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1. Motivation 

The electromagnetism is one of the most important courses in an undergraduate physics 

curriculum. It forms one of the core pillars of classical physics alongside mechanics and 

thermodynamics. Understanding the behavior of electric and magnetic fields is crucial for an 

comprehensive understanding of physical phenomena. 

 In 1986, I (M.S.) started to teach physics courses at SUNY at Binghamton (Binghamton 

University, BU). I have taught classical mechanics, statistical thermodynamics, and quantum 

mechanics in undergraduate physics courses. However, until 2023, surprisingly to me, I have no 

opportunity to teach electrodynamics in undergraduate physics courses. In Fall semester of 2023, 

I finally had an opportunity to teach Phys.332 (Electrodynamics II) and Phys.331 

(Electrodynamics I, Spring, 2024), using the famous textbook, Griffiths, Introduction to 

Electrodynamics, 4th and 5th edition (Cambridge University Press).  

It seems to me that many students of my class have difficulty in understanding the mathematics 

(in particular, vector analysis) such as Laplace’s equation with spherical coordinates and 

cylindrical aa well as Cartesian coordinates. Fortunately, I am so familiar with the use of 

Mathematica (version 14) and enjoy in calculating vector analysis very much with Mathematica. 

SUNY system which our BU belongs to (about 50 Universities and Community colleges) has a 

license for the use of Mathematica from Wolfram. So, students at Binghamton University can get 

the latest version of Mathematica Program in free. So, I strongly suggest my students to use 

Mathematica program in calculating vector analyses, including Grad, Curl (Rot), Div, Laplacian, 

and so on. 

What is the motivation for us to write this article? During my class, one of students asked me 

how to calculate a scalar differential operator which is defined by a scalar differential operator 

 

[ , ] ( )cP  u v u v , 

 

where u and v are vectors. That expression appeared in the Maxwell stress tensor. As far as I know, 

there is no such an operator in standard Mathematica program. So, I wrote a Mathematica program 

(module) to calculate the scalar differential operator in Cartesian, cylindrical, and spherical 

coordinates for students, and made sure it works. After that, I think that students understand how 

to calculate the scalar differential operator in three coordinates (see later for detail). 

Since then, I became familiar with the name of the scalar differential operator. In order to get 

more detail about this, I checked the Google web sites, and asked what is the scalar differential 

operator? How can it be used in physics, in particular electrodynamics? I realized that this operator 

is called a Feynman subscript notation in vector product. I found that Richard P. Feynman showed 

how to use this operator in his lecture (Feynman’s lectures on Physics, vol. II, Chapter 27; Field 

energy and Field momentum). Fortunately, we can also listen to his lecture on the web site with 

his own voice (exciting). In fact, I listened to his lecture very carefully (originally presented at 
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January 31, 1963). He clearly mentioned “1881” when he explained the scalar differential equation 

(time around time 13 minutes 26 sec after the start). 

 

So, I promptly asked Open AI ChatGPT;  

((AI)) My question 

Is it true that J.W. Gibbs gave an lecture on vector analysis at 1881? I found that Feynman 

referred to 1881 in Feynman's lectures on Physics vol 2 Chapter 27 audio (1963). 

 

((AI)) Reply 

Yes, J. Willard Gibbs did give lectures on vector analysis around 1881. Gibbs, a pioneering 

American scientist, significantly contributed to the development of vector analysis, which is a 

branch of mathematics that deals with vectors and vector-valued functions. The reference you 

mentioned, from Richard Feynman's "Lectures on Physics," Volume 2, Chapter 27, indeed notes 

that Gibbs was involved in the development of vector analysis during the late 19th century. While 

Feynman might have mentioned 1881 specifically, Gibbs's work on vector analysis spanned 

several years around that period. Gibbs began giving a course on vector analysis at Yale University 

in 1881. His notes from these lectures were later published as "Elements of Vector Analysis" by 

his student, Edwin Bidwell Wilson, in 1901. This work played a crucial role in popularizing and 

formalizing the use of vector methods in physics and engineering. Therefore, it is accurate to say 

that J.W. Gibbs was lecturing on vector analysis around 1881, and Feynman's mention in his 

lectures is consistent with historical accounts. 

So I understand that the vector analysis which Feynman used in his book, was originally 

discussed by Prof. Gibbs at Yale University between 1881 and 1884.  

 

2. Brief profiles of Feynman, Gibbs, Wilson; Comment from Joe Heafner 

 

((Richard P. Feynman)) 

Between 1961 and 1963 Richard Feynman set out to record the lectures he gave to his 

freshman and sophomore introductory physics classes at Caltech. At the time, modern theories like 

those of relativity and quantum mechanics were exciting students and propelling them to pursue 

the study of our Universe’s fundamental nature.  
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Fig.1 

Richard Feynman talking with a teaching assistant after the lecture on “The Dependence of 

Amplitudes on Time, Robert Leighton (left) and Matthew Sands (right) in background, April 20, 

1963. 

https://www.feynmanlectures.caltech.edu/ 

 

((Josiah Willard Gibbs)) 

 
Fig.2 

Josiah Willard Gibbs (February 11, 1839 – April 28, 1903) was an American scientist who made 

significant theoretical contributions to physics, chemistry, and mathematics. His work on the 

applications of thermodynamics was instrumental in transforming physical chemistry into a 

rigorous deductive science. Together with James Clerk Maxwell and Ludwig Boltzmann, he 
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created statistical mechanics (a term that he coined), explaining the laws of thermodynamics as 

consequences of the statistical properties of ensembles of the possible states of a physical system 

composed of many particles. Gibbs also worked on the application of Maxwell's equations to 

problems in physical optics. As a mathematician, he created modern vector calculus 

(independently of the British scientist Oliver Heaviside, who carried out similar work during the 

same period) and described the Gibbs phenomenon in the theory of Fourier analysis. 

https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs 

 

Josiah Willard Gibbs and his contemporary, Edwin Bidwell Wilson, were both prominent 

figures in the fields of mathematics and theoretical physics during the late 19th and early 20th 

centuries. They collaborated on several works, and Wilson often contributed to the development 

and dissemination of Gibb’s ideas. The lecture notes of Gibbs was edited by Wilson in 1901 when   

he was 22 years old. 

