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Here we discuss how Maxwell can derive his famous equation. 

 

1. Something is missing; electrodynamics before Maxwell 

A statement equivalent to the Coulomb’s law is the differential relation, 
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  E   (Gauss’ law) 

connecting the electric charge density and the electric field E. This holds for moving 

charges as well as stationary charges. 

 

0  B   (no magnetic monopole) 
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E   (Faraday’s law) 

 

0 B J   (Ampere’s law) 

 

Using the above relations, we calculate 
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This is consistent. However,  
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The left-hand side of this equation must be zero. But the right hand side, in general, is not. 

For steady state, 0  J  is OK. Otherwise, the Ampere’s law cannot be right. This 

contradiction shows that the expression for the Ampere’s law cannot be correct for a 

system in which the charge density is varying in time.  

 

2. Complete Maxwell’s equation 

Maxwell’s equation 

The complete Maxwell’s equations are given as follows. 

 

(I) 
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  E  (Gauss’ law) (1) 



(Flux of E through a closed surface) = -(Charge inside)/0. In dynamics as well as in 

static fields, Gauss’ law is always valid. 

 

(II) 
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(Line integral of E around a loop) = 
dt

d
 (Flux of B through the loop). This is a 

Faraday’s law. It is generally true. 

 

(III) 

 

0  B  (3) 

 

(Flux of B through a closed surface) = 0. This equation is the corresponding general 

law for magnetic fields. Since there are no magnetic charges, the flux of B through 

any closed surface is always zero 

 

(IV) 
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(Integral of B around a loop) = 0 (current through the loop) + 0 0 (Flux of E 

through the loop). This equation has something new. The correct general equation has 

a new part that was discovered by Maxwell. 0d
t
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J  is called a displacement 

current. 

 

Conservation of charge 
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(Flux of current through a closed surface)=-
t
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(Charge inside) 

 

Force law 
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From the equation of continuity Eq.(5), we have 
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From Eq.(4) 
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((Note)) From MIT Physics 8.02: Electricity and Magnetism, Course Notes 2004. 
 

 
 

Fig. (a) 
0


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 E . (b) 0 B . The number of magnetic field lines 

entering a closed surface is equal to the number of field lines leaving the surface. 
There is no source or sink. In addition, the lines must be continuous with no 

starting or end points. For a bar magnet, the field lines that emanate from the 
north pole to the south pole outside the magnet return within the magnet and form 

a closed loop. 
 

3. How the new term works; example-1 (Feynman) 

((Feynman)) 

 



 
 

We consider what happens with a spherical symmetric radial distribution of current. 

Suppose we imagine a little sphere with radioactive material on it. This radioactive 
material is squirting out some charged particles. We could have a current that is 

everywhere radially outward.  
Let the total charge inside any radius r be Q(r). If the radial current density at the 

same radius is J(r), Eq.(5) requires that  
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We now ask about the magnetic field produced by the current in this situation. Suppose 

we draw loop  on a sphere of radius r. There is some current through this loop. So we 

might expect to find a magnetic field circulating in the direction shown. However, the 

correct answer is that there is no magnetic field, B = 0 everywhere. Why is that? This 

result can be derived from Eq.(4). 
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Here we note that 
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Then we have 
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The circulation of B depends not only on the total current through  but also on the rate 

of change with time of E through it. These two sources cancel and B  is always zero. 

This implies that there is no magnetic field B everywhere. 

 

4. How the new term works; example of capacitance: Stokes’ theorem 

First we show the definition of the Stokes’ theorem between the surface integral and 

the path integral. 



 
 

Fig. Stokes’ theorem. The surface integral is replaced by the path integral around the 

perimeter. ( )
S C

d d    B a B l� � . The red arrow denotes the direction of da for 

each area element. S is the open surface. C is the closed path around the perimeter. 

 



 
We use the Stokes’ theorem. 
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For the surface S1,  
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For the surface S2, the current is the displacement current, but not a current flowing along 

the wire. 
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with 
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The Ampere’s law can be corrected by Maxwell as 
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Fig.  Ampere-Maxwell law for the capacitance. S: surface. C: path. 

 

 

The Stokes’ theorem 
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We apply the Stokes’ theorem to the Ampere’s law. We consider the three cases for the 

surfaces S1, S2, and S3 for the surface integral, while the path C is the same (fixed). 

 

S1: no capacitance is included  

S2: one of the electrodes of the capacitance is included. 

S3: both electrodes of the capacitance is included. 

