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The Origin
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Königsberg bridge problem

(Solved negatively by Euler in 1736)

Pregel River
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Representation in a graph

• Can all the seven edges be traversed 
in a single trail?
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Theorem on the “Eulerian trail”

• An undirected connected graph has an 
“Eulerian trail” (a trail that includes 
every edge in a graph) if and only if 
it has at most two nodes of odd 
degree

This case has four 
nodes of odd degree

-> No Eulerian trail
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Theorem on the “Eulerian trail”

• The condition is obviously necessary

• Why is it sufficient?
– If all nodes have even degrees (called 
Eulerian graph), the graph must have a 
cyclic trail that includes every edge
(Easy to show that the longest trail must be 
cyclic and include every edge)

– If there are two nodes with odd degrees 
(called semi-Eulerian graph), adding a 
new edge between them will reduce the 
problem to the above case



Implication

• Whether there exists an Eulerian trail 
in a graph can be determined by node 
degrees only

• Global property of a network is 
determined by local properties of 
nodes

• This is a highly exceptional case; 
doesn’t happen in general
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Matching Problem
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Matching problem (bipartite)

Does this bipartite 

graph G have a 

matching from V1 to 

V2?

V1

V2

G
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Exercise

• A company announced five position 
openings (clerk, salesperson, programmer, 

system engineer, and designer); six job 
seekers applied to these positions
– Applicant A looks for a clerk position; B 
for clerk or sales; C for sales, 
programming or SE; D for programming 
or design; and both E and F for design

• Can this company fill in all the 
positions?
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A marriage theorem

• A bipartite graph G has a perfect 
matching from V1 to V2 if and only if 
every subset of V1 is collectively 
connected to at least as many nodes 
in V2 as itself
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Exercise

• The condition is obviously necessary

• Why is it sufficient?
(think about it yourself)



Matching problem (non-bipartite)

• Matching: Subset of edges that do 
not share any nodes
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• What is the 
size of 
maximal 
matching?

• Is perfect 
matching
possible?



Shortest Path Finding
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Shortest path finding problem

• Given two nodes for start and goal, 
determine which path is the shortest 
one between these two nodes

– Applications can be found in Google Maps, 
car navigation systems, train transit 
search systems, etc.

(Weights may be distance, time, or fare)
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Dijkstra’s algorithm

• E. Dijkstra (1959)

• Finds the shortest paths from a given 
node to every other node in a graph

• Works with both undirected/directed, 
unweighted/weighted graphs

• Known to be the best among several 
shortest path finding algorithms
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Dijkstra’s algorithm (1)

• w(e): weight of edge e

• us : start node, ug : goal node

• L(u): a label assigned to node u that 
represents the tentative shortest 
distance from us to u
– Initially L(u=us)=0, L(u≠us)=∞

• T: a set of nodes for which the 
shortest paths are not yet determined 
– Initially T={ all nodes }
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Dijkstra’ s algorithm (2)

1. Find a node with the smallest L in T 
(call it v hereafter)

2. If v=ug, return L(v) as an answer

3. Otherwise, for every edge e=<v, x>:    
If x is in T and L(x) > L(v) + w(e), 
then let L(x) = L(v) + w(e)

4. Remove v out of T and go back to 1
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Example

A

B

E

C

D

4 3

3

3

4
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Contents of T:

{A, B, C, D, E}

0

∞

∞

∞

∞

Edges:

A -> B, C, E

B -> A, C, D, E

C -> A, B, D, E

D -> B, C, E

E -> A, B, C, D

Start

Goal
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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A -> B, C, E
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Contents of T:

{E}
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Exercise

• Find the shortest path and its length in the 
following graph using Dijkstra’s algorithm

w=1

w=2

w=3

Start

Goal
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Why Dijkstra’s algorithm works (1)

• For each node in T, the label L(u) always 
represents the length of the tentative 
shortest path from us to the node, without 
visiting any nodes in T

us

ug

0

3

3

4

5

4

5

6

6

∞

∞

∞

∞

∞

7

Solid lines 
show
a subgraph 
induced by T



us

0

3

3

4
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4

5

6

6

∞

∞

∞

∞

∞

7
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Why Dijkstra’s algorithm works (2)

• There is still some possibility for each node 
in T that it may get smaller L(u) by way of 
other nodes in T

6



31

Why Dijkstra’s algorithm works (3)

• However, the node with the smallest L(u) in 
T doesn’t have such possibility

-> For such a node, L(u) is the final value

us

0

3

3

4

5

4

5

6

6

∞

∞

∞

∞

∞

7
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Why Dijkstra’s algorithm works (4)

• Hence that node can be removed from T, 
reducing the size of T

• Repeat this process until the goal node is 
finally removed from T

us

0

3

3

4

5

4

5

6

6

∞

∞

6

7

∞

7
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Exercise

• How to obtain the shortest path (i.e., 
sequence of edges) with the Dijkstra 
algorithm, not just its length?

