critical moment 
of network fragmentation
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Fragmentation process (experiments 
with artificially generated networks)

Fraction of removed nodes

Random Scale-free

S
, 

<
s>
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Fraction of removed nodes

S
, 

<
s>

Fragmentation process (experiments 
with networks based on real data)



Exercise

• Replicate Albert, Jeong & Barabasi’s 
network fragmentation experiments 
for ER random networks and BA 
scale-free networks
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Exercise

• Conduct fragmentation analysis on 
Mark Newman’s Political Blogs network 
data

• Try several different attack 
strategies and see which one would be 
most effective in disrupting the 
connectivity of the network 
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Network vulnerability

• Scale-free networks are robust to 
stochastic errors, but quite fragile 
against intentional attacks targeted to 
hubs

• This conclusion directly applies to 
real-world networks
– DoS attacks to key servers, terrorisms 
at commercial hubs, etc…

• Then, what can we do?



A Potential Solution:
(1,0) networks



40

Our attempt

• B. Shargel, H. Sayama, I. R. Epstein 
& Y. Bar-Yam, Optimization of 
robustness and connectivity in complex 
networks, Phys. Rev. Lett. 
90:068701, 2003.

– Reconsidered the details of network 
development and proposed (1,0) networks 
that are more robust to both errors and 
attacks than pure scale-free networks
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Two parameters for network 
development

• Preference parameter p (0≤p≤1)
– Specifies how much the selection of 
nodes is affected by their degrees

• Growth parameter g (0≤g≤1)
– Specifies the fraction of nodes that are 
added through the developmental process 
to the total number of nodes

Seeking a more robust network in the 
p-g parameter space
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Response to random errors

Speed of 
diameter 
increase
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Response to targeted attacks

d : characteristic path lengths

Intensity of attacks
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Why robust to attacks?

• During the development of a (1,0) 
network, well-connected hubs can be 
connected to each other

→ Tightly connected clusters of 
hubs will emerge

(In the scale-free network growth with 
preferential attachment, isolated hubs cannot be 
connected to each other)
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Exercise: Preferential attachment

• Simulate the development process of 
the (p, g) network model

• See how the resulting network 
topology differs among the following

(p, g) = (0, 0)  (random)

(p, g) = (1, 1)  (preferential attachment)

(p, g) = (1, 0)



46

Implications

Networks that continue to 
reinforce connections between 
their internal parts can be more 
robust in many situations than 
other networks whose internal 
connections are enhanced only by 
the addition of newcomers
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Dynamics on networks

• Dynamic state changes taking place on 
a static network topology
– Regulatory dynamics on gene/protein 
networks

– Population dynamics on ecological 
networks

– Disease infection on social networks

– Information/culture propagation on 
organizational/social networks



• An agent (or a set of agents) moving 
on a network

• An agent jumps randomly to one of 
the neighbor nodes at each time step
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Simple example:
Random walk on a network



Exercise

• Simulate random walk of an agent on 
a directed random network made of 
50 nodes

• Count how many times each node was 
visited by the agent over time
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• |l| <= 1 for all eigenvalues

• If the original network is strongly 
connected (with some additional conditions), 
the TPM has one and only one 
eigenvalue 1 (no degeneration)

→ This is a unique dominant eigenvalue;
the probability vector will converge to 
its corresponding eigenvector

TPM and asymptotic probability 
distribution (review)



Exercise

• Construct the transition probability 
matrix of the random network used in 
the previous exercise

• Find its dominant eigenvector with l = 
1

• Compare the results with the previous 
“counting” results
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Dynamics on Networks with 
Discrete Node States
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Opinion formation (Voter model)

• A simple model of opinion formation in 
society
– Opinions = discrete states
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Three versions of voter models

• Original voter model
– A randomly selected node copies the 
opinion of one of its neighbors

• Reverse voter model
– A randomly selected node “pushes” its 
opinion into one of its neighbors

• Link-based voter model
– An opinion is copied through a randomly 
selected link
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Exercise

• Simulate the three different versions 
of the voter model (original, reverse 
and link-based) on a Barabasi-Albert 
scale-free network

• Compare the speed of opinion 
homogenization between the three 
models
– Why different?
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Epidemics (SIS/SIR model)

• Initially, a small fraction of nodes are 
infected by a disease

• If a susceptible node has an infected 
neighbor, it will be infected with 
probability pi (per infected neighbor)

• An infected node will recover and 
become susceptible (SIS) or 
recovered (SIR) with probability pr
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Exercise

• Study the effects of infection/ 
recovery probabilities on the fixation 
of a disease on a random social 
network
– In what condition will the disease remain 
within society?