 

((Edwin Bidwell Wilson)) 

Edwin Bidwell Wilson (April 25, 1879 – December 28, 1964)  

At Yale, Wilson worked under the supervision of Josiah Willard Gibbs and compiled an 

important textbook on vector analysis from Gibbs' lecture notes. Gibbs died when Wilson had just 

turned 24, but he exerted a strong influence on Wilson through his early supervision and through 

Wilson's experience compiling Gibbs' notes. Wilson became an Assistant Professor of 

Mathematics at Yale in 1906, then Associate Professor of Mathematics at Massachusetts Institute 

of Technology (MIT) in 1907, then Professor of Mathematics in 1911, then Head of the Department 

of Physics in 1917, and then Professor of Vital Statistics at the Harvard School of Public Health in 

1922. 

 

((Note from TensorTimes@2024 by Joe Heafner)) 

Did Feynman Invent Feynman subscript notation? 

https://tensortime.sticksandshadows.net/archives/718 

When we checked the web site about the Feynman’s subscript notations, we found a very 

interesting article by Joe Heafner. A part of the article is reproduced here. 

 

Feynman explains that the subscripted   can be manipulated as though it were a vector (it is 

not) according to the rules of dot products (commutative), cross products (anticommutative), triple 

scalar products (cyclic permutation, swapping dots and crosses, etc.), and triple vector products 

(BAC-CAB, Jacobi identity, etc.) The strategy is to end up with only one vector (the one 

corresponding to a subscript) immediately to the right of each correspondingly subscripted  . 

Then you drop the subscripts, and you should have a valid vector identity. In the audio version of 

this lecture, Feynman comments that he doesn’t understand why this technique isn’t taught. It was 

never shown to me as either an undergraduate or graduate student. I suspect it’s treated as “one of 

those things” students are simply assumed to pick up at one point or another without it ever being 

explicitly addressed (much like critical thinking is treated). 
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The issue here, for me, is whether or not Feynman invented this way of manipulating vector 

expressions. After all, the notation carries his name so it might be reasonable to assume he invented 

the underlying method. My research shows that a very similar methodology is documented in the 

very first (as far as I know) textbook on vector analysis, Wilson’s Vector Analysis: A Text-Book 

for the use of Students of Mathematics and Physics. This is the famous work based on Gibbs’ 

lecture notes and is the definitive work on contemporary vector analysis.  

This brings to my mind the question of whether or not Feynman was aware of Wilson’s 

textbook and this method documented therein and decided to change the nature of the subscript to 

show what is differentiated rather than what is not. I don’t see how there is any way to know for 

sure, but it’s an interesting question in my mind because I suspect many students are not aware of 

Wilson’s textbook. 

 

3. Overview: Feynman (Gibbs) subscript notations in vector products 

Here we explain the detail of the Feynman (Gibbs) subscript notations in vector products and 

its application in vector analysis.  

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

        

      

        

      

u v

u v

u v

u v u v u v

u v v u

u v v u

u v v u

 

 

where ( )  
u

u v  is the same as ( )  u v  with u is kept constant during calculation. 

 

 

( ) ( ) ( )

[( ) ( )] [( ) ( )]

( ) ( ) ( ) ( )

      

           

         

u v

u u v v

u v u v u v

u v u v v u v u

u v v u u v v u

 

 

where ( )u v  is called a scalar differential operator.  

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

       

           

         

         

u v

u u v v

v u u v

u v u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

 

 

In this article, we have discussed the following things 

(i) We will briefly summarize the discussions given by Gibbs (1881-1884) and Feynman 

(1963). 

(ii) Construction of Mathematica Programs for the scalar differential operators in terms of 

three coordinate systems 
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(iii) We will make proof that Feynman (Gibbs) subscript notations are mathematically valid 

using the Mathematica program based on Cartesian coordinates. 

(iv) Application-1 

We show that the magnetic field due to constant magnetic moment m and the electric field 

due to the constant electric dipole moment p can be expressed by 

 

0
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( )
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Clearly, dipoleB  and dipoleE  can be expressed by the scalar differential operator. 

 

(v) Application II: Magnetic and electric force (Purcell) 

The force on the constant magnetic moment m under the presence of an external magnetic field 

B is given by 

 

( ) [ , ]B cP  F m B m B . 

 

The force on the constant electric dipole moment p under the presence of an external magnetic 

field E is given by 

 

( ) [ , ]cP  
E

F p E p E . 

 

(vi)  Using the scalar differential operators in terms of three coordinate systems, we solve 

typical problems in Arfken’s book,  

 

4. From the lecture of Gibbs on vector analysis (1881-1884): Summary 
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Here we just show how the subscript notations in vector products were discussed in Gibbs in 

his lectures on vector analysis. A part of Gibb’s book is reproduced here, although some revisions 

are added by us.  

 

4-1 Discussion by Gibbs (1): 73 

73: It frequently happens, as in the case of the application just cited, that the operators  ,  , 
  , have to be applied to combinations of scalar functions, vector functions, or both. The 

following rules of operation will be found useful. Let u, v be scalar functions and u, v vector 

functions of position in space. Then 

 

( ) ( ) ( ) ( ) ( )           u v v u u v v u u v   (41) 

 

( ) ( ) ( )       u v v u u v  (42) 

 

( ) ( ) ( ) ( ) ( )         u v v u v u u v u v  (43) 

 

The proofs of the formula may be given most naturally by expanding the expressions in terms of 

three unit vectors i, j, k (Cartesian coordinates) 

 

4-2 Discussion by Gibbs (I1):74 

74. The notation ( ) 
u

u v  will be used to denote that in applying the operator   to the product 

( )u v , the quantity u is to be regarded as constant, That is, the operation   is carried out partially 

upon the product ( )u v  . In general, if    is to be carried out partially upon any number of 

functions which occur after it in a parenthesis, those functions which are constant for the 

differentiations are written after the parenthesis as subscripts. Gibbs proved that 

 

( ) ( ) ( )      
u v

u v u v u v . (41)’ 

 

The formula given above may be written in the following manner, as is obvious from analogy with 

the corresponding formula in differentials; 