 

For the surfaces S1 or S3, we have 
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since  
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and 
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For the surface S2, it seems that there is no current enclosed in the surface S3. In order to 

get the same result for the magnetic field B, the current I is replaced by the displacement 

current. 
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The current density; 
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The ampere’s law: 
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where J is the conduction current density and Jd is the displacement current density. 

 

((Note)) 

E.M. Purcell and D.J. Morin, Electricity and Magnetism 3rd edition (Cambridge 

2013). p.433-434 

 



 
 

Fig. The electric field at a particular instant. The magnitude of E is decreasing 

everywhere as time goes on. 

 



 
 

Fig. The conduction current (white arrows) and the displacement current (black 

arrows) 

 

5. Displacement current: Ampere-Maxwell law 

 



 
 

We consider the magnetic field of a wire used to charge a parallel-plate condenser. If 

the charge Q on the plate is charging with time, the current in the wires is equal to dQ/dt. 

 

(a) Path 1 

Suppose we take a loop 1 which is a circle with radius r.  
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If we consider the appropriate plane surface S enclosed by the loop 1, there are no 

electric fields on it (assuming the wire to be a very good conductor). The surface integral 

of d
t





E

a  is zero. Then the magnetic field is obtained as 
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Suppose, however, that we now slowly move the curve  downward. We get always 

the same result until we draw with the plates of the capacitor. The current I goes to zero. 

What happens to the magnetic field? 

 

(b) Path 2 

Let’s see what the Maxwell’s equation says for the curve 2, which is a circle of 

radius r whose plane passes between the capacitor plates.  
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In other words, the line of integral of B around 2 is equal to the time derivative of the 

flux of E through the appropriate plane circular surface S enclosed by the path 2. From 

the Gauss’ law, we know that the flux of E through the plane circular surface S is  
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Note that the electric field inside the capacitor plate is equal to zero because of metal in 

applying the Gauss’ law. Then we have 
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So we have the same result for B as described above. It is easy to see that this must 

always be so by applying the same arguments to the two circular surfaces S1 and S2 

enclosed the paths 1 and 2, respectively. Through S1 there is the current I, but no 

electric flux. Through S2 there is no current, but an electric flux changing at the rate I/0. 

 

 
 

The displacement current flows in the separation gap of the capacitance,  
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6. Magnetism and electrons 

6.1. Orbital angular momentum and orbital magnetic moment 

If an electron [charge –e (e>0) and mass m] is moving in a circular orbit, there is a 

definite ratio between the magnetic moment and the angular momentum. Suppose that L 

is the orbital angular momentum and orb is the orbital magnetic moment. The orbital 

angular momentum L is given by 
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The direction of L is perpendicular to the plane of the orbit. The orbital magnetic moment 

is given by 
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where A (= r is the area of the orbit and the current I is given by 
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where T (=2r/v) is a period and f (=1/T) is the frequency. So we have the relation 

between the orbital angular momentum and the orbital magnetic moment as 
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The direction of the current is opposite to the direction of velocity of electron because the 

charge is negative. The orbital magnetic moment of the electron is antiparallel to the 

orbital angular momentum.  

 

 
 

Fig. Orbital (circular) motion of electron with mass m and a charge –e. The direction 

of orbital angular momentum L is perpendicular to the plane of the motion (x-y 



plane). The orbital magnetic moment is antiparallel to the orbital angular 

momentum. 

 

6.2 de Broglie relation 

Material particles, just like photons, can have a wavelike aspect. The various 

permitted energy levels appear as analogues of the normal modes of a vibrating string. 

 

Particle: 

 

E (energy),  p (momentum) 

 

Wave: 

 = 2,  k (wave vector) 

 

Relation: 
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The de Broglie relation between the momentum p and the wavelength  
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where  is the de Broglie wavelength, h is the Planck’s constant. For a circular orbit with 
the radius r, it is required from the quantum mechanics that 
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ℏ  is the Dirac constant. 

 



 
Fig. Acceptable wave on the ring (circular orbit). The circumference should be equal 

to the integer n (=1, 2, 3,…) times the de Broglie wavelength . The picture of 
fitting the de Broglie waves onto a circle makes clear the reason why the orbital 

angular momentum is quantized. Only integral numbers of wavelengths can be 
fitted. Otherwise, there would be destructive interference between waves on 

successive cycles of the ring. 
 

