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1. Wave packet
If we consider a plane monochromatic wave travelling in the x direction, the wave
amplitude A at time t and point X is

A(x,t) = A, cos(kx — at)
The wave number k is related to the wavelength 1 by

k=27
2

The angular frequency w is related to the frequency n by
w=2rv

In many cases it is more useful to use complex notation, in which we express the cosine by
exponential function according to the formula,

A(X, 1) = %[ei(kx—@t) + e—i(kx—a;t)]

P

Applying the relations; @ = % ,and k = e we obtain the expression of the wave;

exp[i(kx —wt)] = exp[% (px—Et)
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Fig. Instantaneous view of a wave with amplitude Ay and wavelength A.

This plane wave is an infinitely long wave train. On the other hand, we assume that
particles are localized. We need to consider whether we can, by superposing a sufficient
number of suitable wave trains, arrive at some spatially concentrated sort of wave. We are
trying to form what are called wave packets, in which the amplitude is localized in a certain

region of space.
We now consider a simple case of the superposition of two waves

A(x,t) = Aj[cos(k x —at) + cos(k,X — @,t)]
=2 A, cos[kx — &]cos[(AKk)x — (Am)t]

where
LR PNCRCA
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ak =Xk Ao=2""
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Fig.  Superposition of two waves of the same amplitude. Fundamental wave 1 (red).
Fundamental wave 2 (green). Resulting wave (blue). t = constant.

Example
2.1  Example-1: Problem 5-31 (Thornton, Modern Physics)

Use equation
w(X,t)= J' K(k)cos(kx — ot)dk

with A(k) = A, for the range of k, —A?k and K, +A7k , and A(k)=0 elsewhere to

determine y(X,t =0), that is at t = 0. Sketch the envelope term, the oscillation term,

and |1//(X,t =0) 2 Approximately, what is the width 4x over the full-width at half-

maximum part of |l//(x,t = 0)|2 ? What is the value of AKAX?

((Solution))
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w(x,t=0)= jﬂ(k)cos(kx)dk =A j cos(kx)dk

1

ko—-Ak ko— Ak
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_2 cos(K,X) sin( xAk)
2
sin(’“;k)
= Ak COS(kOX)T
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We make a plot of

Y
sin (2)

)

f(y)=

where
y = (Ak)x
f(y) is equal to 1/2 when (Ak)x = 1.39156. Then the full-width at half-maximum is

AKAX =2.78312=0.88589 7~ .



((Mathematica))
Clear["Global +"];
kO + A_2k
J Ak Cos[k x] dk //

2
Simplify

H X AK
2 Cos [kO X] Sln[T]

X

Fly_ 1 := (Sm[y] ]2;
y

Plot[f[y], {y, -10, 10},
AxeslLabel -

{" (ak)x", "f"},
PlotStyle »

{Thick, Red},
Ticks »

{Range[ -2xr, 27m, m]}]

(AK)x

- - > 15
FlndRoot[Sln[y] —-5 y< =0,

(v, 1, 5}]

{y > 1.39156)



2.2 Example-2
Problem 5-63 (Thornton, Modern Physics)
Use a computer program to produce a wave packet using the function

v, = A, cos(2nX)
where the integer n ranges from 9 to 15. Let the amplitude A;; = 1 with the

amplitudes A, decreasing symmetrically by 1/2, 1/3, 1/4 on either side of A;, = 1/3
and A;s = 1/4). (a) Plot the wave packet

W= i A, cos(27mX)

versus X to see repeatable behavior for the wave packet. (b) Where is the wave
packet centered? Over what value of X is the wave packet repeated?

((Mathematica))



Clear["Global " %"7];
1 1 1
Yy =— Cos[1l8nxX] +— Cos[20w X] + — Cos[22 7 X] +
4 3 2
1 1
Cos[24 n X] +E Cos[26 & X] + ?3 Cos[28 7w X] +
1
— Cos[30 x Xx]
4

Plot[y, {x, -1, 1}, PlotStyle » {Red, Thick},
Background - LightGray, AxesLabel -» {""x", "¢ (X)"}]

Y(x)
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Plot[y, {Xx, -3, 3}, PlotStyle - {Red, Thick},
Background - LightGray, AxesLabel - {"'X", "y (X)"}]

Y(x)




3. Group velocity
We assume that the energy dispersion relation is given by

w = w(k) (energy dispersion relation)
In evaluation the integral
we set

k =k, +(k—K,)

and expand @ about the value Kk, using a Taylor series in (K - kg), which we terminate after
the second term:

o= a, +Vy(K=K))+...

where v, is called the group velocity,

_Ow
Vg - a_k |k:kn
Then we get
k 0+Ak
w(x,t)=A J.exp[i(kx - o t)]dk
KO—AK

= Aexp[i(k,Xx — ao,t)] Iexp[i((k — k)X =V, (k—k,)t)]dk

k0—Ak
Ak
= Aexpli(k,X— ay,t)] j exp[i&(x—v,)]dk

—Ak

where we have set (k —Kk,) =& . Finally, this integral; takes the form

2Ak sin(x — v, t)Ak

vt =Aexplitkx ~ a7 —V,1)Ak




We make a plot of {Re[yA(X, t)]}* as a function of X with t varied as a parameter.
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Typical example for the plot of {Re[y(x, t)]}* vs X with t = 5. Ve =2.0.t=5.
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((Conclusion))
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We can draw two important conclusions from the above Fig.

(1)  The wave packet represented by y/(x,t) is strongly localized in the region of x = Vv,t.

