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1. Basic postulate 

 
Albert Einstein (1879 – 1955) 

 
Neither the laws of mechanics nor the laws for the propagation of light reveal any 

intrinsic distinction between different inertial reference frames. This motivated Einstein 
to take a bold step and to propose a general hypothesis concerning all the laws of physics. 
This hypothesis is the principle of relativity. 
 
The Principle of Relativity 
 
1. Space is isotropic and uniform. The fundamental law of physics are identical for 

ant two observers in uniform relative motion. 
 
2. The speed of light (in vacuum) is the same in all reference frames in uniform 

motion with respect to the source. It always has the value c. 
 
2. Michelson-Morley experiments 
2.1 Ether 

Nineteenth-century physicists thought- reasonably at the time-that light must 
propagate in the ether analogously to the way that sound propagates in a material medium 
such as air. The speed of sound in air depends on properties of the air. Most important, 
the peed of sound an observer measures depends on the observer’s motion relative to the 
air. If the ether carried light the way air carriers sound, then an observer moving relative 
to the ether would measure the speed of a light wave so that it would vary according to 
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the observer’s speed. The observer could “catch up with” or “fall back from” a 
propagating disturbance. 
 
2.2 The questions of ether asked by Maxwell 

In the 1870’s Maxwell asked whether the velocity of Earth relative to the ether might 
affect the observed speed of light. Earth traces out an elliptical orbits as it moves around 
the Sun. This motion can be well approximated by uniform motion in a straight line with 
a speed over time intervals substantially shorter than a year. But how large is the velocity 
v? We can approximate Earth’s orbit by a circle with a radius of 1 AU (astronomical unit 
= average distance between the Earth and the Sun, 1.49597870 x 108 km), around whose 
circumference our planet moves uniformly. With one year about equal to 365 x 24 x 60 x 
60 = 3.1536 x 107 s, v is equal to 29.805 km/s, so that  
 

v/c = 9.9421 x 10-5 
 
2.3 Michelson-Morley experiment 
 

 
 

Albert Abraham Michelson (December 19, 1852 – May 9, 1931) was a 
Prussian-born American physicist known for his work on the measurement of the 
speed of light and especially for the Michelson-Morley experiment. In 1907 he 
received the Nobel Prize in Physics. He became the first American to receive the 
Nobel Prize in sciences. 

 
Attempts were made to determine the absolute velocity of the earth through the 

hypothetical “ether” that was supposed to pervade all space. The most famous of these 
experiments is one performed by Michelson ad Morley in 1887. It was 18 years later 
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before the negative results of the experiment were finally explained, by Einstein. 
(Feynman Physics, volume 1, 15-3) 

The Michelson-Morley experiment was performed with an apparatus like that shown 
schematically in the Fig. The system consists of a light source A, a partially silvered glass 
plate B, and two mirrors C and E, all mounted on a rigid base. The mirrors are placed at 
equal distance L from B. The plate B splits on a coming-beam of light, and the two 
resulting beam continue in mutually perpendicular directions to the mirrors, where they 
are reflected back to B. On arriving back at B, the two beams are recombined as two 
superposed beams, D and F. If the time taken for the light to go from B to E and back is 
the same as the time from B to C and back, the emerging beams D and F will be in phase 
and will reinforce each other, but if the two times differ slightly, the beams will be 
slightly out of phase and interference will result. If the apparatus is at rest in the ether, the 
times should be precisely equal, but if it is moving toward the right with a velocity u, 
there should be difference in the time. 
 

 

 
 

Fig. Schematic diagram of the Michael-Morley experiment.  
 
The time required for the light to go from plate B to mirror E is t1, and the time for the 
return is t2. While the light is on its way from B to the mirror, the system moves a 
distance vt1, so the light must transverse a distance L + vt1 at the speed c. 
 

L + vt1 = ct1  or 
vc

L
t


1  
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During the time t2, the plate B advances a distance vt2, so the return distance of the light 
is L – vt2. Then we have 
 

L – vt2 = ct2  or 
vc

L
t


2  

 
The total time is 
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The time required for the light to go from B to the mirror C is t3. During the time t3, the 
mirror C moves to the right a distance vt3 to the position C1; in the same time, the light 
travels a distance ct3 along the hypotenuse of a triangle, which is BC1. Then we have 
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The total time for the round trip is 2t3. 
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The numerators of Eq.(1) and Eq.(2) are identical, and represent the time that would be 
taken if the system were at rest. The difference time t is given by 
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For L = 1 m and v = 2.9805 x 104 m/s, we have 
 

st 1710297.3  . 
 