– In what condition will it go away?

– Is the transition smooth, or sharp?
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Exercise

• Do the same experiments with WS 
small-world networks and BA scale-
free networks

• Compare their properties



Cascade of failure

• Load on a failing node is divided and 
distributed to its neighbors

• If the load exceeds capacity of each node, 
it causes another node failure

60



Exercise

• Simulate a cascade of failure on a 
scale-free network made of 100 
nodes with random node capacities and 
load assignments

• Investigate which node has the most 
significant impact when it fails
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Hopfield network

Input Output

• A.k.a. “attractor network”

• Neurons connected in a shape of an 
undirected weighted complete graph

• Each neuron takes either 1 or -1, and 
updates its state in discrete time
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State-transition rule

si(t+1) = sign ( Σj wij sj(t) )

• wij : connection weight between neuron 
i and neuron j

• wij = wji (symmetric interaction)

• wii = 0 (no feedback to itself)
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Setting weights by “imprinting”

wij = Σk sk
i sk

j

• k : index of patterns memorized

• sk
i : state of neuron i in pattern k

– e.g.

Pattern 1

2

0

-2

Pattern 2
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Recovering patterns

• When started with some initial pattern, the 
network “remembers” the closest pattern in 
its memory (or its reversal)
– Can be applied to content addressable memory, 

pattern recognition, etc. 

Imprinting
Initial pattern Memorized pattern

Recovery
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Exercise

• Simulate the behavior of the following 
Hopfield network

-2

2

2

2

-2

-2 2

-2

-2 -2

: +1

: -1

2, -2 : weights



Gene regulatory network

67

• Each gene is 
activated or 
inhibited by 
other genes
– Forming a 
network of 
“logic gates”

– Each gene 
takes binary 
state (on/off)

(from Hasty et al., Nature Reviews Genetics 2, 268-279, 2001)



Boolean network

• Mathematical abstraction of gene 
regulatory networks
– Binary node states

– Each node determines next state using 
its own Boolean state transition function 
(referring to neighbors’ states)

• Random Boolean network:
– Network topology and state transition 
functions are both randomly generated
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Example of transition functions

• 2-input functions (222

=16 possibilities)

69

X Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND OR



Kauffman’s NK networks

• N: # of nodes

• K: # of inputs to each node
– Topologies and state-transition functions 
are both random

– Similar to, but not the same as, the NK 
fitness landscape (NK model) often used 
in mathematical biology and management 
sciences
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NK network’s attractors

• Total # of macro-states: 2N

• The network eventually falls into one 
of its “attractors”
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Gene 1

Gene 2 Gene 3

0 0 0 1 0 0

0 1 0 0 0 1

1 1 0

1 0 1

0 1 1

1 1 1



Exercise

• Create a Python code that generates 
the NK network’s state-transition 
diagram (i.e., a directed network 
whose nodes are the network’s macro-
states)

• Count how many attractors exist

• Study how # of attractors change 
when you vary N and K
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Dynamics on Networks with 
Continuous Node States

73



Simple diffusion

• Individually:

= D Σj in Ni
(sj – si)

• Collectively (with Laplacian L):

= - D L s
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dsi

dt

ds

dt



Exercise

• Simulate a diffusion process of 
continuous node states on a Barabasi-
Albert scale-free networks with n = 
100 and m = 1
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Exercise

• Calculate the eigenvalues and 
eigenvectors of Laplacian matrices of 
several different network topologies

• Interpret their meanings in the 
context of diffusion

• Confirm your interpretation by 
numerical simulation of the diffusion 
processes
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Synchronization

• Linear coupling model:

= F(si) + Σj ( cij H(sj) )

• F(s): internal dynamics

• C = (cij): coupling matrix

• H(s): output function

– If si(t) = s(t) for all i, then the network 
is synchronized
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dsi

dt



Synchronization and Laplacian

• If coupling depends only on the 
difference of outputs across a link:

= F(si) + s Σj in Ni 
(H(sj) – H(si))

– I.e., C = - s L
– Laplacian’s “spectral gap” (first non-zero 
eigenvalue) is critical in determining 
synchronizability of the network
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dsi

dt



Exercise

• Simulate the following nonlinear 
Kuramoto model:

= wi + K/|Ni| Σj in Ni
sin(sj - si)

• wi: inherent angular velocity

• Ni: neighbors of node I

– What kind of networks synchronize most 
easily?

