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Small-World Phenomenon
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“Bacon Number”

• BN = 1 for those who co-starred with 
Kevin Bacon in a film

• BN = 2 for those who co-starred with 
actors/actresses with BN=1
…

• Mostly BN <= 3 !!
• The largest finite BN = 8 !!
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“Erdös Number”
• EN = 1 for those who co-authored a 
paper with a Hungarian mathematician 
Paul Erdös (1913-1996)

• EN = 2 for those who
co-authored a paper with
authors with EN=1
…

• Mostly EN <= 7 !!
• The largest finite EN = 13 !!

FYI - Hiroki’s EN=4 (by Bing/Microsoft Academic Search)



3.5 degrees of separation in FB

• https://research.facebook.com/blog/three-and-a-
half-degrees-of-separation/ 5



“Small-world” phenomenon

• Most real-world networks are 
remarkably “small”

– Despite a huge number of nodes involved

– Even if connections are relatively sparse

• Why?
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Random Networks
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Classical explanation:
Erdös-Rényi random network model

• A network made of N nodes

• Each node pair is connected randomly 
and independently with probability p

• A small characteristic path length is 
realized because of randomness
– Number of nodes reachable from a single 
node within k steps increases 
exponentially with k
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Exercise

• Create and plot a few ER random 
networks using NetworkX

• Measure their properties
– Network density
– Characteristic path length
– Clustering coefficient
– Degree distribution
– etc.



Limitation of ER networks

• ER random networks have very few 
loops or local clusters if connection 
probability is small

• Real-world networks are often 
clustered with a lot of local 
connections, forming “cliques”, while 
maintaining very small characteristic 
path lengths
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ER networks with partitions:
Stochastic block models

• Generates random networks from the 
connection density matrix for blocks
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Exercise

• See the community information in the 
Karate Club network data

• Create its block model using the 
blockmodel() function

• Construct a stochastic block model 
using the connection probabilities 
obtained above (this needs coding)

• Compare the original network and the 
randomly generated one
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Small-World Networks
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Explanation (1): 
Small-world network

• D. J. Watts & S. H. Strogatz, 
Collective dynamics of ‘small-world’ 
networks, Nature 393:440-442, 1998.

• A network that is mostly locally 
connected but with a few global 
connections

• A SW network generally has a very 
small characteristic path length
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• Moving from a regular, locally 
connected graph to a random, globally 
connected graph

Experiment by Watts & Strogatz



Exercise

• Create a ring-shaped network made 
of n nodes

• Connect each node to k nearest 
neighbors

• Randomly rewire edges one-by-one

• Monitor what happens to the 
characteristic path length and the 
average clustering coefficient
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The “small-world” property
• This network is small, though still locally connected
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Why such a small world?

The existence of a 
few “far leaping” 
links significantly 
decreases the length 
of shortest paths 
for most pairs of 
nodes
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Small-world property found in real-
world networks



20

Exercise

• Create and plot several WS small-
world networks using NetworkX

• Measure their properties

• Study how the characteristic path 
length and the clustering coefficient 
of WS networks change with 
increasing rewiring probability (for the 
same number of nodes, e.g. n=100)



Degree Distribution
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Degree distribution

P(k) = Prob. (or #) of nodes with 
degree k

• Gives a rough profile of how the 
connectivity is distributed within the 
network

k P(k) = 1 (or total # of nodes)



Degree distribution of ER networks

• Degree distribution of an ER random 
network is given by a binomial 
distribution:

P(k) = N-1Ck pk (1-p)N-1-k

• With large N (with fixed Np), it 
approaches a Poisson distribution:

P(k) ~ (Np)k e-Np / k!
23



Exercise

• Obtain the degree distribution of the 
Supreme Court Citation network (after 
making it into undirected)

• Plot the distribution in a linear scale
• Plot the distribution in a log-log scale
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Exercise

• Create an arbitrary complex network 
of your choice, with at least 10,000 
nodes in it

• Plot its degree distribution
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Scale-Free Networks
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Explanation (2):
Scale-free network

• A network whose degree distribution 
obeys a power law

• More general and natural than the 
small-world network model
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Power law degree distribution

• P(k) ~ k-

Scale-free network
k

P(k)

log k

log P(k)

Linear in log-log plot
-> No characteristic scale

(Scale-free networks)

A few well-connected nodes,
a lot of poorly connected nodes
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How it appears

Random Scale-free



Complementary Cumulative 
Distribution Function (CCDF)

30

P(k)

~ k-

CCDF(k) = Σk’≥k P(k’)

~ k-(-1)
(if P(k) is a power law & >1)



Exercise

• Plot the CCDF of the degree 
distribution of the Supreme Court 
Citation network, in a log-log scale

• Compare it with the original degree 
distribution
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Degree Distributions of Real-World 
Complex Networks
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A Barabási, R Albert Science 1999;286:509-512

Actors WWW Power grid



Degree distribution of FB
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• http://www.facebook.com/note.php?note_id=1
0150388519243859

• http://arxiv.org/abs/1111.4503

P(k) CCDF
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Properties of those networks

• A small number of well-connected 
nodes (hubs) significantly reduce the 
diameter of the entire networks

• Such degree-distribution seems to be 
dynamically formed and maintained by 
quite simple, self-organizing 
mechanisms
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• Nodes are sequentially added to the 
network one by one

• When adding a new node, it is 
connected to m nodes chosen from the 
existing network

• Probability for a node to be chosen is 
proportional to its degree:

pu = deg(u) / Σv deg(v) 

Barabási-Albert scale-free network 
model (Barabási & Albert 1999)
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Exercise

• Plot degree distributions (and their 
CCDFs) of several different random 
networks described so far
– Use a large number of nodes, e.g. 
10,000

• Compare their properties
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Exercise: Obtaining asymptotic 
degree distribution of the BA model

• Obtain the power law exponent of 
Barabasi-Albert growing networks 
analytically
– Start with one node

– Repeat adding a node by connecting it to 
the network by one link, with degree-
proportional preferential attachment

– Analytically show that P(k) ~ k-, and 
find the value of its exponent 
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• Think about how the (expected value 
of) degree of the i-th node will grow 
over time

k

i • ki(t=i) = m

• ki(t) changes at the 
rate of m(ki(t)/2mt)

• Degree distribution:

P(k) ~ -di(k)/dk

Exercise: Obtaining asymptotic 
degree distribution of the BA model



Degree Correlation



Degree correlation (assortativity)

• Pearson’s correlation coefficient of 
node degrees across links

r = 

• X: degree of start node (in / out)
• Y: degree of end node (in / out)
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Cov(X, Y)
σX σY



Exercise

• Measure degree correlation 
(assortativity) for the following 
networks
– Erdos-Renyi random networks
– Watts-Strogatz small-world networks
– Barabasi-Albert scale-free networks

• Repeat measurements multiple times 
and plot histograms of assortativity
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Assortative/disassortative networks

42(from Newman, M. E. J., Phys. Rev. Lett. 89: 208701, 2002)

Social 
networks are 
assortative

Engineered / 
biological 
networks are 
disassortative
(could be just 
because of 
“structural 
cutoffs”)



Exercise

• Measure degree correlations in the 
Supreme Court Citation Network
– In-in correlation
– In-out correlation
– Out-in correlation
– Out-out correlation

• Compare the observed results with 
those of randomized networks
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