
Hiroki Sayama
sayama@binghamton.edu

Classic Graph Theory
Problems

The Origin

3

Königsberg bridge problem

(Solved negatively by Euler in 1736)

Pregel River

4

Representation in a graph

• Can all the seven edges be traversed
in a single trail?

5

Theorem on the “Eulerian trail”

• An undirected connected graph has an
“Eulerian trail” (a trail that includes
every edge in a graph) if and only if
it has at most two nodes of odd
degree

This case has four
nodes of odd degree

-> No Eulerian trail

6

Theorem on the “Eulerian trail”

• The condition is obviously necessary

• Why is it sufficient?
– If all nodes have even degrees (called
Eulerian graph), the graph must have a
cyclic trail that includes every edge
(Easy to show that the longest trail must be
cyclic and include every edge)

– If there are two nodes with odd degrees
(called semi-Eulerian graph), adding a
new edge between them will reduce the
problem to the above case

Implication

• Whether there exists an Eulerian trail
in a graph can be determined by node
degrees only

• Global property of a network is
determined by local properties of
nodes

• This is a highly exceptional case;
doesn’t happen in general

7

Matching Problem

9

Matching problem (bipartite)

Does this bipartite

graph G have a

matching from V1 to

V2?

V1

V2

G

10

Exercise

• A company announced five position
openings (clerk, salesperson, programmer,

system engineer, and designer); six job
seekers applied to these positions
– Applicant A looks for a clerk position; B
for clerk or sales; C for sales,
programming or SE; D for programming
or design; and both E and F for design

• Can this company fill in all the
positions?

11

A marriage theorem

• A bipartite graph G has a perfect
matching from V1 to V2 if and only if
every subset of V1 is collectively
connected to at least as many nodes
in V2 as itself

12

Exercise

• The condition is obviously necessary

• Why is it sufficient?
(think about it yourself)

Matching problem (non-bipartite)

• Matching: Subset of edges that do
not share any nodes

13

• What is the
size of
maximal
matching?

• Is perfect
matching
possible?

Shortest Path Finding

15

Shortest path finding problem

• Given two nodes for start and goal,
determine which path is the shortest
one between these two nodes

– Applications can be found in Google Maps,
car navigation systems, train transit
search systems, etc.

(Weights may be distance, time, or fare)

16

Dijkstra’s algorithm

• E. Dijkstra (1959)

• Finds the shortest paths from a given
node to every other node in a graph

• Works with both undirected/directed,
unweighted/weighted graphs

• Known to be the best among several
shortest path finding algorithms

17

Dijkstra’s algorithm (1)

• w(e): weight of edge e

• us : start node, ug : goal node

• L(u): a label assigned to node u that
represents the tentative shortest
distance from us to u
– Initially L(u=us)=0, L(u≠us)=∞

• T: a set of nodes for which the
shortest paths are not yet determined
– Initially T={ all nodes }

18

Dijkstra’ s algorithm (2)

1. Find a node with the smallest L in T
(call it v hereafter)

2. If v=ug, return L(v) as an answer

3. Otherwise, for every edge e=<v, x>:
If x is in T and L(x) > L(v) + w(e),
then let L(x) = L(v) + w(e)

4. Remove v out of T and go back to 1

19

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

Contents of T:

{A, B, C, D, E}

0

∞

∞

∞

∞

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

20

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

∞

∞

∞

∞

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{A, B, C, D, E}

21

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

∞

10

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{A, B, C, D, E}

22

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

∞

10

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{B, C, D, E}

23

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

5

8

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{B, C, D, E}

24

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

5

8

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{B, D, E}

25

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

5

8

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{D, E}

26

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

5

7

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{D, E}

27

Example

A

B

E

C

D

4 3

3

3

4

2

2

5

10

0

3

5

7

4

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal

Contents of T:

{E}

28

Exercise

• Find the shortest path and its length in the
following graph using Dijkstra’s algorithm

w=1

w=2

w=3

Start

Goal

29

Why Dijkstra’s algorithm works (1)

• For each node in T, the label L(u) always
represents the length of the tentative
shortest path from us to the node, without
visiting any nodes in T

us

ug

0

3

3

4

5

4

5

6

6

∞

∞

∞

∞

∞

7

Solid lines
show
a subgraph
induced by T

us

0

3

3

4

5

4

5

6

6

∞

∞

∞

∞

∞

7

30

Why Dijkstra’s algorithm works (2)