 

( ) ( ) ( )        
u v

u v u v u v . (42)’ 

 

and 

 

( ) ( ) ( )        
u v

u v u v u v . (43)’ 

 

Take for instance (43)’. Expand ( )  
u

u v  formally. 
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( ) ( ) ( )        
u u u

u v v u u v , 

 

where it must be understood that u  is constant for the differentiations which occur in u . Then in 

the last term, the factor u  may be placed before the sign u . Hence 

 

( ) ( ) ( )

( ) ( )

( ) [ , ]cP

       

    

   

u u u
u v u v u v

u v u v

u v u v

 

 

In like manner 

 

( ) ( ) ( )

( ) ( )

[ , ] ( )cP

       

   

  

v v v
u v v u u v

v u u v

v u v u

 

 

Hence, 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ , ] [ , ] ( ) ( )c cP P

       

         

       

     

u v

v u v u

u v u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

 

 

4-3 Discussion by Gibbs (1II):75 

75. There are number of important relations in which the partial operation ( ) 
u

u v  figures. 

 

( ) ( ) ( )      
u u u

u v u v u v ,  (46) 

 

or 

 

( ) ( ) ( )      
u

u v u v u v ,  (46)’ 

 

or 

 

( ) ( ) ( )      
u

u v u v v u ,  (46)” 

 

This proof of this relation may be given by expanding in terms of i, j, k (Cartesian coordinates). A 

method of remembering the result easily is as follows. Expand the product 
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( ) u v . 

 

Formally as if  , u, v were all real vectors. Then 

 

( ) ( ) ( )       
u u u

u v u v u v  

 

The second term is capable of interpretation as it stands. The first term, however, is not. The 

operator   has nothing upon which to operate. It therefore must be transposed so that it shall have 

u v  as an operand. But u being outside of the parenthesis in ( )  
u

u v   is constant for the 

differentiations. Hence 

 

( ) ( )    
u u

u v u v , 

 

and 

 

( ) ( ) ( )      
u u u

u v u v u v . (46) 

 

If u be a unit vector, say â , the formula 

 

ˆ ˆ ˆ( ) ( ) ( )      
a

a v a v v a , (47) 

 

expresses the fact that the directional derivative ˆ( )a v  of a vector function v in the direction â  

is equal to the derivative of the projection of the vector v in that direction plus the vector product 

of the curl of v into the direction â . 

 

5. From the book of Feynman on Feynman’s lectures on Physics vol.2 Chapter 27. 

Here we just show how the subscript notations in vector products were discussed in Feynman’s 

lectures on Physics. A part of Feynman’s book (vol.2 Chapter 27) is reproduced here, although 

some revisions are added by us.  

 

5.1 Detail of Formula-1 

In his book, Feynman explained his subscript notations using the formula 1 given by  

 

( ) ( ) ( )        
u v

u v u v u v . (27.10) 

 

The moment we do that, we do not have to keep the order straight any more. We always know that 


v

  operates on u only (constant v) , and 
u
  operates on v only (constant u). In these 

circumstances, we can use   as though it were an ordinary vector. (Of course, when we are 
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finished, we will want to return to the “standard” notation that everybody usually uses.). So now, 

we can do the various things like interchanging dots and crosses and making other kinds of 

rearrangements of the terms. For instance, the last term of Eq. (27.10) can be rewritten as  

 

( ) ( )

( )

      

   
v v

v

u v v u

u v
 

 

[You remember that ( ) ( )    a b c b c a ]. And the first term of Eq. (27.10) is the same as 

 

( ) ( )

( )

( )

     

    

    

u u

u

u

u v u v

u v

v u

 

 

It looks freakish, but it is all right. Now if we try to go back to the ordinary convention, we have 

to arrange that the   operates only on its “own” variable. The first one is already that way, so we 

can just leave off the subscript. The second one needs some rearranging to put the   in front of 

the v, which we can do by reversing the cross product and changing sign 

Now it is in a conventional order, so we can return to the usual notation. Equation (27.10) is 

equivalent  

 

( ) ( ) ( )

( ) ( )

( ) ( )

        

        

      

u v

u v

u v u v u v

u v v u

u v v u

 (27.11) 

 

(A quicker way would have been to use components in this special case, but it was worth taking 

the time to show you the mathematical trick. You probably won’t see it anywhere else, and it is 

very good for unlocking vector algebra from the rules about the order of terms with derivatives). 

 

5.2 Detail of Formula-2 

We start with 

 

( ) ( ) ( )      
u v

u v u v u v  

 

( ) 
u

u v  will be used to denote that in applying the operator   to the product ( )u v , the quantity 

u  is to be regarded as constant. That is, the operation   is carried out only partially upon the 

product ( )u v . In general, if   is to be carried out partially upon any number of functions which 

occur after it in a parenthesis, those functions which are constant for the differentiations are written 

after the parenthesis as subscripts. 

 

( ) ( ) ( )      
u v

u v u v u v , 

 



 

11 

 

with 

 

( ) ( ) ( )      
u u u

u v u v u v , 

 

( ) ( ) ( )       
v v v

v u u v v u , 

 

using the usual vector formula 

 

( ) ( ) ( )

( ) ( )

     

   

a b c a c b a b c

b a c c a b
 

 

Thus, we have 

 

( ) ( ) ( )

[( ) ( )] [( ) ( )]

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ , v] [ , ] ( ) ( )c cP P

      

           

         

         

       

u v

u u v v

u v u v u v

u v u v v u v u

u v u v v u v u

u v v u u v v u

u v u u v v u

 

 

Note that one can find the scalar differential operators [ , ]cP u v  and [ , ]cP v u  in ( ) u v . 

 

[ , ] ( )cP  u v u v , [ , ] ( )cP  v u v u . 

 

5.3 Detail of Formula-3 

We start with 

 

( ) ( ) ( )        
u v

u v u v u v . 