The orbital magnetic moment is given by 
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where B is the Bohr magneton and is 

 
241027400915.9 B  J/T  (SI units) 

 

or  
 

211027400915.9 B  emu  (cgs units, emu=erg/Gauss=erg/Oe) 

 
((Note)) 

 
J/T = 107 erg/(104 Oe) = 103 emu 

J/T2 = 10-1 emu/Oe 
 

 
The value of the orbital magnetic moment is given by 
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6.3 Spin angular momentum and spin magnetic moment 



The electron also has a spin rotation around its own axis, and as a result of that spin, it 
has both a spin angular momentum and a spin magnetic moment. But for reasons that are 

purely relativistic quantum-mechanical – there is no classical explanation – the relation 
between the spin magnetic moment and the spin angular momentum is different from that 

for the orbital motion. The spin magnetic moment is given by 
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where ge is the electron g-factor; ge = 2.0023193043622 (NIST). The component of the 
spin angular momentum S is measured along the z axis. Then the measured component Sz 

can have only the two values given by 
 

ℏ
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1
zS   (  ; spin up state and  ; spin down state). 

 

Then the value of spin magnetic moment is ±B. 

 
6.4. Periodic table of iron group elements 

 
The Pauli principle produces any two electrons being in the same state (i.e., having 

the set of (n, l, ml, ms). 
 

For fixed n, l = n-1, n-2, …, 2, 1 
ml = l, l-1, …., -l (2l +1). 

Therefore there are n2 states for a given n. 
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There are two values for ms (= ±1/2). 

Thus, corresponding to any value of n, there are 2n2 states. 
K shell 

n l m   s  ms 
1 0 0   1/2  ±1/2  (1s)2 

L shell 
n l m   s  ms 

2 0 0   1/2  ±1/2  (2s)2 
2 1 1,0,-1   1/2  ±1/2  (2p)6 

M shell 
n l m   s  ms 

3 0 0   1/2  ±1/2  (3s)2 
3 1 1,0,-1   1/2  ±1/2  (3p)6 

3 2 2,1,0,-1,-2  1/2  ±1/2  (3d)10 
N shell 



n l m   s  ms 
4 0 0   1/2  ±1/2  (4s)2 

4 1 1,0,-1   1/2  ±1/2  (4p)6 
4 2 2,1,0,-1,-2  1/2  ±1/2  (4d)10 

4 3 3,2,1,0,-1,-2,-3 1/2  ±1/2  (4f)14 
(1s)2|(2s)2(2p)6|(3s)2(3p)6(3d)10|(4s)2(4p)6(4d)10(4f)14|(5s)2(5p)6 ((5d)10…. 

Iron-group elements: 
Ti3+, V4+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)1 

V3+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)2 
Cr3+, V2+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)3 

Cr2+, Mn3+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)4 
Mn2+, Fe3+ (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)5 

Fe2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)6 
Co2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)7 

Ni2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)8 
Cu2+  (1s)2|(2s)2(2p)6|(3s)2(3p)6|(3d)9 

Atoms with filled n shells have a total angular momentum and a total spin of zero. 
Electrons exterior these closed shells are called valence electrons. 

 
6.5. Magnetic moment of atom 

We consider an isolated atom with incomplete shell of electrons. The orbital angular 
momentum L and spin angular momentum S are given by 
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Fig. Basic classical vector model of orbital angular momentum (L), spin angular 

momentum (S), orbital magnetic moment (L), and spin magnetic moment (S). 

J (= L + S) is the total angular momentum. J is the component of the total 

magnetic moment (L + S) along the direction (-J).  

 
Suppose that 

 

a  L J L  and b  S J S  
 

where a and b are constants, and the vectors S  and L  are perpendicular to J. 

Here we have the relation 1 ba , and 0  L S . The values of a and b are 

determined as follows. 
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Here we note that 
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using the average in quantum mechanics. The total magnetic moment  is 
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Thus we have 
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6.6 Hund’s rule 

6.6.1.  Electron states in the atom 

For a given l, the number m takes 2l +1 values. The number s is restricted to only two 
values ±1/2. Hence there are altogether 2(2l+1) different states with the same n and l. 

There states are said to be equivalent.  
According to Pauli’s principle, there can be only one electron in each such state. Thus 

at most 2(2l+1) electrons in an atom can simultaneously have the same n and l. 
Hund’s rule is known concerning the relative position of levels with the same 

configuration but different L and S. 
 

Hund’first law 
(1) The maximum values of the total spin S allowed by the exclusion principle. 

Hund’s second law 

(2) The maximum values of the total orbital angular momentum L consistent with this 
value of S. 

Huns’s third law 

(i) SLJ   for less than half full (spin-orbit interaction, the discussion will be 

made later) 

(ii) SLJ   for more than half full (spin-orbit interaction). 