– Assign an additional label k(u) to each 
node to keep track of “where I came 
from”

– k is updated every time L is updated
– Once the shortest distance is obtained, 
reconstruct the actual path by following 
k(u) from the goal back to the start
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Floyd-Warshall algorithm

• R. W. Floyd / S. Warshall (1962)

• Calculates shortest path lengths 
between ALL pairs of nodes
– Works with undirected/directed, 
weighted/unweighted networks

– Computational complexity: O(n3)

– Dynamic programming:
Algorithm is simple and easy!
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• d(k)
ij: length of the shortest path 

between nodes i and j in which only 
nodes 1, 2, …, k are allowed to 
appear on the path

• d(0)
ij: edge weight between nodes i & j 

(∞ if i and j are not connected)

Floyd-Warshall algorithm (1)
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Floyd-Warshall algorithm (2)

• Basic idea: calculate d(k)
ij using d(k-1)

ij

• Update d(k)
ij only if it helps to go 

through node k

• d(k)
ij ＝ min { d(k-1)

ij , d(k-1)
ik + d(k-1)

kj }

• Repeat this for k = 1 ~ n
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Exercise

• Calculate 
shortest path 
lengths using 
the Floyd-
Warshall 
algorithm

• Show how d(k)
ij

develops over 
time

A

B

E

C

D

4 3

3

3

4

2

2

5

10



Other Route Search Problems on 
Networks
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Chinese Postman Problem (CPP)

(Originally proposed by Kwan Mei-Ko in 1962)

Departing from a central post office 
in a city, a postman has to go through 
all the streets in the city, delivering 
mail to streetside houses, and then 
come back to the post office

Tell him the most efficient route to 
go through all the streets in the city
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Chinese Postman Problem (CPP)

A problem to find the 
shortest cyclic walk 
that includes every 
edge in a graph

– Relatively easy to find for Eulerian or 
semi-Eulerian graphs

– Can be solved in general by finding which 
edges you should travel twice
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Exercise

• Find the most efficient cyclic walk for a 
postman working in a city (graph below)
– Assume every edge has length 1
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Traveling Salesman Problem (TSP)

• A salesman, who has just arrived at a 
central station of a city, has to visit 
all the houses in the city to sell stuff 
and then come back to the station

• He shouldn’t visit the same house 
more than once

Tell him the most efficient route to 
visit every house in the city just once
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Traveling Salesman Problem (TSP)

A problem to find the 
shortest cyclic path
that includes every 
node in a graph

Very hard to solve in general

?
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NP-hard problems

• Obtaining optimal solutions for TSP is 
known to be in the class called “NP-
hard problems”

• Intuitively: Problems whose general 
solutions require computational 
complexity that is believed not to be 
bound by a polynomial of the problem 
size n (no rigorous proof given yet)



Minimum Spanning Tree



Minimum spanning tree

• A subgraph of a connected network 
that is a tree (= graph with no cycles) 
and connects all the nodes with the 
smallest sum of link weights

– Works with weighted undirected graphs

– Useful for finding and visualizing the 
“backbone” of a complex network

– “Maximum spanning tree” could also be 
obtained by inverting link weights
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Kruskal’s algorithm

• T: set of trees (initially just a set of 
nodes)

• L: set of links

1. Take a link with minimum weight from L

2. If the selected link connects two trees 
in T, connect them in T

– Otherwise discard it

3. Repeat 1 & 2 until you get MST
47



Exercise

• Find the minimum spanning tree of the 
following network

48

w=1

w=2

w=3



Exercise

• Generate a random network with n = 
100, p = 0.05

• Assign random weights to each link

• Visualize the original network & its 
minimum spanning tree using the same 
node positions

