
Topological Analysis (2)

Hiroki Sayama sayama@binghamton.edu

Centralities and Coreness

Centrality measures ("B,C,D,E")

- Degree centrality
 - How many connections the node has
- Betweenness centrality
 - How many shortest paths go through the node
- Closeness centrality
 - How close the node is to other nodes
- Eigenvector centrality

 \cdot Simply, # of links attached to a node

$C_D(v) = deg(v)$

or sometimes defined as $C_D(v) = deg(v) / (N-1)$

Betweenness centrality

 Prob. for a node to be on shortest paths between two other nodes

$$C_{B}(v) = \frac{1}{(n-1)(n-2)} \sum_{s \neq v, e \neq v} \frac{\# sp_{(s,e,v)}}{\# sp_{(s,e)}}$$

- s: start node, e: end node
- $\#sp_{(s,e,v)}$: # of shortest paths from s to e that go though node v
- $\#sp_{(s,e)}$: total # of shortest paths from s to e
- Easily generalizable to "group betweenness" 5

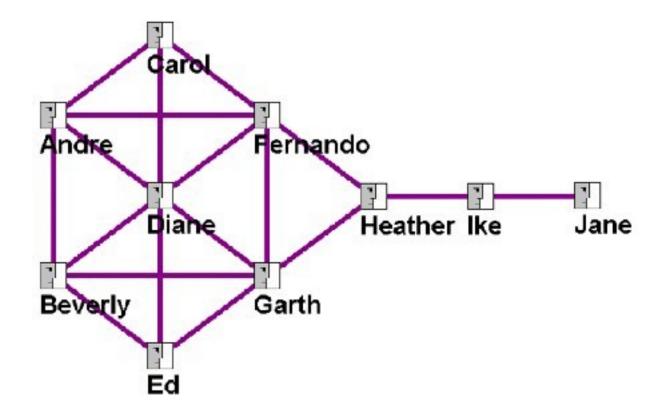
Closeness centrality

 Inverse of an average distance from a node to all the other nodes

 $C_{c}(v) = \frac{n-1}{\sum_{w\neq v} d(v,w)}$

- d(v,w): length of the shortest path from v to w
- Its inverse is called "farness"
- \cdot Sometimes " Σ " is moved out of the fraction (it works for networks that are not strongly connected)
- NetworkX calculates closeness within each connected component

Eigenvector centrality


 Eigenvector of the largest eigenvalue of the adjacency matrix of a network

> $C_{\rm E}(v) = (v-th \ element \ of \ x)$ $Ax = \lambda x$

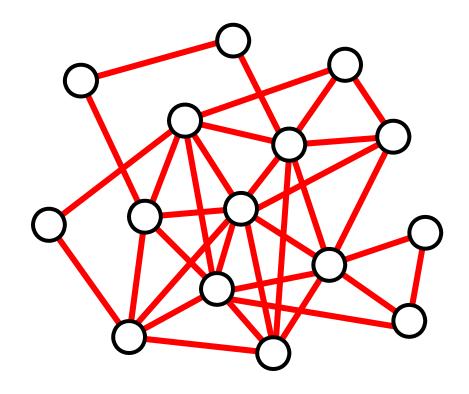
- λ : dominant eigenvalue
- \cdot x is often normalized (|x| = 1)

 Who is most central by degree, betweenness, closeness, eigenvector?

Which centrality to use?

- To find the most popular person
- To find the most efficient person to collect information from the entire organization
- To find the most powerful person to control information flow within an organization
- To find the *most important* person (?)

 Measure four different centralities for all nodes in the Karate Club network and visualize the network by coloring nodes with their centralities

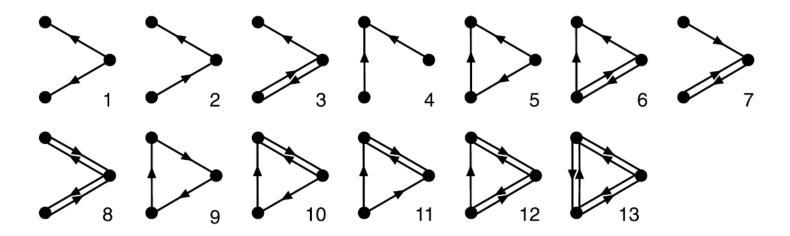

- Create a directed network of any kind and measure centralities
- \cdot Make it undirected and do the same
 - How are the centrality measures affected?