 

6.6.2. The electron configuration (3d)n (l = 2, n = 1 - 10) 

A d shell corresponds to l = 2, with five values of ml. Multiplying this by 2 for the 

spin states gives a total of 10. Then the configuration (3d)10 represents a full shell. It is 
non-degenerate, and the state is 1S0. This is a general rule for a full shell. It follows 

because each of electrons must have a different pair of ml and ms values. 
 

(3d)1: Ti3+, V4+ 
2D3/2 (ground state) 



 L =2, S = 1/2, J = 3/2, 
Fig.(a) Hund’s law for the (3d)1 electron configuration. 

 

(3d)2: V3+ 
3F2 

 L =3, S = 1, J = 2, 
Fig.(b) Hund’s law for the (3d)2 electron configuration. 

 
(3d)3: Cr3+, V2+ 

4F3/2 

 L =3, S = 3/2, J = 3/2, 
Fig.(c) Hund’s law for the (3d)3 electron configuration. 

 

(3d)4: Cr2+, Mn3+ 
5D0 

 L = 2, S = 2, J = 0 
Fig.(d) Hund’s law for the (3d)4 electron configuration. 

 
(3d)5: Fe3+, Mn2+ 

6S5/2 

 L = 0, S = 5/2, J = 5/2 
Fig.(e) Hund’s law for the (3d)5 electron configuration. 

 

(3d)6: Fe2+ 



5D4 

 L = 2, S = 2, J = 4 
Fig.(f) Hund’s law for the (3d)6 electron configuration. 

 
(3d)7: Co2+ 

4F9/2 

 L = 3, S = 3/2, J = 9/2 
Fig.1(g)   Hund’s law for the (3d)7 electron configuration. 

 

(3d)8: Ni2+ 
3F4 

 L = 3, S = 1, J = 4 
Fig.(h)   Hund’s law for the (3d)8 electron configuration. 

 

(3d)9: Cu2+ 
2D5/2 

 L = 2, S = 1/2, J = 5/2 
Fig.(i)   Hund’s law for the (3d)9 electron configuration. 

 
(3d)9 

This configuration represents a set of electrons one short of a full shell. Since a full shell 
has zero angular momentum (both orbital and spin), it follows that if one electron is 

removed from a full shell, the spin angular momentum of the remainder are minus those 
of the one that was removed. So the L, S, and J values of remainder are the same as if 

there were only one electron in the shell. 
 

(3d)10 



A d shell corresponds to l = 2, with five values of ml. Multiplying this by two for the spin 
states gives 10. Thus the configuration (3d)10 represents a full shell. L = 0. S = 0. J = 0. 

 
7. Definition of the magnetization 

We define the magnetization M of a material as the net magnetic moment per unit 

volume. If there are n atoms per unit volume and their average magnetic moment is , 

then M can be written as 
 

nM μ  

 

The total magnetic moment of the system is tot. The volume of the system is V. Then the 
magnetization of the system is defined by 

 

tot

V

μ

M  

 

The unit of M is J/(T m3) in SI units and emu/cm3 in cgs units. 
 

8. Paramagnetism: classical theory 

We assume that a magnetic dipole moment  of each molecule in the presence of a 

magnetic field B. The potential energy is given by 
 

cosU B     μ B  

 

where N is the number of magnetic dipole moments per unit volume and  is the angle 

between  and B. Then the magnetization M is given by 
 

 cosNM   

 

where  
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and kB is the Boltzmann constant. For simplicity we put  
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B
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
  and  coss .  

 

Then we have 
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where L(x) is the Langevin function. For x<<1, the Langevin function is approximated as 

 

3
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and the derivative dL(x)/dx at x = 0 is equal to 1/3. Using this we have  
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9. Magnetization for the spin 1/2 system (quantum mechanics) 

We discuss the magnetization for spin 1/2. The system consists of many spins (the 

number N per unit volume). There is no interaction between any two spins. The magnetic 

moment of spin (S = 1/2) is given by 

 

zzBz S  ˆ/ˆ2ˆ  ℏ , 

 

where z̂  is a Pauli spin operator along the z axis. Then the Zeeman energy is described 

by 

 

BBH zz  ˆˆˆ  , (1) 

 

in the presence of a magnetic field B along the z axis. 

 

 
 

Fig. Zeeman splitting of the degenerate state under the application of magnetic field B. 

 

The doublet state (degenerate) is split into two states: 

 

1. lower energy level (-BB): state  ; B (magnetic moment) 

2. upper energy state (BB): state  ; -B (magnetic moment) 



 

The probability of finding the system in the lower state 
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where x = /(kBT). The probability of finding the system in the upper state is 
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The total magnetization M is 
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(a) For x>>1, tanhx ≈ 1, 

 

M = Msat = N.  

