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The solution of this equation is
@(x) = Asin(kx) + B cos(kx)

where

Using the boundary condition:

p(x=0)=p(x=a)=0



we have
B =0 and A#0.
sin(ka) =0
ka=nr (n=1,2,..))

Note that » = 0 is not included in our solution because the corresponding wave function
becomes zero. The wave function is given by
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((Normalization))
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2. Mathematica

0,0 = [\E sin("PyP = 2 sin? ()
a a a a




Fig.  Plot of
peaks for the state |n>

The expectation values and uncertainty:
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Then

Whenn=1,

ApAx = 1>0.567862 h >§

3. 2D well potential
Next we consider a particle in a 2D well potential

The potential:

V(x,y) = 0 for 0<x<a and 0<y<a. V(x,y) = c© otherwise.
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We use the method of the separation variables. Suppose that
P(x, ) = X ()Y (y)

X))

(k> + k>
X o) &R

We assume that
X"(x) = -k X(x)

Y'(y) =-k*Y(y)

Using the boundary condition



Xx=0)=X(x=a)=0
and
Y(y=0)=Y(y=a)=0

Then we have
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4. Mathematica
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5. Standing wave solutions with a fixed boundary condition
We consider a free particle inside a box with length Ly, Ly, L, along the x, y, and z
axes, respectively. The Schrodinger equation of the system is given by

h2
Hl//(xaya Z) = _Evzl//(x:yaz) = El//(xayaz)

under the boundary condition;

l,y(x=Lx,y,z)=1//(x=O,y,z)=0
y(x,y=L,,z)=y(x,y=0,2)=0
w(x,y,z=L)=w(x,y,z=0)=0

We use the method of separation variables. We assume that
w(x,y,2) = X(0)Y(y)Z(2)
with
X0)=X(,)=0, Y(0)=Y(L,)=0, Z(0)=Z(L,)=0

The substitution of the solution into the Schrodinger equation yields

X' Y'(0) Z'() __2mE
X(x) Y(») Z(2) n?

We assume that

X"(x) Ll Y"(y):_kyz,Z"(Z) e
X(x) Y(y) Z(2)

The solution of these differential equations can be obtained as a standing wave solution,
X (x) =sin(k x), Y(y)=sin(k,y), Z(z) =sin(k_z)

under the boundary conditions, where k, ky, and k, are constants. The resulting wave
function is

w(x,y,z) = Asin(k, x)sin(k, y)sin(k,z)

The condition that i =0 at x = Ly requires that
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where ny, ny, and n, are positive integers.

((Density of states))
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There is one state per volume of the k-space;
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number (S = 1/2); fermions such as electron. The density of state D(¢) is obtained as

where the factor 2 comes from the two allowed state |+> and |—> for the spin quantum

In the region of k - k + dk, the number of states is



The total particle number N and total energy E can be described by
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((Note)) Fermi-Dirac distribution function

The Fermi-Dirac distribution gives the probability that an orbital at energy ¢ will be
occupied in an ideal gas in thermal equilibrium

1

f(c?):W,

(12)
where u is the chemical potential and g = 1/(kgT).
(1) limu=c¢,.

T—0

i) fleg=12ate=pu

(iii)  For & - wksT, f(&) is approximated by f(g)=e”“* . This limit is called the
Boltzman or Maxwell distribution.

(iv)  For kgT«er, the derivative -df{ €)/de corresponds to a Dirac delta function having a
sharp positive peak at £= .

6. Plane wave solution with a periodic boundary condition
A. Energy level in 1D system
We consider a free electron gas in 1D system. The Schrodinger equation is given by

2 h d*w, (x
e T ACY 0

where
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and ¢, is the energy of the electron in the orbital.

The orbital is defined as a solution of the wave equation for a system of only one
electron: ((one-electron problem)).
Using a periodic boundary condition: v, (x+ L) =y, (x), we have the plane-wave

solution
W (x) ~e™, 2

with

2 2 2
g =R (27 )
2m 2m\ L
e’kLzlorkzz—ﬂn,
L

where n =0, £1,£2,..., and L is the size of the system.

B. Energy level in 3D system
We consider the Schrédinger equation of an electron confined to a cube of edge L.

2 2

Hy, :p_'//k =———Vy = ¥ 3)
2m 2m

It is convenient to introduce wavefunctions that satisfy periodic boundary conditions.
Boundary condition (Born-von Karman boundary conditions).

l//k(x"'L:y’Z):l//k(x’yaZ) ’
l//k(x’y+L’Z)=l//k(x’yaz) 9
l//k(xayaz+L):!//k(x’ynz) .

The wavefunctions are of the form of a traveling plane wave.

Wi =e*", )

with
kx = 2n/L) ny, (nx =0, £1,£2,£3,.....),
ky=(2n/L) ny, (ny =0, £1, £2, £3,.....),
k,= Q2n/L) n,, (n,=0,+1,+2, +£3,....)).
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The components of the wavevector K are the quantum numbers, along with the quantum
number m; of the spin direction. The energy eigenvalue is

g(k)=h—2(k2+k2+k2)=h—2k2 (5)
2m- T 2m
Here
i
Py, (r) =7kak(r) =nky,(r). (6)

So that the plane wave function y, (r) is an eigenfunction of p with the eigenvalue 7k .

The ground state of a system of N electrons, the occupied orbitals are represented as a
point inside a sphere in K-space.

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have
just found.

((The Pauli’s exclusion principle))

The one-clectron levels are specified by the wavevectors k and by the projection of
the electron’s spin along an arbitrary axis, which can take either of the two values +7/2.
Therefore associated with each allowed wave vector k are two levels:

k,¢>.

k1),

In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k£ = 0, which has the lowest possible one-electron energy ¢ = 0. We have

L 4r. 5 V

N=2— ") ' =—"_
@z 3" 32’

ki, (7)

where the sphere of radius Ar containing the occupied one-electron levels is called the
Fermi sphere, and the factor 2 is from spin degeneracy.
The electron density # is defined by

n="=—k,’. (8)
The Fermi wavenumber £ is given by

ky = (32%n) " 9)

The Fermi energy is given by
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& :f—m(syzzn)“. (10)

The Fermi velocity is
Ve = fikey =£(37z2n)/3. (11)

F
m m

((Note))
The Fermi energy &r can be estimated using the number of electrons per unit volume as
& = 3.64645x10™"° n*° [eV] = 1.69253 n¢*” [eV],
where n and ng is in the units of (cm'3 )and n = n0><1022. The Fermi wave number kr is
calculated as
ke =6.66511x107 no" [em™].
The Fermi velocity vr is calculated as
ve=7.71603x107 no" [cm/s].
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