 

Using the formula in vector analysis, 

 

( ) ( ) ( )

( ) ( )

     

   

a b c a c b a b c

b a c c a b
 

 

we get 

 

( ) ( ) ( )

( ) ( )

        

     
u u u

u u

u v v u u v

u v v u
 

 

and 
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( ) ( ) ( )

( ) ( )

        

    
v v v

v v

u v v u u v

v u u v
 

 

where we use 

 

( ) ( ) ( ) [ , ]cP      
v v

v u v u v u v u ,  

 

( ) ( ) ( ) [ , ]cP      
u u

u v u v u v u v . 

 

Combining with these equations, we have 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

[ , ] [ , ] ( ) ( )c cP P

       

           

         

         

        

u v

u u v v

u u v v

u v u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

u v v u v u u v

 

 

Note that one can find the scalar differential operators [ , ]cP u v  and [ , ]cP v u  in ( ) u v . 

 

6. Overview on Proof of Formula and Gibbs with the use of Mathematica 

Here we prove three formula related to the Feynman (Gibbs) subscript notations using 

Mathematica. For the sake of simplicity, we use the vector analysis based on the Cartesian 

coordinates. 

 

We introduce u and v in cartesian coordinates as follows 

 

(a) Space-independent vectors: 

 

011 01 01 01( ,  ,  )x y zu u uu , 011 01 01 01( ,  ,  )x y zv v vv  

 

(b) Space-dependent vectors: 

 

11 1 1 1( ( , , ),  ( , , ),  ( , , ))x y zu x y z u x y z u x y zu  

 

and 

 

11 1 1 1( ( , , ),  ( , , ),  ( , , ))x y zv x y z v x y z v x y zv  

 

When we calculate, for example, 
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( )  
u

u v , 

 

Instead we calculate 011 11( ) u v , since u is constant vector [independent of ( , , )x y zr ]. After 

calculating this, the space independent vector 011u  is replaced by the space dependent vector 11u . 

 

(c) Definition of a scalar differential operator (Cartesian coordinates) in Mathematica 

The scalar differential operator [ , ] ( )Pc  u v u v   which is defined in this article in the 

Cartesian coordinates. 

 

[ , ] ( )

[ , ] [ , ] [ , ]

x v y y z z

x v y y z z

x y z

Pc u u u

u u u

u D x u D y u D z

     

     

  

u v v

v v v

v v v

 

 

7. Proof using the Mathematica 

In this note, we will present Mathematica programs how to calculate ( )u v  in three kinds of 

coordinates, cartesian coordinates, cylindrical coordinates, and spherical coordinates. Note that at 

this moment we do not know that the useful program for the calculation of ( )u v   may be 

available from any possible program sources from Wolfram. If it is available, this note is not so 

significant, we think. Anyway, we will show our Mathematica program to evaluate the Feynman 

(Gibbs) subscript notations in vector products for there coordinate systems. 

 

((Mathematica)) 

We use the Mathematica program, in order to give proof of formula obtained by Gibbs and 

Feynman. 
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(1-1) Proof 

 

( ) ( ) [ , ]cP   
v

v u v u v u  
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(1-2) Proof 

 

( ) ( ) [ , ]cP   
u

u v u v u v  
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______________________________________________________________________________ 

(ii) 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

        

      

        

      

u v

u v

u v

u v u v u v

u v v u

u v v u

u v v u

 

 

(2-1) Proof 

 

( ) ( ) ( )        
u v

u v u v u v  

 

 
 

(2-2) Proof 

 

( ) ( ) ( )          
u u u

u v u v u v  
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(2-3) Proof 

 

( ) ( ) ( )         
v v

u v v u v u  

 

 
 

(2-4) Proof 

 

( ) ( ) ( )        u v u v v u  
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______________________________________________________________________ 

(iii) 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

[( ) ( )] [( ) ( )]

( ) ( ) ( ) ( )

      

           

         

         

u v

u u v v

u v u v u v

u v u v v u v u

u v u v v u v u

u v v u u v v u

 

 

(3-1) Proof 

 

( ) ( ) ( )      
u v

u v u v u v  
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(3-2) Proof 

 

( ) ( ) ( )       
u u u

u v u v u v  
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(3-3) Proof 

 

( ) ( ) ( )       
v v v

u v v u v u  
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(3-4) Proof 

 

( ) ( ) ( ) ( ) ( )           u v u v v u u v v u  
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____________________________________________________________________________ 

(iv) 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

        

           

         

         

u v

u u v v

v u u v

u v u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

 

 

(4-1) Proof 

 

( ) ( ) ( )        
u v

u v u v u v  
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(4-2) Proof 

 

( ) ( ) ( )

( ) ( )

( ) ( )

        



    

   

u u u

u u

u v v u u v

v u u v

v u u v

 

 

 

 
 

(4-3) Proof 
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( ) ( ) ( )

( ) ( )

( ) ( )

        



    

   

v v v

v v

u v v u u v

v u u v

v u u v

 

 

 

 
 

(4-4) Proof 

 

( ) ( ) ( ) ( ) ( )          u v v u u v v u u v  
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______________________________________________________________________________ 

In summary, we can make proof of the formula derived by Gibbs and Feynman. 

 

8. Application: Two examples: Force on electric dipole moment in homogeneous electric 

field and the magnetic moment in homogeneous magnetic field 

In maser; a electric dipole moment (NH3) passing through an inhomogeneous magnetic field, 

undergoes a force given by ( )F   
E

p E . In Stern-Gerlach experiment, magnetic spin (magnetic 

moment) passing  through an inhomogeneous magnetic field, undergoes a force given by 
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( )BF   m B . 

 

In quantum physics, the Stern–Gerlach experiment demonstrated that the spatial orientation 

of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically 

quantum properties. In the original experiment, silver atoms were sent through a spatially-varying 

magnetic field, which deflected them before they struck a detector screen, such as a glass slide. 

Particles with non-zero magnetic moment were deflected, owing to the magnetic field gradient, 

from a straight path. The screen revealed discrete points of accumulation, rather than a continuous 

distribution, owing to their quantized spin. Historically, this experiment was decisive in convincing 

physicists of the reality of angular-momentum quantization in all atomic-scale systems. 

The experiment is based on the interaction of particles with magnetic fields. When a charged 

particle with a magnetic moment passes through a non-uniform magnetic field, it experiences a 

force due to the gradient of the field. This force, proportional to the magnetic moment and the 

field gradient, causes the particle’s trajectory to deviate. 