 

(b) For x<<1, tanhx ≈ x.  
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for S = 1/2. 

 

((Curie law))  

In 1895, Pierre Curie discovered this experimentally. The magnetization is directly 

proportional to the magnitude of the external magnetic field B and inversely proportional 

to the temperature T in K. 

 

T

C

B

M
  

 

where C is called the Curie constant.  

 

10. Ferromagnetism 

10.1 Ferromagnetic order  

A ferromagnet has a spontaneous magnetization – a magnetization even in zero 

applied magnetic field. The existence of a spontaneous magnetization suggests that the 

magnetic moments are arranged in a regular manner. Consider a paramagnet with ions 

having magnetic moments. Given an internal interaction tending to line up the magnetic 

moments parallel to each other, we shall have a ferromagnet. Let us postulate such an 



interaction and call it the exchange field.  We treat the exchange field as equivalent to a 

magnetic field BE. The magnitude of the exchange field may be as high as 103 T. This 

field BE is proportional to the magnetization M, and is described by 

 

MBE 0  (mean field) 

 

 
Fig. Ferromagnetic spin order 

 

10.2 Curie temperature 

 

I 

 

 

((Note)) See Chapter 29S for the detail 

 



 
 

Fig. The field at any point A in a magnetic system can be considered as the sum of the 

field in a spherical hole plus the field due to a spherical plug. 

 

For the spherical hole, the magnetic field is given by 
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In Chapter 29, we show that the magnetic field in the hole (sphere) is given by 

 



MBB ahole 0  

 

where Ba (= 0H) is the external magnetic field, and  is dependent on the shape of the 

hole and  = 1/3 for sphere. For a spin S = 1/2, it is known that the magnetization M is 

given by 
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where Ms (= N) is the saturation magnetization. For x<<1, tanh(x) is approximated as 
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The variable x is expressed by 
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where Msat (= N) is the saturation magnetization. This equation can be rewritten as 
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For any given value of Ba, this is a straight-line relationship between y and x. The x 

intercept is at 
Tk

B
x

B

a
  and the slope is 

2

0  N

TkB . For any particular Ba, we would have a 

line like the one denoted by (b). The intersection of curves (a) and (b) gives us the 

solution for M/Msat.  

 

We now look at how the solutions will go for various circumstances. We assume that 

Ba = 0.  
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where the characteristic temperature Tc is called a Curie temperature, and is given by 
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The slope of the line (b) is proportional to T. When the slope is larger than 1, there is no 

solution for finite value of M. For T>Tc, we have a solution M/Msat = 0 (paramagnetic 

phase). On the other hand, for T<Tc, we have a solution for the finite value of M/Msat 

(ferromagnetic phase). Then the magnetic material should magnetize itself spontaneously 

below Tc.  
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10.3 Spontaneous magnetization M 

When Ba = 0. y is given by 
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with t = T/Tc. The reduced temperature (t) dependence of the spontaneous magnetization 

is a solution of x
T

T
y

c

  and )tanh(xy  . 
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Fig. Spontaneous magnetization y as a function of t. The value of y is obtained from 

the equation y = tanh(y/t). t = T/Tc. y = 1 at t = 0. 

 

 
 

10.4. Magnetic susceptibility of ferromagnetism 

We now consider the magnetic susceptibility. The straight line is described by 
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For x<<1, y = x. Then we have 

 

c

B

a

cB

a

c

B

a

c

TT

k

B

x

Tk

B

T

T
x

x
Tk

B
x

T

T














)1(

)(

 

 

Since y = x, we have 
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The susceptibility diverges as T approaches Tc from the high temperature side. 
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Fig. The reciprocal susceptibility as a function of T for stage-2 CrCl3 GIC. B//c 

(parallel to the c axis). B = 1 kOe. The straight line denotes the Curie-Weiss law. 

 

 
 

11. A brief history on the modern magnetism 

Magnetism is inseparable from quantum mechanics. A classical system in thermal 

equilibrium can display no magnetic moment, even in a magnetic field (Kittel). The 

magnetism is essentially the quantum phenomenon and is a property, reflecting the 

feature of quantum mechanics. In his talk titled the quantum mechanics, key to 

understanding magnetism (the Nobel lecture, December 8, 1977), Van Vleck pointed out 



that modern theories of magnetism have roots in two distinct traditions of theoretical 

developments. The first outstanding early attempt to understand magnetism at the atomic 

level was provided by the semi-empirical theories of Langevin and Weiss. These theories 

were able to explain experimental results on the magnetic properties of materials. 