K-core

- A connected component of a network obtained by repeatedly deleting all the nodes whose degree is less than k until no more such nodes exist
 - Helps identify where the core cluster is
 - All nodes of a k-core have at least degree k
 - The largest value of k for which a kcore exists is called "degeneracy" of the network

 Find the k-core (with the largest k) of the following network

Coreness (core number)


- A node's coreness (core number) is c if it belongs to a c-core but not (c+1)-core
- Indicates how strongly the node is connected to the network
- Classifies nodes into several layers
 - Useful for visualization

- Obtain the k-core (for largest k) of the Karate Club graph and visualize it
- Calculate the coreness of its nodes and plot its histogram
- Do the same for the (undirected)
 Supreme Court citation network

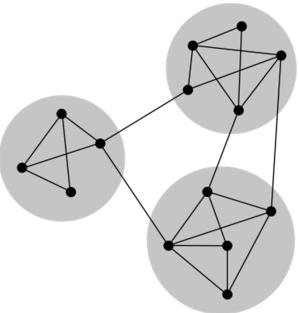
Mesoscopic Structures

Motifs

 Small patterns of connections in a network whose number of appearance is significantly higher than those in randomized networks

(from Milo et al., Science 298: 824-827, 2002)

Network	Nodes	Edges	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\rm rand} \pm { m SD}$	Z score	N _{real}	$N_{\rm rand} \pm { m SD}$	Z score
Gene regulat (transcriptio				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	$X \longrightarrow Z$	W	Bi-fan			
E. coli S. cerevisiae*	424 685	519 1,052	40 70	$\begin{array}{c} 7\pm3\\ 11\pm4 \end{array}$	10 14	203 1812	$\begin{array}{c} 47\pm12\\ 300\pm40 \end{array}$	13 41			
Neurons				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	x z	₩ W	Bi-fan	Y _N	×Ν VZ	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Three chain	¥ ¥ ₩	N V Z	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184 181	$\begin{array}{c} \textbf{Z} \\ 3120 \pm 50 \\ 1020 \pm 20 \\ 450 \pm 10 \\ 82 \pm 4 \\ 235 \pm 12 \\ 150 \pm 7 \\ 130 \pm 7 \end{array}$	2.1 7.2 NS 3.6 5.5 7.4	W 7295 1357 382 26 181 397 267	$\begin{array}{c} 2220 \pm 210 \\ 230 \pm 50 \\ 130 \pm 20 \\ 5 \pm 2 \\ 80 \pm 20 \\ 80 \pm 25 \\ 30 \pm 7 \end{array}$	25 23 12 8 5 13 32			
Electronic circuits (forward logic chips)			$ \begin{array}{c c} & X \\ & & \\ & $		Feed- forward loop	X	Y W W	Bi-fan			Bi- parallel
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	2 ± 2 10 ± 3 3 ± 2 2 ± 1 2 ± 1	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic circuits (digital fractional multipliers)			$\int_{Y \leftarrow Y}^{Y}$	- z	Three- node feedback loop	X	₩ W	Bi-fan	X = X = $Z \leq $	$\rightarrow Y$ \downarrow $\leftarrow W$	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	$\begin{array}{c} 1 \pm 1 \\ 1 \pm 1 \\ 1 \pm 1 \end{array}$	9 18 38	4 10 22	$\begin{array}{c} 1 \pm 1 \\ 1 \pm 1 \\ 1 \pm 1 \end{array}$	3.8 10 20	5 11 23	$\begin{array}{c} 1 \pm 1 \\ 1 \pm 1 \\ 1 \pm 1 \end{array}$	5 11 25
World Wide	and the second			X ↓ X ↓ X ↓ Z	Feedback with two mutual dyads		S ≥ z	Fully connected triad	\bigwedge^{x}	∧ > z	Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	$1e4 \pm 2e2$	2 5000