• There is still some possibility for each node
in T that it may get smaller L(u) by way of
other nodes in T

6

31

Why Dijkstra’s algorithm works (3)

• However, the node with the smallest L(u) in
T doesn’t have such possibility

-> For such a node, L(u) is the final value

us

0

3

3

4

5

4

5

6

6

∞

∞

∞

∞

∞

7

32

Why Dijkstra’s algorithm works (4)

• Hence that node can be removed from T,
reducing the size of T

• Repeat this process until the goal node is
finally removed from T

us

0

3

3

4

5

4

5

6

6

∞

∞

6

7

∞

7

33

Exercise

• How to obtain the shortest path (i.e.,
sequence of edges) with the Dijkstra
algorithm, not just its length?

– Assign an additional label k(u) to each
node to keep track of “where I came
from”

– k is updated every time L is updated
– Once the shortest distance is obtained,
reconstruct the actual path by following
k(u) from the goal back to the start

34

Floyd-Warshall algorithm

• R. W. Floyd / S. Warshall (1962)

• Calculates shortest path lengths
between ALL pairs of nodes
– Works with undirected/directed,
weighted/unweighted networks

– Computational complexity: O(n3)

– Dynamic programming:
Algorithm is simple and easy!

35

• d(k)
ij: length of the shortest path

between nodes i and j in which only
nodes 1, 2, …, k are allowed to
appear on the path

• d(0)
ij: edge weight between nodes i & j

(∞ if i and j are not connected)

Floyd-Warshall algorithm (1)

36

Floyd-Warshall algorithm (2)

• Basic idea: calculate d(k)
ij using d(k-1)

ij

• Update d(k)
ij only if it helps to go

through node k

• d(k)
ij ＝ min { d(k-1)

ij , d(k-1)
ik + d(k-1)

kj }

• Repeat this for k = 1 ~ n

37

Exercise

• Calculate
shortest path
lengths using
the Floyd-
Warshall
algorithm

• Show how d(k)
ij

develops over
time

A

B

E

C

D

4 3

3

3

4

2

2

5

10

Other Route Search Problems on
Networks

39

Chinese Postman Problem (CPP)

(Originally proposed by Kwan Mei-Ko in 1962)

Departing from a central post office
in a city, a postman has to go through
all the streets in the city, delivering
mail to streetside houses, and then
come back to the post office

Tell him the most efficient route to
go through all the streets in the city

40

Chinese Postman Problem (CPP)

A problem to find the
shortest cyclic walk
that includes every
edge in a graph

– Relatively easy to find for Eulerian or
semi-Eulerian graphs

– Can be solved in general by finding which
edges you should travel twice

41

Exercise

• Find the most efficient cyclic walk for a
postman working in a city (graph below)
– Assume every edge has length 1

42

Traveling Salesman Problem (TSP)

• A salesman, who has just arrived at a
central station of a city, has to visit
all the houses in the city to sell stuff
and then come back to the station

• He shouldn’t visit the same house
more than once

Tell him the most efficient route to
visit every house in the city just once

43

Traveling Salesman Problem (TSP)

A problem to find the
shortest cyclic path
that includes every
node in a graph

Very hard to solve in general

?

44

NP-hard problems

• Obtaining optimal solutions for TSP is
known to be in the class called “NP-
hard problems”

• Intuitively: Problems whose general
solutions require computational
complexity that is believed not to be
bound by a polynomial of the problem
size n (no rigorous proof given yet)

Minimum Spanning Tree

Minimum spanning tree

• A subgraph of a connected network
that is a tree (= graph with no cycles)
and connects all the nodes with the
smallest sum of link weights

– Works with weighted undirected graphs

– Useful for finding and visualizing the
“backbone” of a complex network

– “Maximum spanning tree” could also be
obtained by inverting link weights

46

Kruskal’s algorithm

• T: set of trees (initially just a set of
nodes)

• L: set of links

1. Take a link with minimum weight from L

2. If the selected link connects two trees
in T, connect them in T

– Otherwise discard it

3. Repeat 1 & 2 until you get MST
47

Exercise

• Find the minimum spanning tree of the
following network

48

w=1

w=2

w=3

Exercise

• Generate a random network with n =
100, p = 0.05

• Assign random weights to each link

• Visualize the original network & its
minimum spanning tree using the same
node positions

