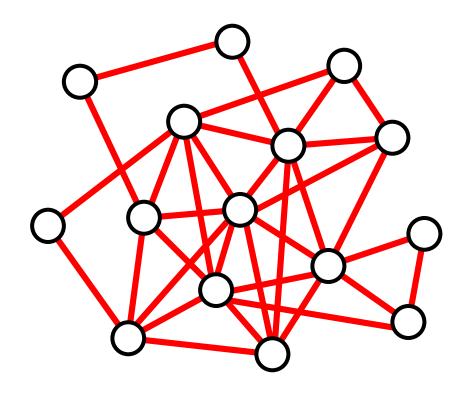

Topological Analysis (2)

Hiroki Sayama sayama@binghamton.edu

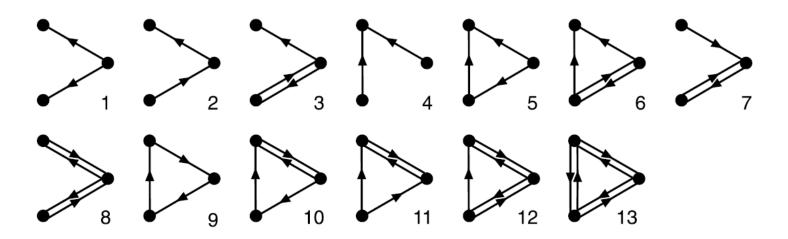

Mesoscopic Structures

- A connected component of a network obtained by repeatedly deleting all the nodes whose degree is less than k until no more such nodes exist
 - Helps identify where the core cluster is
 - All nodes of a k-core have at least degree k
 - The largest value of k for which a kcore exists is called "degeneracy" of the network

Exercise

 Find the k-core (with the largest k) of the following network

Coreness (core number)


- A node's coreness (core number) is c if it belongs to a c-core but not (c+1)-core
- Indicates how strongly the node is connected to the network
- Classifies nodes into several layers
 - Useful for visualization

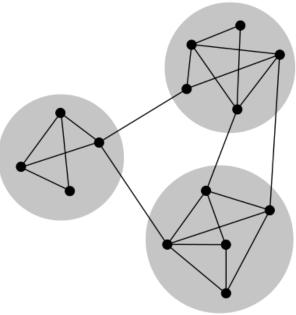
Exercise

- Obtain the k-core (for largest k) of the Karate Club graph and visualize it
- Calculate the coreness of its nodes and plot its histogram
- Do the same for the (undirected)
 Supreme Court citation network

 Small patterns of connections in a network whose number of appearance is significantly higher than those in randomized networks

(from Milo et al., Science 298: 824-827, 2002)

Network	Nodes	Edges	N _{real}	$N_{\rm rand} \pm { m SD}$	Z score	N _{real}	$N_{\rm rand} \pm { m SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulat (transcriptio				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X	Y W	Bi-fan			
E. coli _S. cerevisiae*	424 685	519 1,052	40 70	$\begin{array}{c} 7\pm3\\ 11\pm4 \end{array}$	10 14	203 1812	$\begin{array}{c} 47\pm12\\ 300\pm40 \end{array}$	13 41			
Neurons				$\begin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \\ \mathbf{V} \\ \mathbf{Z} \end{array}$	Feed- forward loop	X	Y W	Bi-fan	V Y V	$\mathbb{X}^{\mathbb{Z}}$	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				$egin{array}{c} \mathbf{X} \\ \mathbf{\Psi} \\ \mathbf{Y} \\ \mathbf{\Psi} \end{array}$	Three chain	V Y N	$\mathbb{V}_{\mathbb{Z}}$	Bi- parallel			
Little Rock Ythan St. Martin Chesapeake Coachella Skipwith B. Brook	92 83 42 31 29 25 25	984 391 205 67 243 189 104	3219 1182 469 80 279 184 181		2.1 7.2 NS 3.6 5.5 7.4	W 7295 1357 382 26 181 397 267	$2220 \pm 210 230 \pm 50 130 \pm 20 5 \pm 2 80 \pm 20 80 \pm 25 30 \pm 7$	25 23 12 8 5 13 32			
Electronic circuits (forward logic chips)			$\begin{bmatrix} X & I \\ \Psi & f \end{bmatrix}$		Feed- forward loop		Y W W	Bi-fan		N K	Bi- parallel
s15850 s38584 s38417 s9234 s13207	10,383 20,717 23,843 5,844 8,651	14,240 34,204 33,661 8,197 11,831	424 413 612 211 403	$2 \pm 2 \\ 10 \pm 3 \\ 3 \pm 2 \\ 2 \pm 1 \\ 2 \pm 1$	285 120 400 140 225	1040 1739 2404 754 4445	1 ± 1 6 ± 2 1 ± 1 1 ± 1 1 ± 1	1200 800 2550 1050 4950	480 711 531 209 264	2 ± 1 9 ± 2 2 ± 2 1 ± 1 2 ± 1	335 320 340 200 200
Electronic ci (digital fract		pliers)	$ \begin{array}{c} X \\ \uparrow \\ Y \leftarrow \end{array} $	- z	Three- node feedback loop	X	Y W	Bi-fan	X^{-}	$\rightarrow Y$ \downarrow W	Four- node feedback loop
s208 s420 s838‡	122 252 512	189 399 819	10 20 40	1 ± 1 1 ± 1 1 ± 1	9 18 38	4 10 22	1 ± 1 1 ± 1 1 ± 1	3.8 10 20	5 11 23	$\begin{array}{c} 1 \pm 1 \\ 1 \pm 1 \\ 1 \pm 1 \end{array}$	5 11 25
World Wide	Web			X V X Z	Feedback with two mutual dyads	$\begin{array}{c} X \\ Z \\ Y \leftarrow \end{array}$	S ≥ z	Fully connected triad	$\begin{array}{c} X \\ X \\ Y \\ \end{array}$	∕ ≥ z	Uplinked mutual dyad
nd.edu§	325,729	1.46e6	1.1e5	$2e3 \pm 1e2$	800	6.8e6	5e4±4e2	15,000	1.2e6	$1e4 \pm 2e2$	2 5000