 

9. Application: Purcell’s discussion on the force on magnetic moment  

We consider a magnetic moment m in the presence of a magnetic field B. The potential energy 

of this system is given by 

 

magU   m B . 

 

The force exerted on the magnetic moment is 

 

( )mag magU    F m B . 

 

We note that the force Fmag can be rewritten as 

 

( )

( ) ( )

mag   

    m B

F m B

m B m B
 (1) 

 

When m is constant and B depends on the position vector r, we get 

 

( )

( ) ( )

mag  

    
mF m B

m B m B
 (2) 

 

Here we note that B is given by the Maxwell’s equation as 
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0 0( )
t

 


  


E
B J . (Ampere-Maxwell law) 

 

If we deal only with static setups where 0
t






E
 and J = 0, the force Fmag can be obtained as 

 

( )

[ , ]

mag

cP

 



F m B

m B
. 

 

where ( )m B  is a scalar differential operator. 

 

10. Purcell’s discussion on the force on electric dipole moment in electric field E  

How about the force on the electric dipole moment in the presence of electric field E ? We 

consider an electric dipole moment p in the presence of a magnetic field E. The potential energy 

of this system is given by 

 

elecU   p E . 

 

The force exerted on the electric dipole moment is 

 

( )elec elecU   F p E . 

 

We note that the force elecF  can be rewritten as 

 

( )

( ) ( )

elec   

    p E

F p E

p E p E
 

 

When p is constant and E depends on the position vector r, we have 

 

( )

( ) ( )

elec  

    
pF p E

p E p E
 (2) 

 

Here we note that E is given by the Maxwell’s equation as 

 

t


  



B
E . (Faraday law) 
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If we deal only with static setups where 0
t






B
, the force can be obtained as 

 

( )

[ , ]

elec

cP

 



F p E

p E
. 

 

According to this equation, an electric dipole moment aligned with the field is pulled in the 

direction of increasing field strength, whereas an electric dipole moment aligned against the field 

is pushed in the opposite direction. (H.C. Ohanian). 

 

11. ((Feynman)): energy conservation law with Poynting vector 

Here we follow the discussion of Chapter 27 vol II (Feyman’s Lectures on Physics) on the 

energy conservation law. We start with  

 

0

0

0

0

1
( )

1
( ) )

B
t

t








    




    



E
J E E

E
E B E

 

 

where E is the electric field, B is the magnetic field, J is the current density. We note that 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

        

      

       

     

E B

E B

E B

E B E B E B

B E E B

B E E B

B E E B

 

 

So that, 

 

( ) ( ) ( )       E B B E E B . 

 

Thus, we have 

 

0 0 0

0 0

0 0

( ) ( )

( ) ( )

( )

t

t

t t

  

 

 


     




      


 
      

 

E
J E E B E

E
B E E B E

B E
E B B E
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The Poynting vector and energy density are defined by 

 

0

1


 S E B ,    (Poynting vector) 

 

2 2

0

0

1 1

2 2
u 


 E B  ,  (energy density) 

 

The energy conservation law: 

 

0

0 0

1 1
( )

t t

u

t


 

 
         

 


  



B E
J E E B B E

S

 

 

or 

 

0
u

t


    


J E S . 

 

12. Maxwell stress tensor (Griffiths) 

The Maxwell stress tensor (named after James Clerk Maxwell) is a symmetric second-order 

tensor used in classical electromagnetism to represent the interaction between electromagnetic 

forces and mechanical momentum. In simple situations, such as a point charge moving freely in a 

homogeneous magnetic field, it is easy to calculate the forces on the charge from the Lorentz force 

law. When the situation becomes more complicated, this ordinary procedure can become 

impractically difficult, with equations spanning multiple lines. It is therefore convenient to collect 

many of these terms in the Maxwell stress tensor, and to use tensor arithmetic to find the answer 

to the problem at hand. In the relativistic formulation of electromagnetism, the Maxwell's tensor 

appears as a part of the electromagnetic stress–energy tensor which is the electromagnetic 

component of the total stress–energy tensor. The latter describes the density and flux of energy 

and momentum in spacetime. (Wikipedia) 

https://en.wikipedia.org/wiki/Maxwell_stress_tensor 

 

((Griffiths)) 

Force density: 

 

  f E J B . 

 

Using the Maxwell’s equation 



 

30 

 

 

0




 E ,  0 0( )
t

 


  


E
B J , 

 

or 

 

0  E ,  
0

0

1

t





  


E
J B , 

 

we have 

 

0 0

0

1
( ) ( )

t
 




       


E
f E E B B B . 

 

Here we introduce the Poynting vector S as 

 

0

1


 S E B . 

 

The time derivative of E B  is 

 

( )

( )

t t t

t

  
    

  


    


E B
E B B E

E
B E E

 

 

where we use the Faraday’s law, 
t


  


B

E . So, we can rewrite f as 

 

0 0

0 0

0 0

0

[( ) ( )] ( )

1 1
[( ) ( )] ( )

1
[( ) ( )] [( ) ( )] ( )

t

t

 

 

 



      



      


           



f E E E E E B

B B B B B B

E E E E B B B B E B

 

 

where we use 
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0 B , 
0

1
( ) 0


 B B  

 

and 

 

( ) ( )
t t

 
     

 
E

B E B E E  

 

Now we use the formula  

 

( ) ( ) ( ) ( ) ( )           u v u v v u u v v u  

 

When  u v E , 

 

21
( ) ( )

2
     E E E E E  

 

or 

 

21
( ) ( )

2
     E E E E E  

 

Similarly, when  u v B , 

 

21
( ) ( )

2
     B B B B B  

 

or 

 

21
( ) ( )

2
     B B B B B  

 

Thus, we have 

 

0 0

0

2 2

0 0

0

1
[ ( ) ( ) ] [ ( ) ( ) ] ( )

1 1 1
[ ( ) ( ) ] [ ( ) ( ) ] ( )
2 2

t

t

 


 



             




               



f E E E E B B B B E B

E E E E E B B B B B E B  
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or 

 