49



Max-Flow Min-Cut Theorem



51

“Thickness” of connection between 
nodes in unweighted graphs

• Edge-disjoint path

• Disconnecting set

• Menger’s theorem
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Edge-disjoint paths and disconnecting sets

• Think about multiple paths that 
connect between nodes v and w

• If they have no common edges, they 
are called edge-disjoint paths

• If such paths always have to go 
through one of the edges in a 
selected set, then the set is called 
vw-disconnecting set
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Exercise

• Give some examples of edge-disjoint 
paths between v and w and vw-
disconnecting sets in the graph below

v w
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Menger’s theorem (edge version)

• The maximal # of edge-disjoint paths 
between nodes v and w in a connected 
graph equals the minimum # of edges 
in the smallest vw-disconnecting set
– Holds for both undirected and directed 
graphs

• Intuitive explanation:
The “thickness” of connection between 
two nodes is determined by the 
capacity of the “narrowest” part
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Exercise

• Confirm Menger’ s theorem by finding edge-
disjoint paths between v and w and the 
smallest vw-disjointing set in the graph 
below

v w
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“Thickness” of connection between 
nodes in weighted directed graphs

• Flow

• Cut

• Maximum-flow minimum-cut theorem
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Flow

• A flow from source v to sink w in a 
weighted directed graph is defined by 
the assignment of local current to 
each edge, f(e), that satisfy:

f(e) ≤ w(e)
Local current must not exceed the weight 
(capacity) on every edge

Σx f(<u, x>) = Σy f(<y, u>) for u≠v, w
Incoming volume equals outgoing volume for all 
nodes except for source and sink
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Exercise

• Make a sample flow with volume 3 from v 
to w on the graph below
– Each number represents edge capacity

v w

3

4

2 2 2 2

323

1 2

3 2

2

1
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Maximum flow

• A volume of a flow is defined by the 
total outgoing volume at source v (= 
total incoming volume at sink w)

• A maximum flow is a flow that 
conveys the maximum volume from v 
to w on a graph
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Cut, minimum cut

• A set of edges C is called a cut if 
every path between v and w has to go 
through one of the edges in C (the same 
notion as vw-disconnecting set)

• A capacity of a cut is the sum total 
of the weights of edges in the cut
– Any flow b/w v and w can’t exceed the 
capacity of any of their cuts

• A minimum cut is a cut that has 
minimum capacity
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Maximum-flow minimum-cut theorem

• In any graph, the maximum 
flow between nodes v and w is 
exactly the capacity of the 
minimum cut between v and w

(Assuming each weight as 1 will 
reduce this theorem to Menger’s one)
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Exercise

• Confirm the maximum-flow minimum-
cut theorem on the graph below

v w

3

4

2 2 2 2

323

1 2

3 2

2

1
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Intuitive proof (1)

• Given a flow on a graph, try to pick 
up every unsaturated edge that does 
not use its capacity to the full extent 
[i.e. f(e) < w(e)]

• If the flow is maximum, then you 
cannot reach sink w from source v by 
using such unsaturated edges only
– If you can, that means the flow is not maximum 

yet
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Intuitive proof (2)

• Call the set of all nodes that can be 
reached by using only unsaturated 
edges S

• Call the set of all other nodes S’

• Since v is in S and w is in S’, the set 
of edges bridging from S to S’ forms 
a cut between v and w
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Intuitive proof (3)

• All the edges from S to S’ must be 
saturated
– By the definition of S

• All the edges from S’ back to S must 
be with 0 flow
– Otherwise you could obtain a yet greater 
flow by canceling such a cyclic flow 
occurring in the middle of the graph



66

Intuitive proof (4)

• All the edges from S to S’ must be saturated

• All the edges from S’ to S must be with 0 flow

• I.e., the total volume of the flow 
from S to S’ is all originated at 
source v, and is absorbed in sink w (= 
the total flow in the entire graph)

• This flow is exactly the sum total of 
the weights of all the edges from S 
to S’ (= capacity of the cut)
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Intuitive proof (5)

• Maximum flow = a capacity of a cut

• A minimum cut would have a capacity 
equal to or less than that of this cut; 
however, it must not be less than any 
flow by definition

→ This cut must be a minimum cut

→ It always equals the maximum flow
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Exercise

• Create some non-trivial weighted 
network using NetworkX

• Choose one node arbitrarily

• Assess the strength of connection 
from the node to each of the rest of 
nodes by (1) distance and (2) max 
flow, and paint them using the results