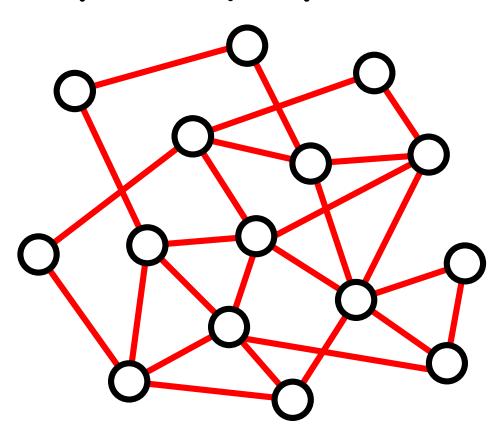

8

Unfortunately...

- Motif counting is computationally costly and still being actively studied, so NetworkX does not have built-in motif counting tools
- You may use specialized software
 mfinder, igraph
- You can write a code yourself
 - Use itertools.combinations + subgraph + nx.is_isomorphic

Community

- A subgraph of a network within which nodes are connected to each other more densely than to the outside
 - Still defined vaguely...
 - Various detection algorithms proposed
 - \cdot K-clique percolation
 - Hierarchical clustering
 - Girvan-Newman algorithm
 - <u>Modularity maximization</u> (e.g., Louvain method)



K-clique percolation method

- 1. Choose a value for k (e.g., 4)
- 2. Find all k-cliques (complete subgraphs of k-nodes) in the network
- 3. Assume that two cliques belong to the same community if they share k 1 nodes ("k-clique percolation")
- This methods detect communities that potentially overlap

 Find communities in the following network by 3-clique percolation

- Generate a random network made of 100 nodes and 250 links
- Calculate node positions using spring layout
- Visualize the original network & its kclique communities (for k = 3 or 4) using the same positions

- Find k-clique communities in the (undirected) Supreme Court Citation Network
- Start with large k (say 100) and decrease it until you find a meaningful community

Non-overlapping communities

- Other methods find ways to assign ALL the nodes to one and only one community
 - Community structure is a mapping from a node ID to a community ID
 - No community overlaps
 - No "stray" nodes

Modularity

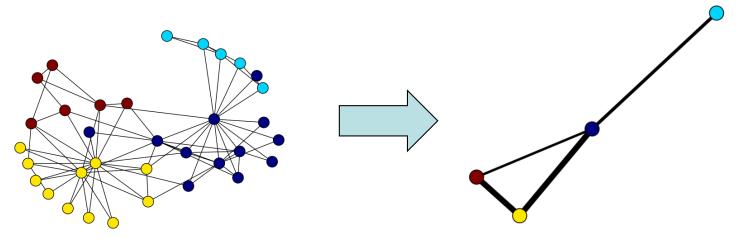
 A quantity that characterizes how good a given community structure is in dividing the network

$$Q = \frac{|E_{in}| - |E_{in-R}|}{|E|}$$

- $\cdot \; |\mathsf{E}_{\mathsf{in}}| \colon \texttt{\#} \; \mathsf{of} \; \mathsf{links} \; \mathsf{connecting} \; \mathsf{nodes} \; \mathsf{that} \; \mathsf{belong} \; \mathsf{to} \; \mathsf{the} \; \mathsf{same} \; \mathsf{community}$
- |E_{in-R}|: Estimated |E_{in}| if links were random

