Quantum box with infinite well potential Masatsugu Sei Suzuki
Department of Physics, State University of New York at Binghamton
(Date: January 13, 2012)

1. 1 Done-dimensional well potential

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}
$$

$$
H \varphi(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}} \varphi(x)=E \varphi(x)=\frac{\hbar^{2} k^{2}}{2 m} \varphi(x)
$$

The solution of this equation is

$$
\varphi(x)=A \sin (k x)+B \cos (k x)
$$

where

$$
E=\frac{\hbar^{2} k^{2}}{2 m}
$$

Using the boundary condition:

$$
\varphi(x=0)=\varphi(x=a)=0
$$

we have

$$
\begin{aligned}
& B=0 \text { and } A \neq 0 . \\
& \sin (k a)=0 \\
& k a=n \pi \quad(n=1,2, \ldots)
\end{aligned}
$$

Note that $n=0$ is not included in our solution because the corresponding wave function becomes zero. The wave function is given by

$$
\varphi_{n}(x)=\left\langle x \mid \varphi_{n}\right\rangle=A_{n} \sin \left(\frac{n \pi x}{a}\right)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)
$$

with

$$
E_{n}=\frac{\hbar^{2}}{2 m}\left(\frac{n \pi}{a}\right)^{2}
$$

((Normalization))

$$
1=\int_{0}^{a} A_{n}{ }^{2} \sin ^{2}\left(\frac{n \pi x}{a}\right) d x=\frac{a}{2} A_{n}{ }^{2}
$$

2. Mathematica

$$
\left|\varphi_{n}(x)\right|^{2}=\left[\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi x}{a}\right)\right]^{2}=\frac{2}{a} \sin ^{2}\left(\frac{n \pi x}{a}\right)
$$

Fig. Plot of $\left|\varphi_{n}(x)\right|^{2}$ with $\mathrm{a}=1$, as a function of $x . n=1,2,3,4$, and 5. There are n peaks for the state $|n\rangle$.

The expectation values and uncertainty:

$$
\begin{aligned}
& \left\langle x^{m}\right\rangle=\int_{0}^{a} \varphi_{n}^{*}(x) x^{m} \varphi_{n}(x) d x=\int_{0}^{a} \frac{2}{a} x^{m} \sin ^{n}\left(\frac{n \pi x}{a}\right) d x \\
& \left\langle p^{m}\right\rangle=\int_{0}^{a} \varphi_{n}^{*}(x)\left(\frac{\hbar}{i} \frac{\partial}{\partial x}\right)^{m} \varphi_{n}(x) d x
\end{aligned}
$$

Since

$$
\begin{array}{ll}
\langle x\rangle=\frac{a}{2}, & \left\langle x^{2}\right\rangle=\frac{a^{2}}{6}\left(2-\frac{3}{n^{2} \pi^{2}}\right) \\
\langle p\rangle=0, & \left\langle p^{2}\right\rangle=\frac{n^{2} \pi^{2} \hbar^{2}}{a^{2}}
\end{array}
$$

we have

$$
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=a \sqrt{\frac{1}{6}\left(2-\frac{3}{n^{2} \pi^{2}}\right)-\frac{1}{4}}=\frac{1}{\sqrt{12}} \sqrt{1-\frac{6}{n^{2} \pi^{2}}}
$$

$$
\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\frac{n \pi \hbar}{a}
$$

Then

$$
\Delta p \Delta x=\frac{\hbar}{2} \sqrt{\frac{n^{2} \pi^{2}}{3}-2}=
$$

When $n=1$,

$$
\Delta p \Delta x=\hbar>0.567862 \hbar>\frac{\hbar}{2}
$$

3. 2D well potential

Next we consider a particle in a 2D well potential
The potential:

$$
\begin{aligned}
& V(x, y)=0 \text { for } 0 \leq x \leq a \text { and } 0 \leq y \leq a . V(x, y)=\infty \text { otherwise. } \\
& H \varphi(x, y)=-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}\right) \varphi(x, y)=E \varphi(x, y)=\frac{\hbar^{2} k^{2}}{2 m} \varphi(x, y) \\
& E=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}\right) \\
& \left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}\right) \varphi(x, y)=-\left(k_{x}^{2}+k_{y}^{2}\right) \varphi(x, y)
\end{aligned}
$$