Langevin assumed that an atomic or molecular magnet carries a permanent magnetic 

moment. He was quantizing the system without realizing it. If one applies classical 

dynamics and statistical mechanics consistently, one finds that the diamagnetic and 

paramagnetic contributions to the magnetic susceptibility exactly cancel. Thus there 

should be no magnetism. The break-through in understanding of magnetic phenomena at 

the atomic level occurred in 1913, when Niels Bohr introduced the significant concept of 

the quantization of the orbital angular momentum, as a part of his remarkable theory of 

the hydrogen spectrum. The quantization of electron orbits implied the existence of an 

elementary magnetic moment, the Bohr magneton. In 1922, Stern and Gerlach 

experimentally verified the quantized orbital angular momentum and hence the orbital 

magnetic moment. 

The advent of quantum mechanics in 1926 furnished at last the key to the quantitative 

understanding of magnetism, (i) the discovery of the matrix form of quantum mechanics 

by Heisenberg and Born, (ii) the alternative but equivalent wave mechanical form by de 

Broglie and Schrödinger, and (iii) the introduction of electron spin by Uhlenbeck and 

Goulsmit. A quantum mechanics without spin and the Pauli’s exclusion principle would 

not have been able to understand even the structure of the periodic table or most magnetic 

phenomena. Originally spin was a sort of the appendage to the mathematical framework, 

but in 1928, Dirac synthesized everything in his remarkable four first order simultaneous 

equations which is relativistically invariant under the Lorentz transformation. The 

electron spin and the factor of two came naturally out of the calculation. In 1928, 

Heisenberg has shown how the previously obscure Weiss molecular field could be 

attributed to a quantum mechanical exchange effect, arising from the Pauli’s exclusion 

principle that no two electrons occupy the same state. The forces of interaction between 

neighboring atoms give rise to an exchange coupling between unpaired spinning electron. 

This leads to a scalar isotropic interaction of two spins with an exchange interaction 

constant. 

 

12. Magnetization of magnetic systems (summary) 

In paramagnetic and diamagnetic materials, the magnetization is maintained by the 

field. When the field B is removed, the magnetization M disappears. In Fact, for most 

substances, the magnetization is proportional to the field, provided the field is not too 

great. For notational consistency with the electrical case, one should express the 

proportionality thus: 

 

0

1
m


M B  (1) 

 

But custom dictates that it be written in terms of H instead of B 

 

mM H  (2) 

 



where m  is called the magnetic susceptibility. Here we use the notation (1) instead of 

(2), since the expression of H is not used in the standard textbook of general physics. 

Anyway, we are interested in the magnetization as a function of external magnetic field 

and temperature 

Experimentally, one can measure the magnetization of samples using the SQUID 

(superconducting quantum interference device). Here we discuss the magnetization of 

three kinds of systems, paramagnetism, diamagnetism, and ferromagnet. The 

magnetization is the magnetic moment per unit volume. The magnetization M for the 

paramagnetic and diamagnetic systems can be expressed by 

 

0 0 ( ) mM M B B     

 

where the proportionality constant m  is dimensionless number called the magnetic 

susceptibility. B is the internal magnetic field. For diamagnetic materials, m  is a small 

negative constant independent of temperature. For paramagnetic materials, m  is positive 

and can be expressed by the Curie law. 
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where T is the temperature and C is the Curie constant and B  is equal to the external 

magnetic field B0. The Curie law arises from  
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for the two-level energy states of spin up and spin down, where n is the number density 

of magnetic atoms with magnetic moment . In the high temperature range, we get 
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leading to 
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with the Curie constant 
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For the ferromagnet, the internal magnetic field B can be expressed by 

 

0 ( )B B M B   

 

where  is constant and the second term is the mean field arising from the interaction 

with the neighboring magnetic moments. We note that the magnetization M is a function 

of B,  
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Note that Tc is the Curie temperature and is defined by 
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For cT T , the system is in the ferromagnetic state where all the direction of spins. 

Suppose that there is no external magnetic field. it is expected that the spontaneous 

magnetization appears below Tc, 
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We use the parameters y and x as 
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the above equation can be rewritten as 

 

tanh( )
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y
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We make a plot of y vs x using the Mathematica. 

 

 
 

Fig. Spontaneous magnetization appears below the Curie temperature. 

 

REFERENCES 

D.J. Griffiths, Introduction to Electrodynamics, 2rd edition (Prentice Hall, 1981). 