For the Na D-line ( = 590 nm), the period T is obtained as 
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This is 1.675 % of a fringe shift and the Michelson instrument could detect that. This was 
something that was absolutely measurable; indeed it could not be missed. But when they 
did the experiment, they found nothing! There was no fringe shift, indicating no phase 
shift between the waves and hence no time difference t. They repeated the experiment 
later in the year, when the Earth was in a different position in its orbit, just in case the 
planet has been accidentally at rest in the ether the first time. Still they found nothing; 
there was no shift at all. 

In conclusion, the speed of light is the same, no matter how the frame in which its 
speed is measured moves, at least for the kind of approximately uniform motion an 
earthbound instrument undergoes.  
 
3. Lorentz transformation 
3.1 Derivation of Lorentz transformation 
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We consider a Galilean transformation given by 
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We know that the velocity of light remains unchanged under a transformation (so-called 
the Lorentz transformation) satisfying the principle of relativity. This implies that the 
Lorentz transformation is not the same as the Galilean transformation. 
 
Here we assume that 
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from the symmetry of transformation 
 
What is the value of ? 
 
(i) The light is emitted at 
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(initially). The speed of light (in vacuum) is the same in all internal reference frames; it 
always has the value c. 
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The determination of the Lorentz factor . 
 
The substitution of ctx   and '' ctx   yields 
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or 
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((Mathematica)) 
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Derivation of Lorentz transformation

eq1  x   x'  v t'; eq2  x'   x  v t

x  t v  x 

eq3  Solveeq1, eq2, x', t'  Simplify  Flatten

t 
x  1
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 t , x  t v  x 

eq4 
x'

t'


x

t
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_____________________________________________________________ 
Then we have 
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When v is changed into –v, the Lorentz transformation from the S’ to S frames can be 
described as 
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noting that x→x’, t→t’, v -v.  
 
In summary, we have the Lorentz transformation 
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((Mathematica)) 
 

 
1

1 2

1

1 2

Series, , 0, 5

1
2

2


3 4

8
 O6

 
 
3.2 Lorentz contraction (length contraction) 

Imagine a stick moving to the right at the velocity v. Its rest length (that is, its length 
measured in S’) is 'x . 
We measure the distance of the stick under the condition that 0t . Since  
 

xtcxx   )('  
 
we have 
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The length of the stick measure in S (x) is shorter than that observed in S’ (x’ = x0 
proper length at the rest-frame) 
 
3.3 Time dilation 
 
3.3.1 Derivation of the time dilation from the Lorentz transformation 

We are watching one moving clock moving to the right at the velocity v. 
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The time in S (t) is longer than that observed in S’ (t0, proper time). The moving 
clocks run slow. The time measured with a clock that stays at one place in its reference 
frame (like the clock in S’) measures proper time. 
 
3.3.2 Experiment for the time dilation 
 

 
 

Our system consists of a box containing two mirrors between which a light pulse bounces 
back and forth. If the distance between mirrors is l0, the interval between successive 
counts is  


c

l
t 02
'  (1)


in the frame S’. We assume that this frame S’ is moving at constant velocity (v) with 
respect to another frame S. The path of the light pulse with respect to the frame S is ABC, 
and takes a time t.  
 

AN = NC = v (t/2). 
BN = l0. 

 
Therefore, 
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From Eqs.(1) and (2), we have 
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with  = v/c. 
 
3.3.3 Length contraction derived from the time dilation 

 
The proper time for one round trip of the light is 
 

c

l
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Note that the definition of the proper time is given later. 
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We assume that the length of the system is l as measured in S. Let the light take a time 
t1 to travel from A1 to B2 (at which point it is reflected) and a time t2 to travel from B2 
to A3. Then we have 
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The total time t is obtained as 
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Using the relation for the time dilation 
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we get 
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4. Four-dimensional representation of the Lorentz transformation 
4.1 Lorentz transformation 

For convenience, we introduce 
 

ictx 4  
 
or 
 

t
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x
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and 
 

x1 = x, x2 = y, and x3 = z, 
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where i is the pure imaginary. 1i . 
 
Then we have 
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4.2. Inverse Lorentz transformation 

Inversely, we have the inverse Lorentz transformation 
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or in the matrix form, 
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where aT is the transpose matrix of a. 
 
