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Simulation II:
Dynamics on Networks
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Dynamics on networks

• Dynamic state changes taking place on 
a static network topology
– Regulatory dynamics on gene/protein 
networks

– Population dynamics on ecological 
networks

– Disease infection on social networks
– Information/culture propagation on 
organizational/social networks



• An agent (or a set of agents) moving 
on a network

• An agent jumps randomly to one of 
the neighbor nodes at each time step
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Simple example:
Random walk on a network



Exercise

• Simulate random walk of an agent on 
a directed random network made of 
50 nodes

• Count how many times each node was 
visited by the agent over time
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• || <= 1 for all eigenvalues

• If the original network is strongly 
connected (with some additional conditions), 
the TPM has one and only one 
eigenvalue 1 (no degeneration)

→ This is a unique dominant eigenvalue;
the probability vector will converge to 
its corresponding eigenvector

TPM and asymptotic probability 
distribution (review)



Exercise

• Construct the transition probability 
matrix of the random network used in 
the previous exercise

• Find its dominant eigenvector with  = 
1

• Compare the results with the previous 
“counting” results
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Dynamics on Networks with 
Discrete Node States
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Opinion formation (Voter model)
• A simple model of opinion formation in 
society
– Opinions = discrete states
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Three versions of voter models
• Original voter model

– A randomly selected node copies the 
opinion of one of its neighbors

• Reverse voter model
– A randomly selected node “pushes” its 
opinion into one of its neighbors

• Link-based voter model
– An opinion is copied through a randomly 
selected link
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Exercise

• Simulate the three different versions 
of the voter model (original, reverse 
and link-based) on a Barabasi-Albert 
scale-free network

• Compare the speed of opinion 
homogenization between the three 
models
– Why different?
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Epidemics (SIS/SIR model)

• Initially, a small fraction of nodes are 
infected by a disease

• If a susceptible node has an infected 
neighbor, it will be infected with 
probability pi (per infected neighbor)

• An infected node will recover and 
become susceptible (SIS) or 
recovered (SIR) with probability pr
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Exercise

• Study the effects of infection/ 
recovery probabilities on the fixation 
of a disease on a random social 
network
– In what condition will the disease remain 
within society?

– In what condition will it go away?
– Is the transition smooth, or sharp?
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Exercise

• Do the same experiments with WS 
small-world networks and BA scale-
free networks

• Compare their properties



Cascade of failure
• Load on a failing node is divided and 

distributed to its neighbors
• If the load exceeds capacity of each node, 

it causes another node failure
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Exercise

• Simulate a cascade of failure on a 
scale-free network made of 100 
nodes with random node capacities and 
load assignments

• Investigate which node has the most 
significant impact when it fails
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Hopfield network

Input Output

• A.k.a. “attractor network”
• Neurons connected in a shape of an 

undirected weighted complete graph
• Each neuron takes either 1 or -1, and 

updates its state in discrete time
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State-transition rule

si(t+1) = sign ( Σj wij sj(t) )

• wij : connection weight between neuron 
i and neuron j

• wij = wji (symmetric interaction)
• wii = 0 (no feedback to itself)
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Setting weights by “imprinting”

wij = Σk sk
i sk

j

• k : index of patterns memorized
• sk

i : state of neuron i in pattern k
– e.g.

Pattern 1

2

0

-2
Pattern 2



19

Recovering patterns

• When started with some initial pattern, the 
network “remembers” the closest pattern in 
its memory (or its reversal)
– Can be applied to content addressable memory, 

pattern recognition, etc. 

Imprinting
Initial pattern Memorized pattern

Recovery
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Exercise
• Simulate the behavior of the following 

Hopfield network

-2

2

2

2

-2

-2 2

-2

-2 -2

: +1

: -1

2, -2 : weights



Gene regulatory network
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• Each gene is 
activated or 
inhibited by 
other genes
– Forming a 
network of 
“logic gates”

– Each gene 
takes binary 
state (on/off)

(from Hasty et al., Nature Reviews Genetics 2, 268-279, 2001)



Boolean network

• Mathematical abstraction of gene 
regulatory networks
– Binary node states
– Each node determines next state using 
its own Boolean state transition function 
(referring to neighbors’ states)

• Random Boolean network:
– Network topology and state transition 
functions are both randomly generated
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Example of transition functions

• 2-input functions (222=16 possibilities)
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X Y Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

AND OR



Kauffman’s NK networks

• N: # of nodes
• K: # of inputs to each node

– Topologies and state-transition functions 
are both random

– Similar to, but not the same as, the NK 
fitness landscape (NK model) often used 
in mathematical biology and management 
sciences
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NK network’s attractors

• Total # of macro-states: 2N

• The network eventually falls into one 
of its “attractors”
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Gene 1