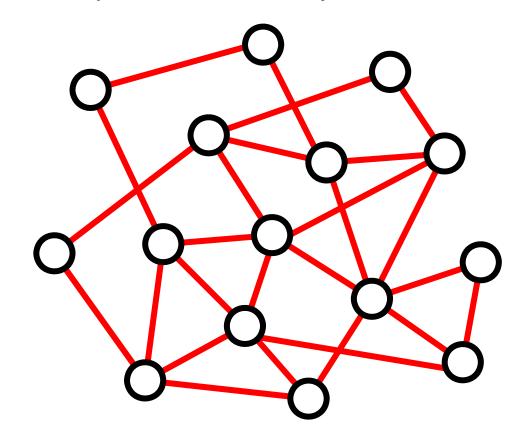

18

Unfortunately...

- Motif counting is computationally costly and still being actively studied, so NetworkX does not have built-in motif counting tools
- One should use specialized software
 - "mfinder" developed at Weizmann Institute of Science
 - "iGraph" in R / Python also has motif counting functions

Community

- A subgraph of a network within which nodes are connected to each other more densely than to the outside
 - Still defined vaguely...
 - Various detection algorithms proposed
 - \cdot K-clique percolation
 - Hierarchical clustering
 - Girvan-Newman algorithm
 - <u>Modularity maximization</u> (e.g., Louvain method)



20

K-clique percolation method

- 1. Choose a value for k (e.g., 4)
- 2. Find all k-cliques (complete subgraphs of k-nodes) in the network
- Assume that two cliques belong to the same community if they share k-1 nodes ("k-clique percolation")
- This methods detect communities that potentially overlap

 Find communities in the following network by 3-clique percolation

- Generate a random network made of 100 nodes and 250 links
- Calculate node positions using spring layout
- Visualize the original network & its kclique communities (for k = 3 or 4) using the same positions

- Find k-clique communities in the (undirected) Supreme Court Citation Network
- Start with large k (say 100) and decrease it until you find a meaningful community

Non-overlapping communities

- Other methods find ways to assign ALL the nodes to one and only one community
 - Community structure is a mapping from a node ID to a community ID
 - No community overlaps
 - No "stray" nodes

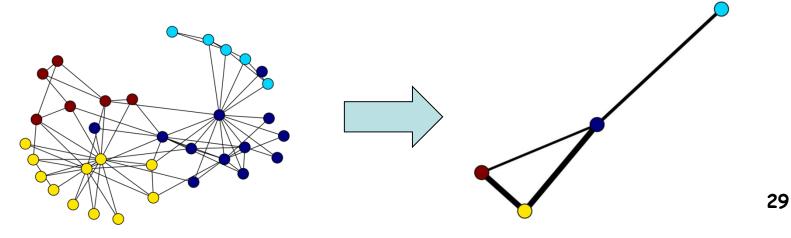
 A quantity that characterizes how good a given community structure is in dividing the network

$$Q = \frac{|E_{in}| - |E_{in-R}|}{|E|}$$

 $\cdot |E_{in}|$: # of links connecting nodes that belong to the same community

|E_{in-R}|: Estimated |E_{in}| if links were random

Community detection based on modularity

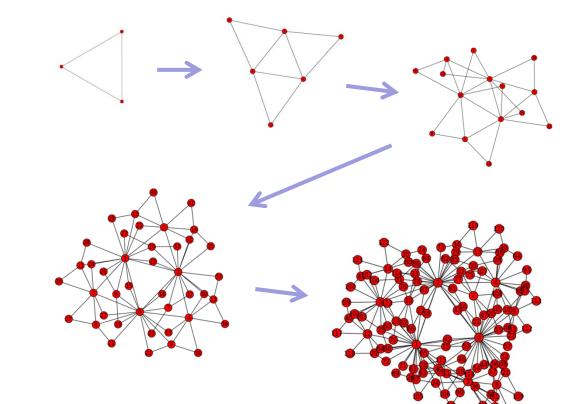

• The Louvain method

- Heuristic algorithm to construct communities that optimize modularity
 - Blondel et al. J. Stat. Mech. 2008 (10): P10008
- Python implementation by Thomas Aynaud available at:
 - <u>https://bitbucket.org/taynaud/python-</u> <u>louvain/</u>

- Detect community structure in the (undirected) Supreme Court Citation Network using the Louvain method
- Measure the modularity achieved
- How many communities are detected?
- How large is each community?

