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1. Wave packet 
If we consider a plane monochromatic wave travelling in the x direction, the wave 

amplitude A at time t and point x is 
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The wave number k is related to the wavelength l by 
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The angular frequency w is related to the frequency n by 
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In many cases it is more useful to use complex notation, in which we express the cosine by 
exponential function according to the formula, 
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Applying the relations; 
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k  , we obtain the expression of the wave; 
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Fig. Instantaneous view of a wave with amplitude A0 and wavelength . 
 
This plane wave is an infinitely long wave train. On the other hand, we assume that 
particles are localized. We need to consider whether we can, by superposing a sufficient 
number of suitable wave trains, arrive at some spatially concentrated sort of wave. We are 
trying to form what are called wave packets, in which the amplitude is localized in a certain 
region of space.  

We now consider a simple case of the superposition of two waves 
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Fig. Superposition of two waves of the same amplitude. Fundamental wave 1 (red). 

Fundamental wave 2 (green). Resulting wave (blue). t = constant. 
 
__________________________________________________________________2.
 Example 
2.1 Example-1: Problem  5-31 (Thornton, Modern Physics) 

Use equation 
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determine )0,( tx , that is at t = 0. Sketch the envelope term, the oscillation term, 

and 
2

)0,( tx . Approximately, what is the width x over the full-width at half-

maximum part of 
2

)0,( tx ? What is the value of xk ? 

 
((Solution)) 
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We make a plot of 
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where 
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f(y) is equal to 1/2 when xk)(  = 1.39156. Then the full-width at half-maximum is 

 

xk  = 2.78312 = 0.88589  ≈ . 
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((Mathematica)) 

 

Clear"Global`";


k0  k
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k0  k
2 Cosk x k 

Simplify

2 Cosk0 x Sin x k
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fy_ :
Siny

y

2
;

Plotfy, y, 10, 10,

AxesLabel 

"kx", "f",

PlotStyle 

Thick, Red,

Ticks 

Range 2 , 2 , 
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___________________________________________________________________ 
2.2 Example-2 
Problem 5-63 (Thornton, Modern Physics) 

Use a computer program to produce a wave packet using the function 
 

)2cos( nxAnn    

 
where the integer n ranges from 9 to 15. Let the amplitude A12 = 1 with the 
amplitudes An decreasing symmetrically by 1/2, 1/3, 1/4 on either side of A12 = 1/3 
and A15 = 1/4). (a) Plot the wave packet 
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versus x to see repeatable behavior for the wave packet. (b) Where is the wave 
packet centered? Over what value of x is the wave packet repeated? 
 
((Mathematica)) 
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Clear"Global`";
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Plot, x, 1, 1, PlotStyle  Red, Thick,

Background  LightGray, AxesLabel  "x", "x"
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3. Group velocity 
We assume that the energy dispersion relation is given by 

 
)(k    (energy dispersion relation) 

 
In evaluation the integral  
 
we set 
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and expand  about the value k0 using a Taylor series in (k - k0), which we terminate after 
the second term: 
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where vg is called the group velocity, 
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where we have set  )( 0kk . Finally, this integral; takes the form  
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We make a plot of {Re[(x, t)]}2 as a function of x with t varied as a parameter. 

 

 
 

Fig. Typical example for the plot of {Re[(x, t)]}2 vs x with t = 5. vg = 2.0. t = 5. 
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Fig. The plot of {Re[(x, t)]}2 vs x with t varied as a parameter.t = 5, 10, 15, 20, 25, and 
30. vg = 2.0. t = 5. 

 
((Conclusion)) 

We can draw two important conclusions from the above Fig. 
(1) The wave packet represented by ),( tx  is strongly localized in the region of x = vgt. 

The maximum amplitude moves with a group velocity vg.  
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(2) The width of a wave packet is roughly the distance between the first two zero points 

to the left and right of the maximum. The width of the wave packet would be 
 

k
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or 
 

2 xk   (The principle of uncertainty). 
 
_______________________________________________________________________ 
4. Gaussian wave packet 

We now consider the Gaussian wave packet. 
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Normalization: 
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The final form of 1
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1 ff  is given by 
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((Note)) The final form of the normalized wave function is given as 
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((Physical meaning of the equation for the wave packet)) 
The position of center: 
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The velocity of center 
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The spreading of the wave packet: 
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The evolution of the wave packet is not confined to a simple displacement at a 
velocity v0. The wave packet also undergoes a deformation. 
 

The Heisenberg’s principle of uncertainty: 
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Fig. Propagation of Gaussian wave packet. Plot of 
2

),( tx  as a function of x. 

The time t is changed as a parameter; t = 0 - 1 with t = 0.05. m = 1. 1 . 

k0 = 2. k = 7. x0 = 0. 
 
___________________________________________________________________ 
((Mathematica)) QM wavepacket 
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Evolution of Gaussian Wave packet Gaussian 

Clear"Global`";

P 
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;

rule1  m  1, —  1, k0  2, k  7, x0  0;

seq1  P . rule1;

p1  LogPlotEvaluateTableseq1, t, 0, 1, 0.05, x, 0, 5,

PlotStyle  TableThick, Hue0.05 i, i, 1, 20,

PlotRange  0, 5, 0.05, 4, AxesLabel  "x", "x,t 2"
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5. Fourier transform of Gaussian distribution function 

The Gaussian distribution function is given by 
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The line width x increases with increasing . 
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which also shows the Gaussian distribution. The full-width at half-maximum, k , is given 
by 
 


)2ln22(

k , 

 
since 
 

2

1
)

2
exp(

22


k

. 

 

The width of the line, k, shape decreases with increasing . 
 

 
 
Thus we have the relation 
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which satisfies the Heisenberg's principle of uncertainty. 
 
_______________________________________________________________________ 
6. Group velocity and phase velocity 
6.1 Result from special relativity 

The total energy E and the momentum p are expressed by 
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where v is the particle velocity (group velocity). The energy dispersion relation is 
given by 
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where K is the kinetic energy and E0 is the energy at rest mass. 
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When KE 0 , p can be approximated by 
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6.2 Group velocity vg 

The group velocity is defined as 
 



19 
 

0

0
2

2

222

2

EK

KEKc

v
E

pc

c
E
cp

pcm

cp

p

E
vg
















 

 
In other words, the group velocity is identical with the particle velocity. In the limit 
of K<<E0, we get 
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6.3 Phase velocity vp 

The phase velocity vp is defined as 
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Since v = vg, we have the relation between vg and vp as 
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6.4 Classical limit 

Classically, we have the energy dispersion relation 
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(d) phase velocity 
 


c

v

c

p

E
vph 

2

 

 
or 
 

2cvv pg   

 
Since vg<c, vp is larger than c. 
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