Gene 2 Gene 3

0 0 0 1 0 0

0 1 0 0 0 1

1 1 0

1 0 1

0 1 1

1 1 1



Exercise

• Create a Python code that generates 
the NK network’s state-transition 
diagram (i.e., a directed network 
whose nodes are the network’s macro-
states)

• Count how many attractors exist
• Study how # of attractors change 
when you vary N and K
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Dynamics on Networks with 
Continuous Node States
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Simple diffusion

• Individually:

= D Σj in Ni
(sj – si)

• Collectively (with Laplacian L):

= - D L s
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dsi
dt

ds
dt



Exercise

• Simulate a diffusion process of 
continuous node states on a Barabasi-
Albert scale-free networks with n = 
100 and m = 1
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Exercise

• Calculate the eigenvalues and 
eigenvectors of Laplacian matrices of 
several different network topologies

• Interpret their meanings in the 
context of diffusion

• Confirm your interpretation by 
numerical simulation of the diffusion 
processes
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Synchronization

• Linear coupling model:

= F(si) + Σj ( cij H(sj) )

• F(s): internal dynamics
• C = (cij): coupling matrix
• H(s): output function

– If si(t) = s(t) for all i, then the network 
is synchronized
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dsi
dt



Synchronization and Laplacian

• If coupling depends only on the 
difference of outputs across a link:

= F(si) +  Σj in Ni 
(H(sj) – H(si))

– I.e., C = -  L
– Laplacian’s “spectral gap” (first non-zero 
eigenvalue) is critical in determining 
synchronizability of the network
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dsi
dt



Exercise

• Simulate the following nonlinear 
Kuramoto model:

= wi + K/|Ni| Σj in Ni
sin(sj - si)

• wi: inherent angular velocity
• Ni: neighbors of node I

– What kind of networks synchronize most 
easily?
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dsi
dt



Exercise

• Measure and plot the following “phase 
coherence” in the simulation of the 
Kuramoto model:

r = | Σj eij / n |
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Synchronizability
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Synchronizability

• Synchronizability of a simple coupled 
dynamical network can be studied by 
conducting stability analysis

dxi = R(xi) +   ( H(xj) – H(xi) )dt j Є Ni

R(x): Local reaction term (homogeneous)
H(x): Output function
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Exercise

• Consider adding a small perturbation 
to the general solution of the 
dynamical equation (w/o interactions)

dx = R(x)   → xs(t)dt

• Conduct stability analysis by assuming:
xi(t) = xs(t) + xi(t)
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Condition for synchronizability

• Solution xs(t) is stable (i.e., the 
network is synchronized) if

 i H’(xs(t)) > R’(xs(t))

for all i and t
(you need to consider only 2 and n)

38



Exercise

• Analyze the synchronizability condition 
of the following coupled oscillator 
model:
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Mean-Field Approximation
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Mean-field approximation

• An approximation to drastically reduce the 
dimensions of the system by reformulating 
the dynamics in terms of “a state of one 
node” and “the average of all the rest (= 
mean field)”

Healthy

Sick

A node
MFA
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How MFA works 

1.Make an approximated description about how one 
node changes its state through the interaction 
with the average of all the rest (= mean field)

2.Assume that 1. uniformly applies to all the nodes, 
and analyze how the mean field itself behaves

Healthy

Sick

A node
MFA
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Mathematical description of 
MFA (difference equations)

• Original equations: 
xi

t = Fi( { xi
t-1 } )

• Approximate equations with MFA:
xi

t = F’i(xi
t-1, <x>t-1)

<x>t = i xi
t-1 / n

Each state-transition function 
takes only two arguments:

its own state and the “mean field”



Example: SIS on a random network

• Infection probability pi

• Recovery probability pr

• Edge probability pe

• Write down a difference equation 
that describes how the probability of 
infected nodes, qt (mean field), 
changes over time
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Example: SIS on a random network

• Find equilibrium states
• Study the stability of those 
equilibrium points
– When does the equilibrium q = 0 become 
unstable (i.e., epidemic occurs)?
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Example: SIS on a SF network

• Infection probability pi

• Recovery probability pr

• Degree distribution P(k)

• Write down a difference equation 
that describes how the probability of 
infected nodes with degree k, qt(k) 
(many mean fields), changes over time
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Degree-dependent infection

• Probability for a node with degree k 
to get infected from its neighbor:

Pn : neighbor degree probability distribution
If the network is nonassortative:

47



FYI: Friendship paradox

• “Your friends have more friends than 
you do, on average”
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Calculation…
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Calculation…
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With this:



Calculation…
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• For BA SF networks, this becomes:



Calculation…
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• Final stability analysis:



Conclusion
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• If pi → 0:

• Since 0 < 1 – pr < 1, the non-zero 
equilibrium state (i.e., epidemic) is 
still stable even if pi → 0 on scale-
free networks!!



Take-home lesson

• Dynamics on networks can 
be influenced significantly 
by network topology
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