In summary, we have 
 

 '')(')( 1 xaxaxax T    

 
Note that 
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     aaaaaaaa T )()( 11  

 
(i) Invariant under the Lorentz transformation 
 

  xxxxxxaaxaxaxx ''  

 
(ii) Inverse Lorentz transformation 
 

 xax ' 


  xxxaaxa ' 

 
or 
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' xax   or ' xax  

 
((Mathematica)) 
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4.3 Lorentz transformation of four vector 

We introduce the four vector notation 
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A ( = 1, 2, 3, and 4) 

 
where 
 

A1, A2, A3:  real 
A4 = iA0  purely imaginary 

 
The new four-vector in the S’ frame is related to the old four-vector in the S-frame 
through the Lorentz transformation by 
 

 AaA '  

 
or 
 

' AaA  


since 
 

  AAAaaAa '  
 
Here we define the scalar product by 
 

BABA   

 
It is seen that this scalar product is invariant (Lorentz scalar) under the Lorentz 
transformation, 
 

BABABAaaBaAaBA   ''  

 
4.4 Proper time 
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In simple terms, the proper time is the time on a clock that moves with a particle. The 
system moves with the velocity v in the S-frame. The system is at rest in the S’-frame. 
Here we show that  dx 2 is relativistic invariant under the Lorentz transformation. 
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The proper time is defined as follows, 
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where  is a proper time. The proper time is a time recorded by the standard clock 
moving with a uniform velocity v relative to an inertial system S. Since ds is invariant 
under the Lorentz transformation, the proper time is also invariant. 
 
4.5 Four dimensional Laplacian operator 
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is invariant under the Lorentz transformation: Lorentz scalar 
 
















xxxxxxxx

aa
x

a
x

a
xx 








































''


 
4.6 Successive Lorentz boots 
4.6.1 Lorentz boot I 
 

 
 

We define two Lorentz transformations as 
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from the S frame to the S’ frame (along the x direction). 
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from S” frame to the S frame (along the x direction), where 
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from the S” frame to the S’ frame (along the x direction). Then Lorentz transformation 
(S’ →S”) [= a(3)] can be expressed by 
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from the S’ frame to the S’’ frame (along the x direction), where 
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It is easily proved that 
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In other words, )( 2xa  and )( 1xa  commute. 

 
4.6.2 Lorentz boots II 
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We define the Lorentz transformations from the frame S to S’ ( along the y direction),  

and from S to S’ (along the z direction) as  
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Neither the matrix )()( 21  yx aa  nor the matrix )()( 12  xy aa  can be replaced by the 

transforming matrix required by a single boost.  
 
4.6.3. General Lorentz transformation without rotation 
 

If vx, vy, and vz denote the components of the velocity of the system S’ relative to S, 
we have a general Lorentz transformation without rotation, 
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5. Velocity and acceleration 
5.1 Lorentz velocity transformation 
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Suppose that an object has velocity components as measured in S’ and S. 
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((Note)) 
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(i) If u1 = c, u1’ = c. 
 
(ii) If u2 = c and u1=0,  
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(iii) The Lorentz transformation of a velocity less than c never leads to a velocity 

greater than c. 
 
((Example)) 
 

cv

cu

10

9
10

9
'1




  cc

cc

u
c

vu
u 











181

180

100

81
1

10

9

10

9

'1

'

1

1
1   

 
whereas the Galilean transformation would have given 
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5.2 Lorentz acceleration transformation 
 
Similarly we have the acceleration components as measured in S’ and S. 
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The acceleration is a quantity of limited and questionable value in special relativity. Not 
only is it not an invariant, but the expressions for it are in general cumbersome, and 
moreover its different components transform in different ways. 
 
6. Relativistic dynamics 
 
6.1 Universal function f(u) for mass 

First we show that the relativistically correct definition of momentum of a particle of 
mass m and velocity u is given by 
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where m0 is the mass when the particle is at rest. For a particle moving with the velocity 
u relative to a system of inertia S, we shall assign a momentum vector p proportional to u, 
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The proportionality factor m(u) is called the mass of the particle. Here we assume that 
m(u) is a universal function f(u) of the magnitude uu  of the velocity vector. Thus 

 
)()( ufum   

 
If the velocity of the particle relative to another system of inertia S’ is u’, the momentum 
and mass of the particle relative to S’ must be given by 
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This follows from the principle of relativity, according to which all systems of inertia 
must be treated on the same footing, so that any relation between physical quantities shall 
be form-invariant. 
 