79

dsi

dt



Exercise

• Measure and plot the following “phase 
coherence” in the simulation of the 
Kuramoto model:

r = | Σj e
iqj / n |
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Synchronizability
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Synchronizability

• Synchronizability of a simple coupled 
dynamical network can be studied by 
conducting stability analysis

dxi = R(xi) + a S ( H(xj) – H(xi) )dt j Є Ni

R(x): Local reaction term (homogeneous)
H(x): Output function

82



Exercise

• Consider adding a small perturbation 
to the general solution of the 
dynamical equation (w/o interactions)

dx
= R(x)   → xs(t)dt

• Conduct stability analysis by assuming:

xi(t) = xs(t) + Dxi(t)
83



Condition for synchronizability

• Solution xs(t) is stable (i.e., the 
network is synchronized) if

a li H’(xs(t)) > R’(xs(t))

for all i and t

(you need to consider only l2 and ln)
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Exercise

• Analyze the synchronizability condition 
of the following coupled oscillator 
model:
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Mean-Field Approximation

86
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Mean-field approximation

• An approximation to drastically reduce the 
dimensions of the system by reformulating 
the dynamics in terms of “a state of one 
node” and “the average of all the rest (= 
mean field)”

Healthy

Sick

A node

MFA
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How MFA works 

1.Make an approximated description about how one 
node changes its state through the interaction 
with the average of all the rest (= mean field)

2.Assume that 1. uniformly applies to all the nodes, 
and analyze how the mean field itself behaves

Healthy

Sick

A node

MFA
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Mathematical description of 
MFA (difference equations)

• Original equations: 

xi
t = Fi( { xi

t-1 } )

• Approximate equations with MFA:

xi
t = F’i(xi

t-1, <x>t-1)

<x>t = Si xi
t-1 / n

Each state-transition function 
takes only two arguments:

its own state and the “mean field”



Example: SIS on a random network

• Infection probability pi

• Recovery probability pr

• Edge probability pe

• Write down a difference equation 
that describes how the probability of 
infected nodes, qt (mean field), 
changes over time
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Example: SIS on a random network

• Find equilibrium states

• Study the stability of those 
equilibrium points
– When does the equilibrium q = 0 become 
unstable (i.e., epidemic occurs)?
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Example: SIS on a SF network

• Infection probability pi

• Recovery probability pr

• Degree distribution P(k)

• Write down a difference equation 
that describes how the probability of 
infected nodes with degree k, qt(k) 
(many mean fields), changes over time
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Degree-dependent infection

• Probability for a node with degree k 
to get infected from its neighbor:

Pn : neighbor degree probability distribution

If the network is nonassortative:
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FYI: Friendship paradox

• “Your friends have more friends than 
you do, on average”
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Calculation…
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Calculation…

96

With this:



Calculation…
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• For BA SF networks, this becomes:



Calculation…

98

• Final stability analysis:



Conclusion
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• If pi → 0:

• Since 0 < 1 – pr < 1, the non-zero 
equilibrium state (i.e., epidemic) is 
still stable even if pi → 0 on scale-
free networks!!



Take-home lesson

• Dynamics on networks can 
be influenced significantly 
by network topology
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Statistical
approaches Dynamical approaches

Theory
driven

Data
driven

Dynamics on networks Dynamics of networks

ER random 
graphs

Social
network
analysis

Random 
matrices ANNs

RBNs

Small-world 
networks

Epidemic
models Adaptive

networks

Temporal
networks

Mobility
networks

Multi-
variate

time series
analysis

GRNs

Preferential 
attachment

Other network
growth models

Scale-
free 

networks

A map of network science
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Adaptive networks

• Complex networks whose states and 
topologies co-evolve, often over 
similar time scales
– Link (node) states adaptively change 
according to node (link) states

103



Adaptive networks in action

• Many real-world complex systems 
show coupling between “dynamics of 
networks” and “dynamics on networks”

System Nodes Edges
States of 

nodes
Topological 
changes

Organism Cells Intercellular 
communication 
channels

Gene/protein 
activities

Fission and death of 
cells during 
development

Ecological 
community

Species Interspecific 
relationships

Population Speciation, invasion, 
extinction of species

Human society Individual Conversations, 
social relation-
ships

Social, professional, 
economical, 
political, cultural 
statuses

Changes in social 
relationships, entry and 
withdrawal of 
individuals

Communica-
tion network

Terminals, 
hubs

Cables, 
wireless 
connections

Information stored 
and transacted

Addition and removal 
of terminal or hub 
nodes 104



Simulation of Adaptive Networks
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Simulating state-topology 
coevolution

• Technically, very easy; not so much 
different from other network 
simulation models

• One minor problem:
How to handle topological changes 
while state changes are also ongoing?