We use the method of the separation variables. Suppose that

$$
\begin{aligned}
& \varphi(x, y)=X(x) Y(y) \\
& \frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}=-\left(k_{x}{ }^{2}+k_{y}^{2}\right)
\end{aligned}
$$

We assume that

$$
\begin{aligned}
& X^{\prime \prime}(x)=-k_{x}^{2} X(x) \\
& Y^{\prime \prime}(y)=-k y^{2} Y(y)
\end{aligned}
$$

Using the boundary condition

$$
X(x=0)=X(x=a)=0
$$

and

$$
Y(y=0)=Y(y=a)=0
$$

Then we have

$$
\varphi_{n x, n y}(x, y)=\left(\sqrt{\frac{2}{a}}\right)^{2} \sin \left(\frac{n_{x} \pi x}{a}\right) \sin \left(\frac{n_{y} \pi y}{a}\right)
$$

4. Mathematica

A particle in a two dimensional box

```
Clear["Global`*"];
\psi=\sqrt{}{\frac{2}{a}}\sqrt{}{\frac{2}{b}}\operatorname{Sin}[\frac{n\pix}{a}]\operatorname{Sin}[\frac{m\piy}{b}];
prb = \psi'2 /. {a->1, b > 1};
p13D1 = Plot3D[prb /. {n->4, m -> 4}, {x, 0, 1}, {y, 0, 1},
    PlotPoints }\boldsymbol{->}\mathrm{ 100]
```


cont1 $=$ ContourPlot $[p r b / .\{n \rightarrow 4, m \rightarrow 4\},\{x, 0,1\}$, $\{y, 0,1\}$, PlotPoints \rightarrow 100]

5. Standing wave solutions with a fixed boundary condition

We consider a free particle inside a box with length $L_{\mathrm{x}}, L_{\mathrm{y}}, L_{\mathrm{z}}$ along the x, y, and z axes, respectively. The Schrödinger equation of the system is given by

$$
H \psi(x, y, z)=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, y, z)=E \psi(x, y, z)
$$

under the boundary condition;

$$
\begin{aligned}
& \psi\left(x=L_{x}, y, z\right)=\psi(x=0, y, z)=0 \\
& \psi\left(x, y=L_{z}, z\right)=\psi(x, y=0, z)=0 \\
& \psi\left(x_{x}, y, z=L_{z}\right)=\psi(x, y, z=0)=0
\end{aligned}
$$

We use the method of separation variables. We assume that

$$
\psi(x, y, z)=X(x) Y(y) Z(z)
$$

with

$$
X(0)=X\left(L_{x}\right)=0, \quad Y(0)=Y\left(L_{y}\right)=0, \quad Z(0)=Z\left(L_{z}\right)=0
$$

The substitution of the solution into the Schrödinger equation yields

$$
\frac{X^{\prime \prime}(x)}{X(x)}+\frac{Y^{\prime \prime}(y)}{Y(y)}+\frac{Z^{\prime \prime}(z)}{Z(z)}=-\frac{2 m E}{\hbar^{2}}
$$

We assume that

$$
\frac{X^{\prime \prime}(x)}{X(x)}=-k_{x}{ }^{2}, \quad \frac{Y^{\prime \prime}(y)}{Y(y)}=-k_{y}{ }^{2}, \frac{Z^{\prime \prime}(z)}{Z(z)}=-k_{z}{ }^{2}
$$