2 2

0 0 0

0 0

0 0 0

0

1 1 1
( ) [( ) ( ) ] [( ) ( ) ] ( )
2 2

1
[( ) ( ) ] [( ) ( ) ]

t

u
t

  
 

  



            




          



f E B E E E E B B B B E B

S
E E E E B B B B

 

 

or 

 

0 0 0

0

1
[( ) ( ) ] [( ) ( ) ]u

t
  




          


S
f E E E E B B B B  

 

Clearly we find two terms related to the Feynman (Gibbs) subscript notation in Maxwell stress 

tensor. Thus, we have 

 

0 0

0

0

2 20

0

1
[( ) ( )] [( ) ( )]

1
( )

2 2

t
 












       

 



S
f

E E E E B B B B

E B

I

 

 

Note that the i-component of the vector I is defined by 
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0

0

2 2

0

0

0

0

2 2

0

0

2 2

0 0

0 0

2 2

0

0

1
[ ( ] ( )]

1 1
( )

2

1
[ ( ) ( )]

1 1
( )

2

1 1 1
[ ( )]

2 2

1 1 1
[ ( ) ( )]

2 2

i j j t i j j j j i i j j

j

i

j j t i j j j j i i j j

j

i

j i j i j ij

j

j i j ij i j ij

j

I E E E E B B B B

E E E E B B B B

E E B B

E E B B













  
 

  


       

  

        

  

    

    









E B

E B

E B

E B

j ij

j

T 

  

 

where i = 1 (x), 2 (y), and 3 (z). 

 

,

ij i j

i j

T T e e
��

  (Maxwell stress tensor) 

 

, ,

,

, ,

,

( )k ij k i j

i j k

k ij k i j

i j k

i ij j

i j

T T

T

T



   

 

 







e e e

e

e

��

 

 

or 

 

( ) j i ij

i

T T  
���

  

 

and 
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2 2

0

0

2 2

0 0

0 0

1 1 1
( ) ( )

2 2

1 1 1
( )
2 2

ij i j ij i j ij

i j i j ij

T E E B B

E E B B

  


  
 

   

   

E B

E B

  

 

Using the tensor, we get the final results 

 

0 0 T
t

 


  

S

f
���

, 

 

or 

 

2

1 i
i i ij

j

S
f T

c t


  

  . 

 

((Mathematica)) 

We prove the above result using Mathematica. 
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13. Application: Vector potential due to magnetic moment 

Here we discuss the magnetic field due to the magnetic moment. The vector potential due to the 

magnetic moment m is 

 

0 0

3 2
ˆ

4 4
dip

r r

 
 

   A m r m r . 

 

So that, the magnetic field due to the magnetic moment is 

 

0

2

0

3

ˆ
( )

4

ˆ ˆ[3( ) ]
4

dip dip

r

r

r r
r






 

  

  

B A

m

m m

 

 

((Proof)) 

We use the Feynman subscript notation 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

        

           

         

         

u v

u u v v

v u u v

u v u v u v

v u u v v u u v

v u u v v u u v

v u u v v u u v

 

 

which is exactly the same as the formula of vector analysis, 

 

( ) ( ) ( ) ( ) ( )          u v v u u v u v v u  

 

We now calculate the magnetic field B with 
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0

3

0

3

1

4

4

dip
r

r







 

 

 

A m r

m r

m A

 

 

and 

 

0
1 34 r




A r , 

 

1 1 1 1 1

1 1

1 1

( ) ( ) ( ) ( ) ( )

( ) ( )

[ , ] ( )CP

         

    

   

m A A m m A A m m A

m A A m

m A A m
 

So that, we have the magnetic field due to the magnetic dipole moment 

 

1

1 1

1

20

5

( )

[ , ] ( )

[ , ]

[3( ) ]
4

dipole

c

c

P

P

r
r




 

   

 

  

B m A

m A A m

m A

m r r m

 

 

where 

 

1 0 A , 

 

and 

 

20
1 5

[ , ] [3( ) ]
4

cP r
r




   m A m r r m . 

 

In summary, the magnetic field due to the magnetic moment is given bt 

 

0 0

3 3
[ , ] ( )

4 4
dipole cP

r r

 
 

    
r r

B m m  
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Fig.3 StreamPlot. Magnetic field distribution due to the magnetic moment m 0
ˆ( )m z along the 

z axis. 0 0

(4 )
m

a


  . a=1.  

 

How about the interaction between magnetic moment 1m  and 2m , where 1m  is at the origin 

and 2m  are located at r ? The interaction energy is given by 

2 2

20
2 1 15

20
1 2 1 25

0
1 2 1 23

[3( ) ]
4

[ 3( )( ) ( ) ]
4

ˆ ˆ[ 3( )( )]
4

U

r
r

r
r

r









  

    

     

    

m B

m m r r m

m r m r m m

m m m r m r

 

 

where 
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20
2 1 15

[3( ) ]
4

r
r




  B m r r m  

 

(i) Cartesian coordinates 

 

 
 

(2). Spherical coordinates 

 

 

 
 

((Note)) You need to use the Mathematica based on the spherical coordinates (main program 

shown later) 

 

14. Application:  Electric field due to electric dipole moment 

The electric potential due to the electric dipole moment p is 
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3

04
V

r



p r

. 

 

So that, the electric field is obtained as 

 

3

0

1
( )

4
dipole V

r
     

r
E p . 

 

Using the formula 

 

3 3

3 3

3

( ) ( )

[ , ] ( )

[ , ]

c

C

r r

P
r r

P
r

    

   



p

r r
p p

r r
p p

r
p

 

 

since  
3

0
r

 
r

. The electric field dipoleE  due to the electric dipole moment p is 

 

3

0

1
[ , ]

4
dipole cP

r
 

r
E p . 

 

So that the electric field dipoleE  and dipoleB  have mathematically the same structure in mathematics. 