6.2 Conservation of momentum and definition of relativistic momentum 

We now determine the function f. This function is uniquely determined when we 
require that the theorem of conservation of momentum shall hold in any system of inertia. 
Let S and S be two systems of inertia with the relative velocity v (along the x axis), and 
consider a collision between two identical particles a and b.  

Let the frame S be the center of mass frame with two identical particles having initial 
velocities, 
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along the x axis. The particles collide and scatter, emerging with final velocities 
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In the S’ frame the conservation equations for momentum and energy are 
 

''''

''''

dcba

dcba

EEEE 
 pppp

 

 
or 
 

)"()'()()(

")"(')'()()(

uuuu

umumumum

 
 uuuu

 

 
Here we assume that 
 



27 
 

)(

)(

uE

um


 up

 

 
Because the particles are identical, it is necessary that )"()'( uu   . With the hypothesis 
of monotonic behavior of )(u , that uuu  "' . The first equation requires 
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We now consider the collision in another frame S moving with a velocity –u in the x 
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which is parallel to the x axis. 
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Fig. x and y component of the velocity v’ in the S’ frame; v1’ and 

v2’. 
 
((Note)) Here we use the formula, 
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The equations of conservation of momentum and energy in the frame S are rewritten as 
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This relation is valid for all  and in particular  = 0. 
 
When  = 0,  
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The mass m(u) is obtained as 
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The momentum of a particle of rest-mass m0 and velocity u is 
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6.2 Relativistic force and relativistic kinetic energy 

We define the force F and the kinetic energy K as 
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where C is a constant of integration. Since the kinetic energy may be taken as zero for u = 
0, we have 
 

C = -m0c
2. 
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which is in agreement with the classical result. The term m0c

2 in the kinetic energy is 
independent of the velocity. It is called the rest energy, E0 = m0c

2, of the particle.  
It is convenient to introduce the total energy E (= kinetic energy + rest energy) 

defined by 
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E is the relativistic energy of a free particle. When a particle is at rest, E0 = m0c

2. This is 
Einstein’s famous equation. This suggests that mass and energy are equivalent, and 
indeed this is the case.  

It is useful to express E in terms of p, as 
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The kinetic energy is simply expressed by 
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7. Four-dimensional momentum 

Here we define the four-dimensional momentum 
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This momentum is clearly a four-vector since dx  is a Lorentz four-vector and m0 and d 
are Lorentz scalar. In fact, under the Lorentz transformation 
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The frame S is moving relative to S with velocity v in the direction of the positive x-axis. 
Here we note that 
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((Velocity four-vector)) 

We define the velocity four-vector u by 
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where m0 is the rest mass, which is an invariant scalar in four dimensions. 
 
8. Force 

The force F is defined by 
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9. Doppler shift and aberration 
9.1 
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This should be equal to 
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Substituting these parameters into the invariant form, we have 
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9.2. Doppler shift 
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Fig. ’/ vs .  = 0 – 0.99 with  = 0.05. 
 
9.3 longitudinal Doppler shift 0  (red shift) 

We suppose that a source is located at the origin of the reference frame S. An 
observer moves relative to S at velocity v. So that he is at rest in S’. 
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If S’ moves toward S, rather than away from S, the signs in numerator and denominator 
of the radical would have been interchanged. 
 

c

v
c

v

ff





1

1
'   (approaching source) 

 
((The red shift)) Wikipedia 

The light from distant stars and more distant galaxies is not featureless, but has 
distinct spectral features characteristic of the atoms in the gases around the stars. When 
these spectra are examined, they are found to be shifted toward the red end of the 
spectrum. This shift is apparently a Doppler shift and indicates that essentially all of the 
galaxies are moving away from us. Using the results from the nearer ones, it becomes 
evident that the more distant galaxies are moving away from us faster. This is the kind of 
result one would expect for an expanding universe. 
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The building up of methods for measuring distance to stars and galaxies led Hubble to 
the fact that the red shift (recession speed) is proportional to distance. If this 
proportionality (called Hubble's Law) holds true, it can be used as a distance measuring 
tool itself.  