 

The magnetic susceptibility of typical materials 



 
 

((Example)) 

Graphite diamagnetism 

levitation experiments 

https://www.youtube.com/watch?v=rjBczjGQsdc 

 

Bismuth diamagnetism 

https://www.youtube.com/watch?v=A5pZZJ23rDM 

 

Oxygen paramagnetism 

https://www.youtube.com/watch?v=Lt4P6ctf06Q 

 

 

13. Typical problems 

13.1 Problem 32-3 

 

A Gaussian surface in the shape of a right circular cylinder with end caps has a radius of 

12.0 cm and a length of 80.00 cm. Through one end there is an inward magnetic flux of 

25.0 Wb. At the other end there is a uniform magnetic field of 1.60 mT, normal to the 

surface and directed outward. What are the (a) magnitude and (b) direction (inward or 

outward) of the net magnetic flux through the curved surface? 

 

((Solution)) 

 

Gauss’ law for B 



 

  0totald d       B B a� �  

 

B = 1.60 mT  (top surface) 

r = 0.12 m 

bottom = -25.0 mWb (bottom surface, the magnetic flux going inward) 

L = 0.8 m 

 

The total magnetic flux passing through a closed surface should be zero. 
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The magnetic flux passing the side surface goes inward. 
 

 
 



 
13.2 Problem 32-20 

 
A capacitor with parallel circular plates of radius R = 1.20 cm is discharging via a current 

of 12.0 A. Consider a loop of radius R/3 that is centered on the central axis between the 
plates. (a) How much displacement current is encircled by the loop? The maximum 

induced magnetic field has a magnitude of 12.0 mT. At what radius (b) inside and (c) 
outside the capacitor gap is the magnitude of the induced magnetic field 3.00 mT? 

 
((Solution)) 

R = 1.20 cm 
i = 12.0 A 
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For r>R 
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The maximum of B occurs at r =R. 
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Suppose that Bmax = 12 mT. Then we have 
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r
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R
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where R = 1.20 cm. We make a plot of B (mT) as a function of r (cm). 
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When B = 3 mT,  

 

r = 0.3 cm or r = 4.8 cm 

 

______________________________________________________________________ 

13.3 Problem 32-51 

 

A Rowland ring is formed of ferromagnetic material. It is circular in cross section, 

with an inner radius of 5.0 cm and an outer radius of 6.0 cm, and is wound with 400 turns 

of wire, (a) what current must be set up in the windings to attain a toroidal field of 

magnitude B0 = 0.2 mT? (b) A secondary coil wound around the toroid has 50 turns and 

resistance 8.0 . If, for this value of B0, we have BM = 800 B0, how much charge moves 

through the secondary coil when the current in the toroid windings is turned on? 

 

((My solution)) 

 
 



 
 

((Solution)) from the text book (Halliday and Resnick) 

 

Np = 400 turns,  Ravg = 5.5 cm (in average) = 0.055 m. 

Area of circular cross section; A = r2. r = 0.005 m. 

Ns = 50. Rs = 8.0  

 

The magnetization of a ferromagnetic material such as iron can be studied with an 

arrangement called a Rowland ring. The material is formed into a thin toroidal core of 

circular cross section. A primary coil P having n turns per unit length is wrapped around 

the core and carries current iP. (The coil is essentially a long solenoid bent into a circle). 

If the iron core were not present, the magnitude of the magnetic field inside the coil 

would be,  
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However, with the iron core present, the magnetic field B inside the coil is greater than 

B0, usually by a large amount. We can write the magnitude of this field as  

 

00 801BBBB M   

 

where BM (= 800 B0) is the magnitude of the magnetic field contributed by the iron core. 
This contribution results from the alignment of the atomic dipole moments within the 



iron, due to exchange coupling and to the applied magnetic field B0, and is proportional 
to the magnetization M of the iron. That is, the contribution BM is proportional to the 

magnetic dipole moment per unit volume of the iron.  
To determine BM we use a secondary coil S to measure B. The voltage generated 

across the secondary coil is given by 
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Note: this method is very familiar to the experimentalists as a principle of the ballistic 

galvanometer. 
 

________________________________________________________________________ 
APPENDIX-1 Core diamagnetism 

 

 
 

We consider the diamagnetism from the classical point of view. Suppose that we slowly 
turn on the magnetic field. As the magnetic field changes an electric field is generated by 

magnetic induction, from the Faraday’s law, 
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The induced electric field acting on an electron in the atom produces a torque equal to 
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Integrating with respect to time t from zero field, we have 
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The magnetic moment   is 
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The minus sign means that the added magnetic moment is opposite to the magnetic field. 

