Algebraic Representation of Networks

$$
\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Hiroki Sayama
sayama@binghamton.edu

Describing networks with matrices (1)

- Adjacency matrix

A matrix with rows and columns labeled by nodes, where $a_{i j}$ represents the number of edges between node i and node j
(must be symmetric for undirected graph)

- Incidence matrix (not discussed much) A matrix with rows labeled by nodes and columns labeled by edges, where $a_{i j}$ indicates whether edge j is connected to node i (1) or not (0)

Describing networks with matrices (2)

- Transition probability matrix

A matrix with rows and columns labeled by states (nodes), where $a_{i j}$ represents the probability of transition from state (node) i to state (node) j

- Laplacian matrix

A matrix with rows and columns labeled by nodes, where $a_{i j}$ represents node degree if $i=j$, or is -1 if node i and node j are connected

Write adjacency and incidence Exercise matrices of the (multi-)graph below

Exercise

- Write an adjacency matrix of the (multi-)graph below

Exercise

- Think about which node would be most suitable to be a source or a sink in a network represented by the adjacency matrix on the right
- Find the maximal flow of this network

Arithmetic Operations Applied to Adjacency Matrices

Sum and difference of adjacency matrices

- One can calculate a sum and a difference of adjacency matrices if the two graphs have the same number of nodes.

Adjacency matrix of graph A

Adjacency matrix of graph B

Sum of the two adjacency matrices

Exercise

- Calculate the sum of and the difference between the adjacency matrices of the following two graphs, and draw the actual shape of the resultant graphs

Product of adjacency matrices

- Similarly, one can calculate a product of two adjacency matrices (multiplication is not commutative)

Adjacency matrix Adjacency matrix of graph A of graph B

Product of the two adjacent matrices (1)

Adjacency matrix Adjacency matrix of graph B of graph A

not equal in general

Product of the two adjacent matrices (2)

Exercise

- Calculate two different products of the adjacency matrices of the following two graphs, and draw the actual shape of the results (Note: such multiplication may create directed graphs)
- Then think about what the product means

Answer

- Product $X Y$ indicates a directed graph that maps each node to a set of possible destinations that may be reached by a two-step move, first following Y and then X

Power of Adjacency Matrices

What does a power of an adjacency matrix mean?

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

$A^{n} \times ?$

$$
\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)
$$

Try to calculate $A x$, $A^{2} x, A^{3} x$, etc.

What does a power of an adjacency matrix mean?

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

This formula gives a set of nodes that can be reached in n steps from node u_{2} (and the \# of such walks)

What does a power of an adjacency matrix mean?

$A^{n} I=A^{n}$

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
A=\left(\begin{array}{llll}
0 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 \\
2 & 0 & 0 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Arranging all the results starting from every node gives a power of adjacency matrix A

A theorem on the power of adjacency matrix

- In adjacency matrix A raised to the power of $n,\left(A^{n}\right)_{i j}$ gives the number of different walks of length n that starts at node j and ends at node i
(This applies to both undirected and directed graphs; proof can be easily obtained by using mathematical induction with n)

Exercise

- Calculate how many walks of length two exist between u_{1} and every other node in the graph below

Exercise

- Using the power of an adjacency matrix, count the number of triangles included in:
(a) A complete graph made of 20 nodes
(b) An Erdos-Renyi random network made of 1000 nodes with connection probability 0.01

Determining graph connectivity

- A^{n} gives the number of different walks of length n between every pair of nodes
- $C_{n}=\Sigma_{k=1 \sim n} A^{k}$ gives the number of different walks of length n or shorter between every pair of nodes

Determining graph connectivity

- $C_{n}=\Sigma_{k=1 \sim n} A^{k}$ gives the number of different walks of length n or shorter between every pair of nodes
- In $C_{(\# \text { of nodes - 1), }}$ every possible path in that graph should be counted
- Because a path must not visit the same node more than once

Determining graph connectivity

- $C_{(\# \text { of nodes - 1) }}=\Sigma_{k=1 \sim(\# \text { of nodes - 1) }} A^{k}$
- If $\left.\left(C_{(\# \text { of nodes }}-1\right)\right)_{i j}>0$ for all $i \neq j$. then there is a path between any pair of nodes (and vice versa)
\Rightarrow The original graph is *numerically* determined to be a (strongly) connected graph

Exercise

- Show the strong connectivity of the graph below by calculating the sum of powers of its adjacency matrix

Exercise

- An alternative method is just to calculate (A +I) (\# of nodes -1) and check if all elements have positive values
- Those values no longer show \# of paths, but still tell us whether there are paths between each pair of nodes
- Why does this work?