The maximum amplitude moves with a group velocity V,.

ow 10E
V. =—=———
¥ ok hop
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The plot of {Re[ (X, t)]}* vs X with t varied as a parameter.t = 5, 10, 15, 20, 25, and



(2) The width of a wave packet is roughly the distance between the first two zero points
to the left and right of the maximum. The width of the wave packet would be

AX = 2z
Ak
or
AKAX =27 (The principle of uncertainty).
4. Gaussian wave packet

We now consider the Gaussian wave packet.

NaS (k—k,)?
f = Aexp[ik(x—X,) |2m t]exp[— 208K ——]

The superposition of f over k leads to

m(X — X, )(2iK, — (X = X, )(Ak)*) —ik, ’th
Av2z expl 2(m + it(Ak)* 1) :

- ; + @
(Ak)>  m

f'f, is evaluated as

— (AKY (x - x, — oty
2A? m
7expl L AR |
it m>
gl - fl fl - 1 +ﬁ
(A m’
Normalization:
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F 2A'x
1 = _J;)gldX = —1
7(Ak)?

or

1
A=—
\/572_3/4&

Thus we have

k,th

. AT — (Ak)* (X=X, —?)2
glzflflz\/_ exp[ 2 412
Ak 1+t (AK)' 7
m2
or
- (AR (x-x, — O
expl ok
=
- m
' Jzak 1 tr
(Ak)*  m
The final form of f,”f, is given by
— Ak (x -, — oty
m
expl L A ]
2 x 1 2
xt) =ff = m
|l//( ) VT oAk 1 +@
Ak m’

((Note)) The final form of the normalized wave function is given as
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ik (= %)= - (x =, ak)" = 0ty 1 k)
exp[ 2 — 2m m ]
(AK)*R
(Ak)l/Z (1+ m2 )
(Xt =-—7
™ \/1+ ith(Ak)?
m

((Physical meaning of the equation for the wave packet))
The position of center:

_:_0:\/0

The spreading of the wave packet:

1 t*n’
AX = 1+ ——(Ak)*
\/EAk m (&%)

2 .

The amplitude of |1//(X,t)

P 1
222

\/;\/chz (Ak)*
m

The evolution of the wave packet is not confined to a simple displacement at a
velocity Vy. The wave packet also undergoes a deformation.

The Heisenberg’s principle of uncertainty:

1 S NI

13



W (x,1%

-I'-—

0.1

2 .
as a function of X.

Fig.  Propagation of Gaussian wave packet. Plot of |1//(X,t)

The time t is changed as a parameter; t =0 - 1 with At=0.05. m=1. i=1.
k0=2.Ak=7. Xo = 0.

((Mathematica)) QM wavepacket
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Evolution of Gaussian Wave packet Gaussian

Clear["Global ""7];

Akz X_Xo_w)z
m
1 12 ak4 12
7
@ m

2 52
Vi ok = + 22

rulel={m-1, -1, kO>2, Ak>7, XO0- 0};
seql = Py /. rulel;

pl = LogPlot[Evaluate[Table[seql, {t, 0, 1, 0.05}]], {x, O, 5},
PlotStyle -» Table[{Thick, Hue[0.051i]}, {i, 1, 20}],
PlotRange -» {{0, 5}, {0.05, 4}}, AxesLabel » {"x", ™|y (x,1) I2"}]
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Avexl = Integrate[x Py, {X, -o, o},

m2 ak?
m2+t2Ak4h2] >O}]

Assumptions - {Re[

mx0+kOtn

2 72 2 k2
m Ak 1+tf’1 \/ m< ak

@ m2 m2.t2 rk4 n2
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5. Fourier transform of Gaussian distribution function
The Gaussian distribution function is given by

f(x)= \/%0 exp(— 2);22 ).

The full-width at half-maximum, 4, is given by
AX = (272 1n2)o,

since

X )_l
2027 2

exp(—

The line width AX increases with increasing o.

f(x)

The Fourier transform of f(X) is given by

“RE (X)dx = Lexp(—% k?c?)

I
P L o
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which also shows the Gaussian distribution. The full-width at half-maximum, Ak, is given
by

A= (22 In2)

o

since

Uzkz)_l
2 2

exp(—

The width of the line, 4k, shape decreases with increasing o.

F(k)

Thus we have the relation
AXAK = (24/21n2)5(2+/2 In 2)i =(24/21n2)* =3.84>1
(o2

which satisfies the Heisenberg's principle of uncertainty.

6. Group velocity and phase velocity
6.1  Result from special relativity
The total energy E and the momentum p are expressed by
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where V is the particle velocity (group velocity). The energy dispersion relation is
given by

E :\/mzc4 +c’p’ :c\/mzc2 +p’=E,+K
Since

c’(m’c®> + p*) = (E, + K
or

c’p’ =(E, +K) -E,

we get the expression for p,

JE, +K) -E, K> +2KE,
C C

p:

where K is the kinetic energy and E, is the energy at rest mass.
2

E,=mc

When E; >> K, p can be approximated by

v 2KE, _ oK

C

pz

6.2  Group velocity vq
The group velocity is defined as
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Pap mici+p?

2

_h_cp_

\Y

E E

C

_ &y/K®+2KE,

K+E,

In other words, the group velocity is identical with the particle velocity. In the limit
of K<<E,, we get

o SOPRE KK
o E, E, m

6.3  Phase velocity v,
The phase velocity V, is defined as

Since V = Vg, we have the relation between Vv, and v, as
_ A2
VgV, =C

6.4  Classical limit
Classically, we have the energy dispersion relation

£-P
2m
The group velocity is
OE, p _
 op m
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(d) phase velocity

y _E ¢ ¢
ph__:_:_
p v pB
or
vV =c’

Since V¢<C, V, is larger than C.
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