 

15. A scalar differential operator [ , ] ( )cP  AB A B: 

In this section, we make a Mathematica program to evaluate the scalar differential operator  

 

( )A B 

 

In terms of three coordinate systems (Cartesian, Cylindrical, and Spherical coordinates) 

 

(a) ( )A B:  Cartesian coordinates 
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ˆ ˆ ˆ( . ) ( )( )

ˆ ˆ( )( ) ( )( )

ˆ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ( )( )

x x y y z z x y z

x x y y z z x x x y y z z y

x x y y z z z

x x x y y x z z x

x x y y y y z z y

x x z

A A A B x B y B z

A A A B x A A A B y

A A A B z

A B x A B x A B x

A B y A B y A B y

A B z

        

           

     

     

     

  

A B

ˆ ˆ( )( ) ( )( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ( )

ˆ( )

ˆ( )

y y z z z z

x x x y y x z z x

x x y y y y z z y

x x z y y z z z z

x x x y y x z z x

x x y y y y z z y

x x z y y z z z z

A B z A B z

A B x A B x A B x

A B y A B y A B y

A B z A B z A B z

A B A B A B x

A B A B A B y

A B A B A B z

  

     

     

     

     

     

     

 

 

Here we use the definition of differential operator for the Cartesian coordinates 

 

,   ,      x y z
x y z

  
     

  
, 

 

We note that 

 

ˆ ˆ ˆ 0 ,  

ˆ ˆ ˆ  =0,

ˆ ˆ ˆ =0

x y z

x y z

x y z

x x x

y y y

z z z

   

   

   

 

 

ˆ( . ) ( )

ˆ( )

ˆ( )

x x y x z x

x y y y z y

x z y z z z

A B A B A B x
x y z

A B A B A B y
x y z

A B A B A B z
x y z

  
   

  

  
  

  

  
  

  

A B

 

 

((Mathematica)) 

For simplicity we define the 
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(b) ( )A B:  Cylindrical coordinates 

 

 

ˆˆ ˆ( . ) ( )( )

ˆˆ( )( ) ( )( )

ˆ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ( )( )

z z z

z z z z

z z z

z z

z z

z

A A A B B B z

A A A B A A A B

A A A B z

A B A B A B

A B A B A B

A B z

     

         

   

      

      

 

 

 

  

  

        

           

     

     

     

  

A B

ˆ ˆ( )( ) ( )( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ( )

z z z z

z z

z z

z z z z z

z z

z z

z

A B z A B z

A B A B A B

A B A B A B

A B z A B z A B z

A B A B A B

A B A B A B

A B z

 

      

      

   

     

      

 

  

  

  

  

  

     

     

     

     

     

  ˆ ˆ( ) ( )z z z zA B z A B z    

 

 

Here we use the definition of differential operator for the Cylindrical coordinates 

 

1
,   ,      z

z
   

  
     

  
. 

 

We note that 

 

ˆ ˆ ˆˆ ˆ(cos sin )zz x y zz       r ,  ˆ
zA A A z    A . 

 

The relation of ˆˆ ˆ,  ,  z   with ˆ ˆ ˆ,  ,  x y z  is as follows, 

 

ˆ ˆ ˆcos sinx y  



  


r
. 

1ˆ ˆ ˆsin cosx y  
 


   


r
,  ˆ ˆz z , 

 

and 

 

ˆ ˆˆ ˆ ˆ ˆ0,     0,       = 0z z     
  
  

       
  

. 
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1 1 1 1 1ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,    ,     = 0z z       
       

  
        

  
, 

 

ˆ ˆˆ ˆ ˆ ˆ0,    0,   0
z z z

z z
z z z

   
  

        
  

, 

 

Thus, we have 

 

ˆ ˆ ˆ( . ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆˆ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

(

z z

z z

z z z z z

z z

z z

A B A B A B

A B A B A B

A B z A B z A B z

A B A B

A B A B A B

A B A B A B

A B

      

      

   

     

      

      

 

  

  

 

  

  

      

     

     

   

     

     

 

A B

ˆ ˆ ˆ) ( ) ( )

1 1ˆ ˆ( ) ( )

z z z z zz A B z A B z

A B A B

 

    
 

   

 

 

 

or 

 

1
ˆ( . ) [( ) ( ) ( ) ( ) ]

1 ˆ[( ) ( ) ( ) ( ) ]

ˆ[( ) ( ) ( )]

z z

z z

z z z z z

A B A B A B A B

A B A B A B A B

A B A B A B z

        

        

   







       

      

     

A B

 

 

with 

 

1
,   ,      z

z
   

  
     

  
 

 

((Mathematica)) 
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(c) ( )A B:  Spherical coordinates 

 

ˆ ˆˆ( . ) ( )( )

ˆˆ( )( ) ( )( )

ˆ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ ˆ ˆ( )( ) ( )( ) ( )( )

ˆ( )( )

r r r

r r r r r

r r

r r r r r

r r

r r

A A A B r B B

A A A B r A A A B

A A A B

A B r A B r A B r

A B A B A B

A B

     

        

    

   

      



 





  



        

           

     

     

     

  

A B

ˆ ˆ( )( ) ( )( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ( )

r r r r r

r r

r r

r r r r r

r r

r r

A B A B

A B r A B r A B r

A B A B A B

A B A B A B

A B r A B r A B r

A B A B A B

A B

     

   

      

      

   

      



 

  

  

  

  

     

     

     

     

     

  ˆ ˆ( ) ( )A B A B          

 

 

Here we use the definition of differential operator for the Cylindrical coordinates 

 

1 1
,   ,      

sin
r

r r r
   

  
     

  
. 

 

We note that 
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ˆˆ ˆ ˆ(sin cos sin sin cosrr r x y       r ,  ˆ
zA A A z    A . 