The solution of these differential equations can be obtained as a standing wave solution,

$$
X(x)=\sin \left(k_{x} x\right), \quad Y(y)=\sin \left(k_{y} y\right), \quad Z(z)=\sin \left(k_{z} z\right)
$$

under the boundary conditions, where $k_{\mathrm{x}}, k_{\mathrm{y}}$, and k_{z} are constants. The resulting wave function is

$$
\psi(x, y, z)=A \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right)
$$

The condition that $\psi=0$ at $x=L_{\mathrm{x}}$ requires that

$$
k_{x}=\frac{n_{x} \pi}{L_{x}} .
$$

The values for the $k_{\mathrm{x}}, k_{\mathrm{y}}$, and k_{z} are

$$
k_{x}=\frac{n_{x} \pi}{L_{x}}, \quad k_{y}=\frac{n_{y} \pi}{L_{y}}, \quad k_{z}=\frac{n_{z} \pi}{L_{z}}
$$

where $n_{\mathrm{x}}, n_{\mathrm{y}}$, and n_{z} are positive integers.
((Density of states))

$$
\begin{aligned}
E\left(k_{x}, k_{y}, k_{z}\right) & =\varepsilon=\frac{\hbar^{2}}{2 m} k^{2}=\frac{\hbar^{2}}{2 m}\left(k_{x}{ }^{2}+k_{y}{ }^{2}+k_{z}{ }^{2}\right) \\
& =\frac{\pi^{2} \hbar^{2}}{2 m}\left(\frac{n_{x}{ }^{2}}{L_{x}{ }^{2}}+\frac{n_{y}{ }^{2}}{L_{y}{ }^{2}}+\frac{n_{z}{ }^{2}}{L_{z}{ }^{2}}\right)
\end{aligned} .
$$

There is one state per volume of the \boldsymbol{k}-space;

$$
\frac{\pi}{L_{x}} \frac{\pi}{L_{y}} \frac{\pi}{L_{z}} .
$$

In the region of $k-k+\mathrm{d} k$, the number of states is

$$
\begin{aligned}
D(\varepsilon) d \varepsilon & =2 \frac{1}{8} \frac{4 \pi k^{2} d k}{\frac{\pi^{3}}{L_{x} L_{y} L_{z}}} \\
& =2 \frac{V}{(2 \pi)^{3}} 4 \pi k^{2} d k \\
& =\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \sqrt{\varepsilon} d \varepsilon
\end{aligned}
$$

where the factor 2 comes from the two allowed state $|+\rangle$ and $|-\rangle$ for the spin quantum number ($S=1 / 2$); fermions such as electron. The density of state $D(\varepsilon)$ is obtained as

The total particle number N and total energy E can be described by

$$
N=\int_{0}^{\varepsilon_{F}} D(\varepsilon) d \varepsilon=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2 \varepsilon_{F}} \int_{0} \sqrt{\varepsilon} d \varepsilon=\frac{2}{3} \frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon_{F}^{3 / 2}
$$

and

$$
E=\int_{0}^{\varepsilon_{F}} \varepsilon D(\varepsilon) d \varepsilon=\frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2 \varepsilon_{F}} \int_{0}^{3 / 2} d \varepsilon=\frac{2}{5} \frac{V}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} \varepsilon_{F}^{5 / 2} .
$$

Then we have

$$
\frac{E}{N}=\frac{\frac{2}{5} \varepsilon_{F}^{3 / 2}}{\frac{2}{3} \varepsilon_{F}^{3 / 2}}=\frac{3}{5} \varepsilon_{F}
$$