Transitive closure

- Transitive closure of a graph is a graph that contains edge $\langle u, v\rangle$ whenever there is a path from node u to node v in the original graph
- Obtained by making all diagonal components 0 and all non-diagonal nonzero components 1 in $C_{(\# \text { of nodes - 1) }}$
- Describes accessibility between nodes
- Is a complete graph if the original graph is (strongly) connected

Transition Probability Matrix

Transition probability matrix

- An adjacency matrix of a directed graph with normalized weights (i.e., sum of all weights of outgoing links is always 1 for every node)
- Considers each node as a "state", and a directed link as a stochastic "state transition": Representing a Markov chain
- Can be constructed from a unweighted directed graph by assigning normalized weights

Exercise

- Create a TPM of the following graph

Properties of TPMs

- A product of two TPMs is also a TPM
- Always has eigenvalue 1
- $|\lambda|<=1$ for all eigenvalues
- If the original network is strongly connected (with some additional conditions), the TPM has one and only one eigenvalue 1 (no degeneration)

TPM and asymptotic probability distribution

- $|\lambda|<=1$ for all eigenvalues
- If the original network is strongly connected (with some additional conditions), the TPM has one and only one eigenvalue 1 (no degeneration)
\rightarrow This is a unique dominant eigenvalue: the probability vector will converge to its corresponding eigenvector

Exercise

- Obtain eigenvalues and eigenvectors of the TPM created in the previous exercise
- Calculate $\mathrm{T}^{n}(1 / 5,1 / 5,1 / 5,1 / 5,1 / 5)^{\top}$ for large n and see what you will get

Application: Google's "PageRank"

- Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd, 'The PageRank Citation Ranking: Bringing Order to the Web' (1998): http://www-db.stanford.edu/~backrub/pageranksub.ps
- Node: Web pages
- link: Web links
- State: Temporary "importance" of that node
- Its coefficient matrix is a transition probability matrix that can be obtained by dividing each column of the adjacency matrix by the number of 1 's in that column n_{32}

Example

* PageRank is actually calculated by forcedly assigning positive non-zero weights to all pairs of nodes in order to make the entire network strongly connected

Interpreting the PageRank network as a stochastic system

- State of each node can be viewed as a relative population that are visiting the webpage at t
- At next timestep, the population will distribute to other webpages linked from that page evenly

PageRank calculation

- Just one dominant eigenvector of the TPM of a strongly connected network always exists, with $\lambda=1$
- This shows the equilibrium distribution of the population over WWW
- So, just solve $x=A x$ and you will get the PageRank for all the web pages on the World Wide Web

Exercise

$\begin{array}{lllll}0 & 0.5 & 0 & 0 & 1\end{array}$ 0

 0
 0.5
 0 10.5
 0
 0
 0
 0
 00.50
 0
 0
 00.50 .5

Calculate the PageRank of each node in the above network (the network is already strongly connected so you can directly calculate its dominant eigenvector; but also try using the NetworkX built-in function for PageRank)

A note on PageRank

- PageRank algorithm gives non-trivial results only for asymmetric networks
- If links are symmetric (undirected), the PageRank values will be the same as node degrees
- Prove this

Laplacian Matrix

Laplacian matrix

- A matrix with rows and columns labeled by nodes, where $a_{i j}$ represents node degree if $i=j$, or is -1 if node i and node j are connected

$$
L=D-A
$$

D: degree matrix (diagonal elements are node degrees; all 0 elsewhere)

Exercise

- Write a Laplacian matrix of the graph below

Relationship with Laplacians in vector calculus

- Related to "Laplacian" in vector calculus/PDEs
- It is a negative, discrete version of it
- Similar to a "second-order derivative", defined on a network
- E.g. diffusion on a network:

$$
x(t+1)=x(t)-d L x(t)
$$

Relationship with Laplacians in vector calculus

Laplacian discretized over 2-D space:

$$
\nabla^{2} f=\partial^{2} f / \partial x^{2}+\partial^{2} f / \partial y^{2}
$$

$$
\sim\left(f_{+}(x+\Delta x, y)+f_{+}(x-\Delta x, y)-2 f_{+}(x, y)\right) / \Delta x^{2}
$$