Here we note that r0 is a radius from an axis through the atom parallel to B. So if B is 

along the z axis, r0
2 = 22 yx  . If we consider spherically symmetric atoms, the average 

of 22 yx   is (2/3) of the average of the square of the true radial distance from the center 

point of the atom. Then we have 
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When NA is the Avogadro number and each atom has z electrons, the magnetic 

susceptibility is given by 
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where r is in the units of m.  Note that the unit of  in the CGS unit is emu/Oe = 

(emu/Oe2). The unit of  in the SI units is J/T2 = (1/10) emu/Oe. 
 

The sign of  is negative, which leads to the diamagnetism of matter. The graphite and 
bismuth has a large diamagnetic susceptibility. 
 

((Mathematica)) 
 

 
 

((Note)) 
((Another method)) 
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The force F is related to E as 
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APPENDIX-2 Maxwell’s equation in the matter 

2.1 Maxwell’s equations 

The equations governing electromagnetic phenomena are the Maxwell’s equations, 

Maxwell’s equation (in general) 
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B: magnetic field 

E: electric field  

H: (here we call H field) 

D: electric displacement vector 

0  permittivity of free space 

0  permeability of free space 

: charge density 

J current density 
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(a) Electric charge 
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where f is the free charge density. 

 

(b) Current density 
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P: electric polarization vector, 

JP: polarization current density 

M: magnetization vector 

JM: magnetization current density 
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2.2 Gauss; law, Ampere’s law 

(a) Gauss’s law 
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where  

 

0 D E P   (electric displacement) 

 

(b) Ampere’s law 
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Here we define 
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Then we have 
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2.3 Boundary conditions 

 
(a) f  D  

 

1 2( ) fa a    D D n  or 1 2( ) f  D D n  

 

where n is the unit vector perpendicular to the boundary surface (normal component). 

 

fDD  
21   (normal component) 

 

(b) 0  B  

 

1 2( ) 0a   B B n  or 1 2( ) 0  B B n  

 

where n is the unit vector perpendicular to the boundary surface (normal component). 
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1 EE    (tangential component). 
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There are two cases depending on the relation of directions of J and da. 
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where Kf is the line current density. 

 

In the limit of 0t , we have 
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Similarly, we have 

 

 
 

/ / / /

1 2[ (/ / ) (/ / )] 0f fH H K K . 

 

Thus we have the following boundary conditions. 
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APPENDIX-3 Definition of magnetic susceptibility in the standard textbook 

The B-field in the magnetic material can be expressed by 
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where M  is the magnetic susceptibility and the B field (B0) and M are in the same 

direction. In ferromagnetic materials, 0M  is often greater than the external applied field 

B0 by a factor of several thousand.  

 

Note that 

 

1M    (complete diamagnetism such as superconductivity) 

0M   (diamagnetism) 

0M   ( 0M  , paramagnetism) 

1M   (ferromagnetism) 

 

 

((Note)) 

Liquid oxygen (diamagnetism, 77 Ks). Liquid oxygen (paramagnetism, 90.19 K). 
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APPENDIX-4 Bohr model of hydrogen atom 

 

Here we consider the Bohr model of hydrogen atom. The Newton’s second law leads to 
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The quantization of orbital angular momentum: 

 

zL mvr n  ℏ   (n: integer). 

 

From two equations, we have the velocity and radius. 
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which is the Bohr radius of the hydrogen atom. The period is 
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The current: 
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The magnetic moment is 

 

1 1I A   9.27401 x 10-24 Am2 
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APPENDIX-5 Stokes’ theorem 
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((Arfken)) Stokes’ theorem 
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Here C is the perimeter of S. This is Stokes’ theorem. Note that the sign of the line 

integral and the direction of da  depend on the direction the perimeter is traversed, so 

consistent results will always be obtained. For the area and the line-integral direction 

shown in Fig, the direction of a for the shaded rectangle will be out of the plane of the 
paper. 

 

 
 

Fig. Direction of normal for the shaded rectangle when the perimeter of the surface is 

traversed as indicated. The direction of da  is out of paper, whilce the direction of 

dl is in counter clockwise. 
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APPENDIX-6 Yutube 
(a) Lawrence Bragg 

https://www.youtube.com/watch?v=fa7GTW3486Y 
Magnetism #3 

 
(b) Walter Lewin 

https://www.youtube.com/watch?v=1xFRtdN5IJA&list=PLyQSN7X0ro2314mKyUiOIL
aOC2hk6Pc3j&index=23&t=0s 

8.02x - Lect 21 - Magnetic Materials, Dia- Para- & Ferromagnetism 

36.00 Ferromagnet phase transition 

 
(c) Mechanical Universe 

Episode 39 Maxwell’s equation 
 

Maxwell’s equation 
 

 
 



 
 

 
 



 
 