((Note)) Fermi-Dirac distribution function

The Fermi-Dirac distribution gives the probability that an orbital at energy ε will be occupied in an ideal gas in thermal equilibrium

$$
\begin{equation*}
f(\varepsilon)=\frac{1}{e^{\beta(\varepsilon-\mu)}+1}, \tag{12}
\end{equation*}
$$

where μ is the chemical potential and $\beta=1 /\left(k_{\mathrm{B}} T\right)$.
(i) $\lim _{T \rightarrow 0} \mu=\varepsilon_{F}$.
(ii) $f(\varepsilon)=1 / 2$ at $\varepsilon=\mu$.
(iii) For $\varepsilon-\mu \gg k_{\mathrm{B}} T, \mathrm{f}(\varepsilon)$ is approximated by $f(\varepsilon)=e^{-\beta(\varepsilon-\mu)}$. This limit is called the Boltzman or Maxwell distribution.
(iv) For $k_{\mathrm{B}} T \ll \varepsilon_{\mathrm{F}}$, the derivative $-\mathrm{d} f(\varepsilon) / \mathrm{d} \varepsilon$ corresponds to a Dirac delta function having a sharp positive peak at $\varepsilon=\mu$.

6. Plane wave solution with a periodic boundary condition

A. Energy level in 1D system

We consider a free electron gas in 1D system. The Schrödinger equation is given by

$$
\begin{equation*}
H \psi_{k}(x)=\frac{p^{2}}{2 m} \psi_{k}(x)=-\frac{\hbar^{2}}{2 m} \frac{d^{2} \psi_{k}(x)}{d x^{2}}=\varepsilon_{k} \psi_{k}(x), \tag{1}
\end{equation*}
$$

where

$$
p=\frac{\hbar}{i} \frac{d}{d x},
$$

and ε_{k} is the energy of the electron in the orbital.
The orbital is defined as a solution of the wave equation for a system of only one electron: $\langle\langle$ one-electron problem $\rangle\rangle$.

Using a periodic boundary condition: $\psi_{k}(x+L)=\psi_{k}(x)$, we have the plane-wave solution

$$
\begin{equation*}
\psi_{k}(x) \sim e^{i k x} \tag{2}
\end{equation*}
$$

with

$$
\begin{aligned}
& \varepsilon_{k}=\frac{\hbar^{2}}{2 m} k^{2}=\frac{\hbar^{2}}{2 m}\left(\frac{2 \pi}{L} n\right)^{2}, \\
& e^{i k L}=1 \text { or } k=\frac{2 \pi}{L} n,
\end{aligned}
$$

where $n=0, \pm 1, \pm 2, \ldots$, and L is the size of the system.

B. Energy level in 3D system

We consider the Schrödinger equation of an electron confined to a cube of edge L.

$$
\begin{equation*}
H \psi_{\mathbf{k}}=\frac{\mathbf{p}^{2}}{2 m} \psi_{\mathbf{k}}=-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi_{\mathbf{k}}=\varepsilon_{\mathbf{k}} \psi_{\mathbf{k}} . \tag{3}
\end{equation*}
$$

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

$$
\begin{aligned}
& \psi_{\mathbf{k}}(x+L, y, z)=\psi_{\mathbf{k}}(x, y, z), \\
& \psi_{\mathbf{k}}(x, y+L, z)=\psi_{\mathbf{k}}(x, y, z), \\
& \psi_{\mathbf{k}}(x, y, z+L)=\psi_{\mathbf{k}}(x, y, z) .
\end{aligned}
$$

The wavefunctions are of the form of a traveling plane wave.

$$
\begin{equation*}
\psi_{\mathbf{k}}(\mathbf{r})=e^{i \mathbf{k} \cdot \mathbf{r}} \tag{4}
\end{equation*}
$$

with

$$
\begin{aligned}
& k_{\mathrm{x}}=(2 \pi / L) n_{\mathrm{x}},\left(n_{\mathrm{x}}=0, \pm 1, \pm 2, \pm 3, \ldots \ldots\right), \\
& k_{\mathrm{y}}=(2 \pi / L) n_{\mathrm{y}},\left(n_{\mathrm{y}}=0, \pm 1, \pm 2, \pm 3, \ldots \ldots .\right), \\
& k_{\mathrm{z}}=(2 \pi / L) n_{\mathrm{z}},\left(n_{\mathrm{z}}=0, \pm 1, \pm 2, \pm 3, \ldots \ldots\right) .
\end{aligned}
$$