$$
+\left(f_{+}(x, y+\Delta y)+f_{+}(x, y-\Delta y)-2 f_{+}(x, y)\right) / \Delta y^{2}
$$

$$
=\left(f_{+}(x+\Delta k, y)+f_{+}(x-\Delta k, y)+f_{+}(x, y+\Delta k)\right.
$$

$$
\left.+f_{+}(x, y-\Delta k)-4 f_{+}(x, y)\right) / \Delta k^{2}
$$

Laplacian (graph) ~ - Laplacian (vector calc.) ${ }_{42}$

Properties of a Laplacian

- Has (1, 1, 1, ..., 1) as an eigenvector - Because each row/column adds up to 0
- The corresponding eigenvalue is 0
- All eigenvalues $>=0$
- \# of zero eigenvalues = \# of connected components in a graph
- 2nd smallest ev.: "algebraic connectivity"
- Smallest non-zero ev.: "spectral gap"
- Shows how quickly the network can suppress non-homogeneous states and synchronize

Exercise

- Create an Erdos-Renyi random network made of 100 nodes with connection probability 0.03
- Obtain its Laplacian matrix and calculate its eigenvalues
- See what you find
- Visualize the network and compare the results

Exercise

- Generate the following network topologies w/ similar size and density:
- random graph
- barbell graph
- ring-shaped graph (i.e., degree-2 regular graph)
- Measure their spectral gaps and see how topologies quantitatively affect their values

Graph Spectrum

Degree distribution and graph spectrum

- Structural characteristics of a large complex network can be studied by analyzing these distributions
- Similar networks often have similar degree distributions and graph spectra
- Degree distribution is structural, intuitive and very easy to obtain
- Graph spectrum has strong connection to both structure and dynamical behavior

Graph spectrum

- Distribution of eigenvalues of the adjacency matrix of the network

- Undirected graphs have symmetric adj. matrices \rightarrow all real eigenvalues

Graph spectral analysis

- Plotting an eigenvalue distribution (i.e., histogram)
- Especially effective for visualizing complex network data obtained experimentally
- Computing power may be needed to obtain these plots for large networks

Wigner's semi-circle law

FYI: Wigner's semi-circle law

- Eigenvalue distribution density (histogram) of a large random real symmetric matrix is a semi-circle

FYI: Girko's circular law

- Eigenvalue distribution of a large random real asymmetric matrix is a circle in a complex number plane

(Image from Wolfram Mathworld)

Exercise

- Obtain spectra of networks made of 1,000 nodes each
- Random
- Scale-free
- Based on some data
- Plot their density distributions

Exercise

- Obtain the spectrum of the Supreme Court Citation network
- Can you do this??
- If you can't, make a subgraph induced by randomly selected 1,000 nodes, and conduct the same analysis
- Crude random sampling technique...

What eigenvalues and eigenvectors can tell us

- An eigenvalue tells whether a particular "state" of the network (specified by its corresponding eigenvectors) grows or shrinks by interactions between nodes over edges
$-\operatorname{Re}(\lambda)>0 \Rightarrow$ growing
$-\operatorname{Re}(\lambda)<0 \Rightarrow$ shrinking

Laplacian spectrum

- Distribution of eigenvalues of the Laplacian matrix of the network

Review of Laplacian spectrum

- At least one λ is zero
- All the other λs are zero or positive
- \# of zero $\lambda \mathrm{s}$ corresponds to \# of connected components in the graph
- Ind smallest λ : "algebraic connectivity"
- Smallest non-zero λ : "spectral gap"

Algebraic connectivity

$$
0=\underbrace{\lambda_{1}}_{\text {As many 0's as \# of cc's }}=\lambda_{2}=\ldots=\lambda_{k-1} \leqslant \underbrace{\lambda_{k}>\lambda_{k+1} \leq \ldots \leq \lambda_{N}, \ldots}_{\text {Spectral gap }}
$$

As many O's as \# of CC's

Spectral gap

- Determines how easily a dynamical network can get synchronized
- The larger it is (relatively to the largest λ_{N}), the easier the synchronization is (Barahona \& Pecora, Phys. Rev. Lett. 89: 054101. 2002)

I. ER random
II. NW small-world III.WS small-world IV. BA scale-free
(Zhan, Chen \& Yeung, Physica A 389: 1779-1788, 2010)

Exercise

- Create a small-world network of 1,000 nodes with varying p
- Obtain Laplacian spectra of the network and find its spectral gap λ_{2}
- Plot λ_{2} over p and see how it changes as random rewiring rate increases