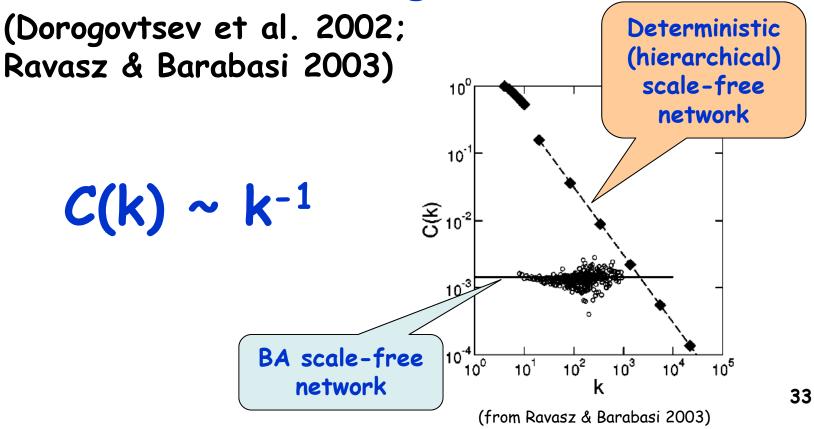
Block model

- Create a new, "coarse" network by aggregating nodes within each community into a meta-node
 - Meta-nodes contain original communities
 - Meta-edge weights show connections b/w communities

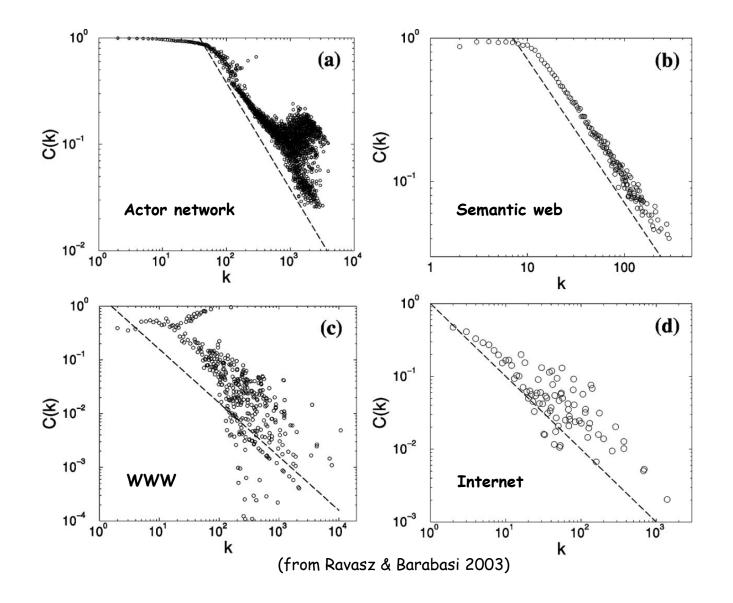

- Create a block model of some realworld network by using its communities as partitions
- Visualize the block model with edge widths varied according to connections between communities

Hierarchy

- Many real-world complex networks have many layers of modular structures forming a hierarchy
 - Community structures are not singlescale, but multiscale
 - Similar to fractals


Deterministic scale-free networks

- E.g. Dorogovtsev, Goltsev & Mendes 2002
 - Scale-free degree distribution
 - But still high clustering coefficients



Clustering coefficients and k

 Deterministic scale-free networks show another scaling law

C(k) plots of real-world networks

 Plot C(k) for several real-world network data and see if the inverse scaling law between k and C(k) appears or not