The measured red shifts are usually stated in terms of a z parameter. The largest 
measured z values are associated with the quasars. 
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Fig. red shift: '/ vs  = v/c 
 

0.4 0.5 0.6 0.7 0.8 0.9


2

4

6

8

10

12

z

 
 

Fig. z parameter 1
'





z  vs  = v/c 

 
9.4 Relativistic aberration 
 
From the equations above derived 
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For low velocity we can neglect 22 / cv  and higher-order terms. Setting  '  
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9.5 Transverse Doppler shift 
 
From the equations given by 
 

'cos')(cos

')cos1(





k
c

v
k

k
c

v
k




 

 
we have 
 

)'cos1(')1(
2

2


c

v
k

c

v
k   

 
or 
 

)'cos1('1 
c

v
kk   

 
Since ckf   2  and ''2' ckf    
 



39 
 

f

c

v
f

)'cos1(

1
' 1





   

 
When 2/'   , 0'cos  ; 
 

fff 21 1'     

 

 
 
The source S moves past a detector D. When S reaches point P, the velocity o S is 
perpendicular to the line joining P and D. If the source is emitting the sound wave of 
frequency f, D detects that frequency (with no Doppler effect) when it intercepts the 
waves that were emitted at point P. However, if the source is emitting light waves, there 
is still a Doppler effect, called the transverse Doppler effect. In this case, the detected 
frequency of the light emitted when the source is at point P is 
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10. Typical problems 
10.1 Problem 37-23 

In Fig., observer S detects two flashes of light. A big flash occurs at x1 = 1200 m and, 
5.00 s later, small flash occurs at x2 = 480 m. As detected by observer S’, the two 
flashes occur at a single coordinate x’. (a) What is the speed parameter of S’, and (b) is S’ 
moving in the positive or negative direction of the x axis? To S’, (c) which flash occurs 
first and (d) what is the time interval between the flashes? 
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((Solution)) 
x1 =1200 m, t1 = 0 s 
x2 =480 m, t1 = 5 s 
 
The Lorentz transformation, 
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(b) Negative direction 
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10.2 Problem 37-31 Armada of spaceship 
An armada of spaceships that is 1.00 ly long (in its rest frame) moves with speed 

0.800 c relative to ground station in frame S. A messanger travels from the rear of the 
armada to the front with a speed of 0.950 c relative to S. How long does the trip take as 
measured (a) in the messanger’s rest frame, (b) in the armada’s rest frame, and (c) by a 
observer in the frame S? 
 
 
((Solution)) 
 

 
 
(a) 

The velocity of Armada relative to the messenger’s rest frame (Sm) 
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where v = 0.95 c (the velocity of the Messenger in the frame S) and  = 0.95. u1 = 0.8 c 
(the velocity of Armada in the frame-S). The length of the Armada as measured in Sm is 
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The velocity of messenger relative to the Armada’s rest frame (Sa) 
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where v = 0.8 c (the velocity of Armada in the frame-S) and  = 0.95. u1= 0.95 c (the 
velocity of the Messenger in the frame S). 
 
The length of the Armada in the rest frame of Sa is 1.00 ly. Then the time for the trip is 
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(c) 
The length of Armada in the S frame is 
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where v = 0.8 c (the velocity of Armada in the frame-S).  
The time for the trip is 
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10.3 Problem 37-36 

Figure is a graph of intensity versus wavelength for light reaching Earth from galaxy 
NGC 7319, which is about 3 x 108 light-years away. The most intense light is emitted by 
the oxygen in NGC 7319. In a laboratory that emission is at wavelength  = 513 nm, but 
on the light from NGC7319 it has been shifted to 525 nm due to the Doppler effect (all 
the emissions from NGC7319 have been shifted). (a) What is the radial speed of NGC 
7319 relative to Earth? (b) Is the relative motion toward or away from our planet? 
 

 
((Solution)) 
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We now consider the case of receding. 
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Oxygen:  
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’ = 525 nm 
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This indicates the expanding universe. 
 
 
10.4 Problem 37-52 (SP-37) Muon 
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If m0 is a particle’s rest mass, p is its momentum magnitude, and K is its kinetic 

energy, show that 
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(b) For low particle speeds, show that the right side of the equation reduces to m. (c) If a 
particle has K = 55.0 MeV when p = 121 MeV/c, what is the ratio m/me of its mass to the 
electron mass. 
 
(a) ((Solution)) 
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(c) K = 55 MeV, p = 121 MeV/c 
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So the particle is muon. 
 