Community detection based on modularity

• The Louvain method

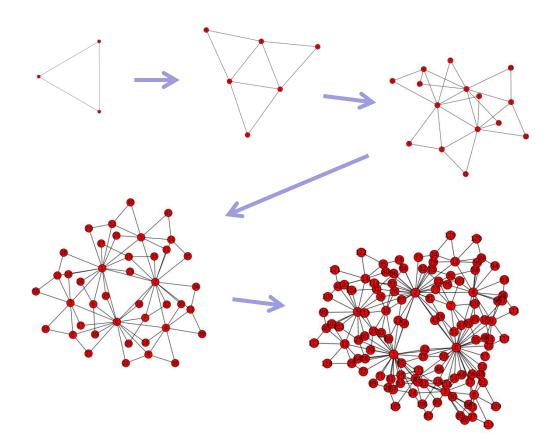

- Heuristic algorithm to construct communities that optimize modularity
 - Blondel et al. J. Stat. Mech. 2008 (10): P10008
- Python implementation by Thomas Aynaud available at:
 - <u>https://bitbucket.org/taynaud/python-</u> <u>louvain/</u>

- Detect community structure in the (undirected) Supreme Court Citation Network using the Louvain method
- Measure the modularity achieved
- How many communities are detected?
- How large is each community?

Block model (quotient graph)

- Create a new, "coarse" network by aggregating nodes within each community into a meta-node
 - Meta-nodes contain original communities
 - Meta-edge weights show connections b/w communities

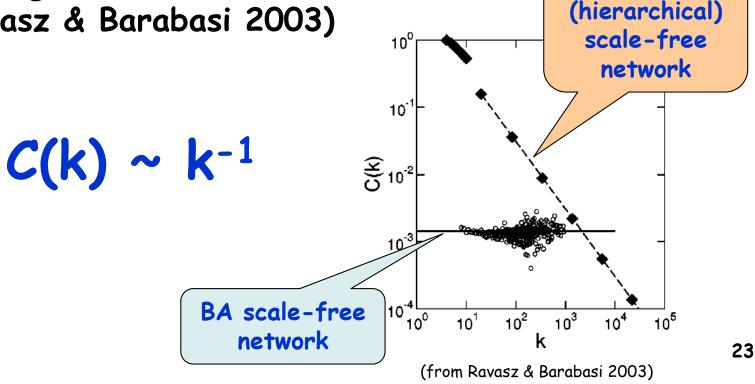
19


- Create a block model of some realworld network by using its communities as partitions
- Visualize the block model with edge widths varied according to connections between communities

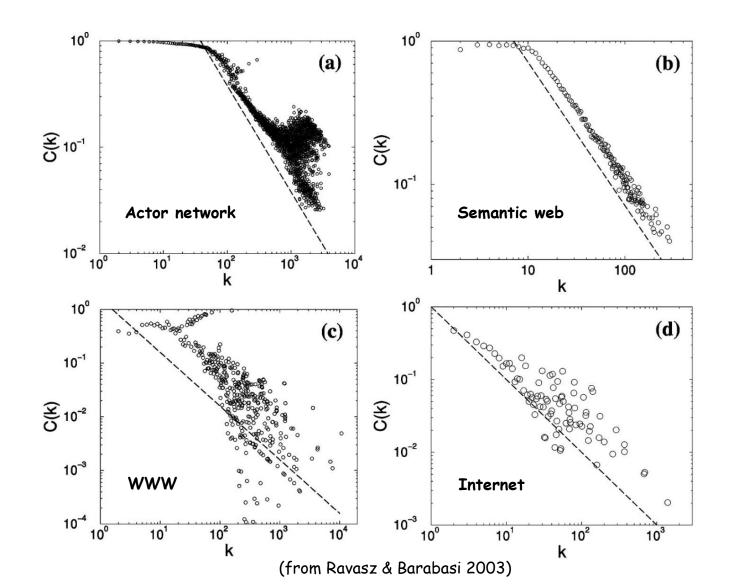
Hierarchy

- Many real-world complex networks have many layers of modular structures forming a hierarchy
 - Community structures are not singlescale, but multiscale
 - Similar to fractals

Deterministic scale-free networks


- E.g. Dorogovtsev, Goltsev & Mendes 2002
 - Scale-free degree distribution
 - But still high clustering coefficients

Clustering coefficients and k


 Deterministic scale-free networks show another scaling law

(Dorogovtsev et al. 2002; Ravasz & Barabasi 2003)

Deterministic

C(k) plots of real-world networks

24

 Plot C(k) for several real-world network data and see if the inverse scaling law between k and C(k) appears or not