The components of the wavevector \boldsymbol{k} are the quantum numbers, along with the quantum number m_{s} of the spin direction. The energy eigenvalue is

$$
\begin{equation*}
\varepsilon(\mathbf{k})=\frac{\hbar^{2}}{2 m}\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=\frac{\hbar^{2}}{2 m} \mathbf{k}^{2} . \tag{5}
\end{equation*}
$$

Here

$$
\begin{equation*}
\mathbf{p} \psi_{k}(\mathbf{r})=\frac{\hbar}{i} \nabla_{\mathbf{k}} \psi_{k}(\mathbf{r})=\hbar \mathbf{k} \psi_{k}(\mathbf{r}) . \tag{6}
\end{equation*}
$$

So that the plane wave function $\psi_{\mathbf{k}}(\mathbf{r})$ is an eigenfunction of \boldsymbol{p} with the eigenvalue $\hbar \mathbf{k}$. The ground state of a system of N electrons, the occupied orbitals are represented as a point inside a sphere in \boldsymbol{k}-space.

Because we assume that the electrons are noninteracting, we can build up the N electron ground state by placing electrons into the allowed one-electron levels we have just found.

((The Pauli's exclusion principle))

The one-electron levels are specified by the wavevectors \boldsymbol{k} and by the projection of the electron's spin along an arbitrary axis, which can take either of the two values $\pm \hbar / 2$. Therefore associated with each allowed wave vector k are two levels:

$$
|\mathbf{k}, \uparrow\rangle,|\mathbf{k}, \downarrow\rangle .
$$

In building up the N-electron ground state, we begin by placing two electrons in the oneelectron level $k=0$, which has the lowest possible one-electron energy $\varepsilon=0$. We have

$$
\begin{equation*}
N=2 \frac{L^{3}}{(2 \pi)^{3}} \frac{4 \pi}{3} k_{F}^{3}=\frac{V}{3 \pi^{2}} k_{F}^{3}, \tag{7}
\end{equation*}
$$

where the sphere of radius k_{F} containing the occupied one-electron levels is called the Fermi sphere, and the factor 2 is from spin degeneracy.

The electron density n is defined by

$$
\begin{equation*}
n=\frac{N}{V}=\frac{1}{3 \pi^{2}} k_{F}{ }^{3} . \tag{8}
\end{equation*}
$$

The Fermi wavenumber k_{F} is given by

$$
\begin{equation*}
k_{F}=\left(3 \pi^{2} n\right)^{1 / 3} . \tag{9}
\end{equation*}
$$

The Fermi energy is given by

$$
\begin{equation*}
\varepsilon_{F}=\frac{\hbar^{2}}{2 m}\left(3 \pi^{2} n\right)^{2 / 3} \tag{10}
\end{equation*}
$$

The Fermi velocity is

$$
\begin{equation*}
v_{F}=\frac{\hbar k_{F}}{m}=\frac{\hbar}{m}\left(3 \pi^{2} n\right)^{1 / 3} . \tag{11}
\end{equation*}
$$

((Note))

The Fermi energy ε_{F} can be estimated using the number of electrons per unit volume as $\varepsilon_{\mathrm{F}}=3.64645 \times 10^{-15} n^{2 / 3}[\mathrm{eV}]=1.69253 n_{0}^{2 / 3}[\mathrm{eV}]$,
where n and n_{0} is in the units of $\left(\mathrm{cm}^{-3}\right)$ and $n=n_{0} \times 10^{22}$. The Fermi wave number k_{F} is calculated as

$$
k_{\mathrm{F}}=6.66511 \times 10^{7} n_{0}^{1 / 3}\left[\mathrm{~cm}^{-1}\right] .
$$

The Fermi velocity ν_{F} is calculated as

$$
v_{\mathrm{F}}=7.71603 \times 10^{7} n_{0}^{1 / 3}[\mathrm{~cm} / \mathrm{s}] .
$$