 
 
APPENDIX 
A. Relativistic-covariant Lagrangian formalism 
A.1 Lagrangian L 
 
We start with the proper time d (Lorentz scalar) 
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where  is a proper time and u is the velocity of the particle in the frame S. The integral 
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Nonrelativistic case 
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In the classical mechanics, 
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A.2 Hamiltonian 

The Hamiltonian H is defined by 
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B. Muon-decay experiment: time dilation (Senior laboratory, Binghamton 
University) 

 
B.1. Introduction 

The muon is one of nature’s fundamental “building blocks of matter” and acts in many 
ways as if it were an unstable heavy electron, for reasons no one fully understands. 
Discovered in 1937 by C.W. Anderson and S.H. Neddermeyer when they exposed a cloud 
chamber to cosmic rays, its finite lifetime was first demonstrated in 1941 by F. Rasetti. The 
instrument described here permits you to measure the charge averaged mean muon lifetime in 
plastic scintillator, to measure the relative flux of muons as a function of height above sea-
level.  

The muon is unstable and decays with a proper lifetime  = 2.197 s. This particle is 
in many respect a “heavy” electron. The mass of the muon is 206.77 times more massive 
than electron. The muon was first detected in cosmic rays-radiation that comes to Earth 
from outside the solar system. These rays are very energetic, and typically, the muons in 
them have a speed such that v/c ≈ 0.99, or  = 7.1.  

We may first ask how far a muon with v/c of 0.99 will travel over its lifetime. We 
should point out that the muons that arrive here from outer space are born close to Earth 
in the decays of other particles that are part of the cosmic radiation. If the relativity were 
not a factor, such a muon would travel a distance v, on the average, before decaying, 
where  is the lifetime and v is the speed of the muon relative to the Earth. Ignoring 
relativity, with v/c = 0.99, we have an average path length of 
 

mvd 653   
 
But if we take time dilation into account, this equation must be multiplied by , giving 
 

kmmvtd 77.46531.7   . 
 
Thus a muon detector could register muons at a position farther from the point of their 
creation than a nonrelativistic treatment. It suggests a distance d = v, rather than the 
distance v that would be expected if there were no time dilation. 
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Fig.  Cosmic ray cascade induced by a cosmic ray proton striking an air molecule 

nucleus.  
 

 
 

The mean production height in the atmosphere of the muons detected at sea-level is 
approximately 15 km. Travelling at the speed of light, the transit time from production 
point to sea-level is then 50 µsec (= 15 x 103 m/(3x108 m/s)). Since the lifetime of at-rest 
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muons (U = 2.19 s) is more than a factor of 20 smaller, the appearance of an 
appreciable sea-level muon flux is qualitative evidence for the time dilation effect of 
special relativity.  
 
B2. Measurement of the lifetime of muons 

To measure the muon's lifetime, we are interested in only those muons that enter, 
slow, stop and then decay inside the plastic scintillator. Figure 1 summarizes this process. 
Such muons have a total energy of only about 160 MeV as they enter the tube. As a muon 
slows to a stop, the excited scintillator emits light that is detected by a photomultiplier 
tube (PMT), eventually producing a logic signal that triggers a timing clock. A stopped 
muon, after a bit, decays into an electron, a neutrino and an anti-neutrino. Since the 
electron mass is so much smaller that the muon mass, mµ/me ~ 210, the electron tends to 
be very energetic and to produce scintillator light essentially all along its path length. The 
neutrino and anti-neutrino also share some of the muon's total energy but they entirely 
escape detection. This second burst of scintillator light is also seen by the PMT and used 
to trigger the timing clock. The distribution of time intervals between successive clock 
triggers for a set of muon decays is the physically interesting quantity used to measure 
the muon lifetime.  
 

 
 
Fig.1 Schematic showing the generation of the two light pulses (short arrows) used in 

determining the muon lifetime. One light pulse is from the slowing muon (dotted 
line) and the other is from its decay into an electron or positron (wavey line).  
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B3. Experimental result 

 
Fig. Data were taken in the Senior Laboratory (SUNY-Binghamton) using the 

apparatus purchased from Teachspin  
 

The result for the mean muon lifetime of 2.11 ± 0.03 µs. However, this result is still 
less than the free space value of the mean muon lifetime, 
 

τU = 2.19703 ± 0.00004 µs. 
 
The halflife is given by 
 

1/2 = ln2 U = 1.52 s. 
 
from the definition. 
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