→ Asynchronous updating

106



Example: Epidemics on adaptive 
networks

• Original epidemic network model

+ adaptive changes of links

• A susceptible node that has a link to 
an infected node will cut the link and 
reconnect it to another susceptible 
node with probability pc

• Does the disease stay in the network?

107



Exercise

• Study the effects of rewiring 
probability on the disease fixation on 
and the global network structure of 
an initially random social network
– In what condition will the disease remain 
within society?

– How will the topology of the network be 
reformed through the disease 
propagation process?
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• Original voter model

+ adaptive disconnection of links

• A link that connects two nodes with 
different opinion states may be cut 
with probability pc

• How will the social network and 
opinions evolve?

109

Example: Adaptive voter model



Exercise

• Study the effects of the link 
disconnection probability on the 
consensus formation in the adaptive 
voter model

– Plot the final number of opinions as a 
function of pc

– How will the topology of the network be 
changed by the diversity of opinions?
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• Original diffusion model

+ adaptive disconnection of links

• Link weights will increase or decrease 
based on the similarity/dissimilarity 
of node states across the links

– Conceptually similar to the adaptive voter 
model

111

Example: Adaptive diffusion model



Application 1: Corporate merger

• Modeling and simulation of cultural 
integration in two merging firms

acceptance rejection
acceptance 
probability

Yamanoi & Sayama, 
Comput. Math. Org. 
Theory 19, 516-537, 
2013.
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../../../../../Data/study/social modeling/corporate merger/corporate-merger3-rev4_changed3_demo_for_Frans-figures-PyCX.py


“Within-firm” concentration (w)

w = 0 w = 1 w = 5 w = 10 w = 30

• Prob. for node i to become an info source:

Pw(i) ~ (i/n)
w (i = 1, 2, …, n;  n = firm size)

flat centralized

113



“Between-firm” concentration (b)

• Prob. for node i to have an inter-firm tie:

Pb(i) ~ ci
b

(ci = within-firm closeness centrality of i)

b = 0.1 b = 1 b = 3 b = 5

nearly random executive-level

114
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• Sayama & Sinatra, PRE 91, 032809, 2015

Adaptive link weight
adjustment:

Application 2: Social diffusion and 
global drift

116
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• Change the rule of link weight 
adjustment in the adaptive diffusion 
model
– E.g., Sayama & Sinatra (2015)

• Simulate the revised model and see 
how the network topology and state 
co-evolve

118

Exercise



Theoretical Framework:
Generative Network Automata

119



Generative network automata

• Unified representation of dynamics on
and of networks using graph rewriting

• Defined by <E, R, I>:
– E : Extraction mechanism ― When, 
Where

– R : Replacement mechanism ― What

– I : Initial configuration

Sayama, Proc. 1st IEEE Symp. Artif. Life, 2007, pp.214-221.
120



GNA rewriting example

(a)

(c)

(d)

E

(b)

R

121



Actually, it’s a generative network 
automata-on

E :
Extraction 
mechanism

R: 
Replacement 
mechanism
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Generality of GNA

• GNA can uniformly represent in <E, R, 
I>:

– Conventional dynamical systems models
• If R always conserves local network topologies 
and modifies states of nodes only

• E.g. cellular automata, Boolean networks

– Complex network generation models
• If R causes no change in local states of nodes 
and modifies topologies of networks only

• E.g. small-world, scale-free networks
123



Cellular 
automata

Random 
Boolean 
network

BA
scale-free 
network 124



Exhaustive search of rules

• E samples a node randomly and then 
extracts an induced subgraph around it

• R takes 2-bit inputs (states of the node 
and neighbors) and makes 1-out-of-10 
decisions
– Total number of possible R’s: 1022 

= 10,000

• “Rule Number” rn(R) is defined by

rn(R) = a11 103 + a10 102 + a01 101 + a00 100

– aij ∊ {0, 1, … 9} : Choices of R when state of u is i
and local majority state is j

125



Exhaustive search of rules

Sayama & Laramee, Adaptive Networks, Springer, 2009, pp.311-332.
126

../../../../../Data/study/GNA/GNAsimulator.nb


Developing Adaptive Network 
Models from Empirical Data

127



A challenge

• How to derive a set of 
dynamical rules directly 
from empirical data of 
network evolution?