 

The relation of ˆˆ ˆ,  ,  z   with ˆ ˆ ˆ,  ,  x y z  is as follows, 

 

ˆ ˆ ˆ ˆsin cos sin sin cosr x y z
r

    


   

r

, 

 

1ˆ ˆ ˆ ˆcos cos cos sin sinx y z
r

     



   


r
, 

 

1ˆ ˆ ˆsin cos
sin

x y
r

  
 


   


r
, 

 

ˆˆˆ cos sinz r     , 

 

and 

 

ˆ ˆ ˆ ˆˆ ˆ 0,     0,       = 0r r rr r
r r r

   
  

       
  

, 

 

1
ˆ ˆ

1
ˆ ˆ ˆ(cos cos +cos sin sin ) 

1 ˆ=

r r
r

x y z
r

r

 

    




 



   

 

1ˆ ˆ

1
ˆ ˆ ˆ(-sin cos -sin sin cos ) 

1
ˆ=-

r

x y z
r

r
r

 


    


 



   

 

1ˆ ˆ  = 0
r

 



 

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1
ˆ ˆ

sin

1
ˆ ˆ(-sin +cos ) 

1 ˆ=

r r
r

x y
r

r

  

 




 



  

 

1ˆ ˆ
sin

cot
ˆ ˆ(-sin cos )

cot ˆ 

r

x y
r

r

 
 


 





 



 



 

 

1ˆ ˆ =
sin

1
ˆ ˆ(cos sin )

sin

1 ˆˆ(sin cos )
sin

1 ˆˆ( cot )

r

x y
r

r
r

r
r

 
 

 


 









  

  

  

 

 

So that, 

 

ˆ ˆ ˆ( . ) ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( )

1 1ˆ ˆ( ) ( )

1 cot ˆˆ( ) ( )

1 ˆˆ( ) ( cot )

r r r r r

r r

r r

r r

A B r A B r A B r

A B A B A B

A B A B A B

A B A B
r r

A B r A B
r r

A B r
r

   

      

      

 

   

 

  

  

 






      

     

     

 

 

 

A B

 

 

or 
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1 1
ˆ( . ) [( ) ( ) ( ) ( ) ( ) ]

1 1 ˆ[( ) ( ) ( ) ( ) ( ) cot ]

1 cot ˆ[( ) ( ) ( ) ( ) ( ) ]

r r r r r

r r r

r r r

A B A B A B A B A B r
r r

A B A B A B A B A B
r r

A B A B A B A B A B
r r

       

         

         

 




        

       

       

A B

 

 

with 

 

1 1
,    ,    

sin
r

r r r
   

  
     

  
. 

 

((Mathematica)) 

 

 
 

16. Example from exercises  

We solve typical problems of Arfken using Mathematica discussed above. 

 

(a) Cylindrical coordinates 

 

((Arfken 3-10-17)) 

A calculation of the magnetohydrodynamic punch effect involves the evaluation of 

( )B B . If the magnetic induction B is taken to be 
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21ˆ B


B  

 

Show that 

 

21
ˆ( ) B


  B B  

 

((Solution)) 

 

 
 

which is equal to 21
ˆ( ) B


  B B . 

 

(b) Spherical coordinates 

 

((Arfken 3-10-26 )) 

 

With A any vector 

 

( ) A r A  

 

Verify this result using spherical polare coordinates.  

 

((Solution)) 

 
 

17. Scalar differential operator: Formula 

Here the formula which we obtain are listed here. 

 

ˆnr rA , ˆmr rB , 

 
1 ˆ( ) m nmr r  A B . 
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So that, we have 

 

ˆ ˆ( ) 0r r  , 

 

ˆ ˆ( )r r r , 

 

ˆ ˆ( ) 0r r  , 

 

ˆ( ) rr  r r r , 

 
2 2ˆ ˆ( ) 2r r r r r . 

 

((Note-1))  n: integers 

 

3
0

r
 

r
. 

 

(3 )
n

n
n r

r

  
r

, 

 

1 2

1
ˆ

n n n

n n

r r r
     r r , 

 

ˆ 0 r , 

 

1

ˆ
( ) ( ) 0

n n
r r

   
r r

. 

 

((Note-2)) n: integers 

 

( 1)

ˆ 1 1
ˆ ˆ( )

1
ˆ

ˆ ˆ

0

n n n

n

n

r r r

r

nr 

    

  

 



r
r r

r

r r

 

 

((Mathematica Program))  Spherical coordinates 
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((Arfken))  Application (solving problems in Arfken) 

 

(a) ((Arfken 3-10-23)) 
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(b) ((Arfken 3-10-26 )) 

 
 

18. Examples: Spherical coordinates 

 

(a) ((Arfken 3-10-26 )) 

With A any vector 

 

( ) A r A  

 

Verify this result using spherical polare coordinates.  

 

((Solution)) 

 
 

(b) ((Arfken 3-10-37)) 
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An electric dipole of moment p is located at the origin. The dipole creates an electric 

potential at r given by 

 

3

0

( )
4 r






p r

r  

 

Find the electric field, ( ) E r  at r. 

 

((Solution)) 

 

 
 

(c) ((Arfken 3-10-35 )) 

A certain force field is given in spherical coordinates by 

 

3 3

2 cos ˆˆ sin
P P

r r


 F r θ   / 2r P  

 

(a) Examine F  to see if a potential exists. 

(b) Calculate d F r�  for a unit circle in the plane / 2  . What does this indicate 

about the force being conservative or nonconservative? 

(c) If you believe that F may be described by  F , find  . Otherwise simply 

state that no acceptable potential exists. 

 

 
 

19. CONCLUSION 

Using Mathematica, we show that the Feynman (Gibbs) subscript notations are mathematically 

correct. Here we only show the case of Cartesian coordinates. We also make programs of these 

expressions in terms of three coordinates such as cylindrica; coordinates and spherical coordinates 
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as well as the Cartesian coordinates. During the above discussions, we realize that Feynman 

(Gibbs) subscript notations in vector product plays significant roles to understanding the essential 

concepts in electricity and magnetism; 

 

1 The energy conservation with Poynting vector, 

2. The magnetic force due to the magnetic moment. 

3. The electric force due to the electric dipole moment. 

4.  The magnetic field from the vector potential due to magnetic moment. 

5. The electric field from the electric dipole moment. 

6.  Magnetic field due to the magnetic moment and electric field due to electric dipole 

moment. The mathematical structures are the same and expressed by scalar differential 

operator. 

7. Maxwell’s stress tensor (actually, the derivation of this formula is our first motimation). 

 

Using the Mathematica, one can calculate a scalar differential operator  

 

[ , ] ( )cP  u v u v , 

 

in terms of Carteaian, Cylindrical, and Spherical coordinates. 

 

____________________________________________________________________________ 
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Did Feynman Invent Feynman subscript notation? 

https://tensortime.sticksandshadows.net/archives/718 

 

 