49

Max-Flow Min-Cut Theorem

51

“Thickness” of connection between
nodes in unweighted graphs

• Edge-disjoint path

• Disconnecting set

• Menger’s theorem

52

Edge-disjoint paths and disconnecting sets

• Think about multiple paths that
connect between nodes v and w

• If they have no common edges, they
are called edge-disjoint paths

• If such paths always have to go
through one of the edges in a
selected set, then the set is called
vw-disconnecting set

53

Exercise

• Give some examples of edge-disjoint
paths between v and w and vw-
disconnecting sets in the graph below

v w

54

Menger’s theorem (edge version)

• The maximal # of edge-disjoint paths
between nodes v and w in a connected
graph equals the minimum # of edges
in the smallest vw-disconnecting set
– Holds for both undirected and directed
graphs

• Intuitive explanation:
The “thickness” of connection between
two nodes is determined by the
capacity of the “narrowest” part

55

Exercise

• Confirm Menger’ s theorem by finding edge-
disjoint paths between v and w and the
smallest vw-disjointing set in the graph
below

v w

56

“Thickness” of connection between
nodes in weighted directed graphs

• Flow

• Cut

• Maximum-flow minimum-cut theorem

57

Flow

• A flow from source v to sink w in a
weighted directed graph is defined by
the assignment of local current to
each edge, f(e), that satisfy:

f(e) ≤ w(e)
Local current must not exceed the weight
(capacity) on every edge

Σx f(<u, x>) = Σy f(<y, u>) for u≠v, w
Incoming volume equals outgoing volume for all
nodes except for source and sink

58

Exercise

• Make a sample flow with volume 3 from v
to w on the graph below
– Each number represents edge capacity

v w

3

4

2 2 2 2

323

1 2

3 2

2

1

59

Maximum flow

• A volume of a flow is defined by the
total outgoing volume at source v (=
total incoming volume at sink w)

• A maximum flow is a flow that
conveys the maximum volume from v
to w on a graph

60

Cut, minimum cut

• A set of edges C is called a cut if
every path between v and w has to go
through one of the edges in C (the same
notion as vw-disconnecting set)

• A capacity of a cut is the sum total
of the weights of edges in the cut
– Any flow b/w v and w can’t exceed the
capacity of any of their cuts

• A minimum cut is a cut that has
minimum capacity

61

Maximum-flow minimum-cut theorem

• In any graph, the maximum
flow between nodes v and w is
exactly the capacity of the
minimum cut between v and w

(Assuming each weight as 1 will
reduce this theorem to Menger’s one)

62

Exercise

• Confirm the maximum-flow minimum-
cut theorem on the graph below

v w

3

4

2 2 2 2

323

1 2

3 2

2

1

63

Intuitive proof (1)

• Given a flow on a graph, try to pick
up every unsaturated edge that does
not use its capacity to the full extent
[i.e. f(e) < w(e)]

• If the flow is maximum, then you
cannot reach sink w from source v by
using such unsaturated edges only
– If you can, that means the flow is not maximum

yet

64

Intuitive proof (2)

• Call the set of all nodes that can be
reached by using only unsaturated
edges S

• Call the set of all other nodes S’

• Since v is in S and w is in S’, the set
of edges bridging from S to S’ forms
a cut between v and w

65

Intuitive proof (3)

• All the edges from S to S’ must be
saturated
– By the definition of S

• All the edges from S’ back to S must
be with 0 flow
– Otherwise you could obtain a yet greater
flow by canceling such a cyclic flow
occurring in the middle of the graph

66

Intuitive proof (4)

• All the edges from S to S’ must be saturated

• All the edges from S’ to S must be with 0 flow

• I.e., the total volume of the flow
from S to S’ is all originated at
source v, and is absorbed in sink w (=
the total flow in the entire graph)

• This flow is exactly the sum total of
the weights of all the edges from S
to S’ (= capacity of the cut)

67

Intuitive proof (5)

• Maximum flow = a capacity of a cut

• A minimum cut would have a capacity
equal to or less than that of this cut;
however, it must not be less than any
flow by definition

→ This cut must be a minimum cut

→ It always equals the maximum flow

68

Exercise

• Create some non-trivial weighted
network using NetworkX

• Choose one node arbitrarily

• Assess the strength of connection
from the node to each of the rest of
nodes by (1) distance and (2) max
flow, and paint them using the results