• Separation of 
extraction and 
rewriting in GNA helps 
the rule discovery
Pestov, Sayama, & Wong, Proc. 9th Intl. Conf. 
Model. Simul. Visual. Methods, 2012.

Schmidt & Sayama, Proc. 4th IEEE Symp. Artif. 
Life, 2013, pp.27-34. 128

?
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Application to operational network 
modeling

• Canadian Arctic SAR (Search And 
Rescue) operational network
– Rewriting rules manually
built directly from 
actual communication 
log of a December 2008
SAR incident

– Developed a simulator for hypothetical 
SAR operational network development

129
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Automation of model discovery 
from data: PyGNA

• Adaptive network rule discovery and 
simulation implemented in Python
– https://github.com/schmidtj/PyGNA

• Input: Time series of network 
snapshots

• Output: A GNA model that best 
describes given data

131

https://github.com/schmidtj/PyGNA
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Extracted subgraphs

Input Network

Compressed Network

Extracted Subgraphs
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Extraction mechanism 
identification: “Where, when”

▪ Candidate models provided by user
▪ Degree-based preferential selection

▪ State-based preferential selection

▪ Degree & State-based   etc…

▪ Maximum likelihood method
▪ Computes likelihood using each 
hypothetical model & accumulates log 
likelihood over time

▪ Chooses the model with maximum 
likelihood 134



Algorithm

135



Replacement mechanism 
identification: “What”

136



Algorithm
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Results

• Example: “Degree-state” networks

138



B
a
ra

b
á
si
-
A
lb
e
rt

S
ta

te
-
b
a
se

d

Input Simulated
139



D
e
gr

e
e
-
S
ta

te
F
or

e
st

 F
ir
e

Input Simulated
140



Barabási-Albert

State-based

Degree-state

Forest Fire
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Comparison with other methods

• PyGNA produces generative models 
using detailed state-topology 
information
– Capable of generative simulation that is 
not available in statistical approaches 
(e.g., Rossi et al. 2013)

• PyGNA models extraction and 
replacement as explicit functions
– More efficient and flexible than graph-
grammars (e.g., Kurth et al. 2005) 142



What can we do?

?

?

?
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• Prediction

• Classification

• Anomaly detection



Summary

• State-topology coevolution of adaptive 
networks is a promising, unexplored area
– Theory-driven approaches

• Dynamical modeling, exhaustive rule search

• Applications to social sciences etc.

– Data-driven approaches
• Application to operational network modeling

• Automatic rule discovery from data

http://coco.binghamton.edu/NSF-CDI.html
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Additional Topic:
Analysis of Adaptive Networks
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How to analyze adaptive network 
dynamics?

• Non-trivial coupling between network 
states and topologies are not easily 
handled in a simple analytical formula

• But such couplings could be partially 
incorporated in analysis by considering 
densities of node “pairs”
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Pair approximation

• Considers densities of every pair of 
nodes with states & connectivity (in 
addition to individual state densities)

r00c = density of 

r01c = density of 

r11c = density of 

r00n = density of 

r01n = density of 

r11n = density of 

0 0

0 1

1 1
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0 0

0 1

1 1

Describes 
how these 
densities 
change over 
time



Example: Adaptive voter model

• Disconnect of a link:

• Change of an opinion:
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0 1

0 1

0 0

0 1

0 1

-1

0 1

+1

0 1 0 0

-1 +1? ?
(Any other densities affected too?)



Exercise

• Complete the number of changes in 
each pair density for the adaptive 
voter model on a random network

• Calculate how often each transition 
occurs

• Make a prediction using the pair-
approximation-based model
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Exercise

• Conduct pair approximation of the 
adaptive SIS model and study its 
dynamics

150



FYI: Moment closure

• Similar approximations are possible 
for densities of higher-order motifs

• Approximation techniques (including 
MFA, PA and higher-order ones) is 
called the “moment closure method” 
– Predicting the change of a “moment” (r00) 
would require higher-order “moments” 
(r000), but you “close” this open chain by 
assuming r000 = r00 r00 / r0 , etc. 
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