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1. 1 Done-dimensional well potential 
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The solution of this equation is 
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Using the boundary condition: 
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we have  
 

B = 0 and A≠0. 
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nka   (n = 1, 2, …) 
 
Note that n = 0 is not included in our solution because the corresponding wave function 
becomes zero. The wave function is given by 
 

)sin(
2

)sin()(
a

xn

aa

xn
Axx nnn

   

 
with 
 

22

2








a

n

m
En


 

 
((Normalization)) 
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2. Mathematica 
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Fig. Plot of 

2
)(xn  with a = 1, as a function of x. n = 1, 2, 3, 4, and 5. There are n 

peaks for the state n . 

 
The expectation values and uncertainty: 
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we have 
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When n = 1, 
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3. 2D well potential 

Next we consider a particle in a 2D well potential 
 
The potential: 
 

V(x,y) = 0 for 0≤x≤a and 0≤y≤a. V(x,y) = ∞ otherwise. 
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We use the method of the separation variables. Suppose that 
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We assume that 
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Using the boundary condition 
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Then we have 
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4. Mathematica 
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A particle in a two dimensional box

Clear"Global`";

 
2

a

2

b
Sinn  x

a
 Sin m  y

b
;

prb  2 . a  1, b  1;

p13D1  Plot3Dprb . n  4, m  4, x, 0, 1, y, 0, 1,

PlotPoints  100

cont1  ContourPlotprb . n  4, m  4, x, 0, 1,

y, 0, 1, PlotPoints  100
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5. Standing wave solutions with a fixed boundary condition 

We consider a free particle inside a box with length Lx, Ly, Lz along the x, y, and z 
axes, respectively. The Schrödinger equation of the system is given by 
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under the boundary condition; 
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We use the method of separation variables. We assume that 
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The substitution of the solution into the Schrödinger equation yields 
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We assume that 
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The solution of these differential equations can be obtained as a standing wave solution, 
 

)sin()( xkxX x , )sin()( ykyY y , )sin()( zkzZ z  

 
under the boundary conditions, where kx, ky, and kz are constants. The resulting wave 
function is 
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The condition that 0  at x = Lx requires that 
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The values for the kx, ky, and kz are 
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where nx, ny, and nz are positive integers. 
 
((Density of states)) 
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There is one state per volume of the k-space; 
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In the region of k - k + dk, the number of states is 
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where the factor 2 comes from the two allowed state   and   for the spin quantum 

number (S = 1/2); fermions such as electron. The density of state )(D  is obtained as 
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The total particle number N and total energy E can be described by 
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Then we have 
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((Note)) Fermi-Dirac distribution function 

The Fermi-Dirac distribution gives the probability that an orbital at energy  will be 
occupied in an ideal gas in thermal equilibrium 
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where  is the chemical potential and  = 1/(kBT). 
(i) F

T
 

0
lim . 

(ii) f() = 1/2 at  = . 
(iii) For  - »kBT, f() is approximated by )()(   ef . This limit is called the 

Boltzman or Maxwell distribution. 
(iv) For kBT«F, the derivative -df()/d corresponds to a Dirac delta function having a 

sharp positive peak at  = . 
 
________________________________________________________________________ 
6. Plane wave solution with a periodic boundary condition 
A. Energy level in 1D system 

We consider a free electron gas in 1D system. The Schrödinger equation is given by 
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and k  is the energy of the electron in the orbital.  

The orbital is defined as a solution of the wave equation for a system of only one 
electron:one-electron problem. 

Using a periodic boundary condition: )()( xLx kk   , we have the plane-wave 

solution 
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where n = 0, ±1, ±2,…, and L is the size of the system. 
 
B. Energy level in 3D system 

We consider the Schrödinger equation of an electron confined to a cube of edge L. 
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It is convenient to introduce wavefunctions that satisfy periodic boundary conditions. 

Boundary condition (Born-von Karman boundary conditions). 
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The wavefunctions are of the form of a traveling plane wave. 
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with 

kx = (2/L) nx, (nx = 0, ±1, ±2, ±3,…..), 
ky = (2/L) ny, (ny = 0, ±1, ±2, ±3,…..), 
kz = (2/L) nz, (nz = 0, ±1, ±2, ±3,…..). 
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The components of the wavevector k are the quantum numbers, along with the quantum 
number ms of the spin direction. The energy eigenvalue is 
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So that the plane wave function )(rk  is an eigenfunction of p with the eigenvalue k . 
The ground state of a system of N electrons, the occupied orbitals are represented as a 
point inside a sphere in k-space. 

Because we assume that the electrons are noninteracting, we can build up the N-
electron ground state by placing electrons into the allowed one-electron levels we have 
just found. 

((The Pauli’s exclusion principle)) 

The one-electron levels are specified by the wavevectors k and by the projection of 
the electron’s spin along an arbitrary axis, which can take either of the two values ±ħ/2. 
Therefore associated with each allowed wave vector k are two levels: 
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In building up the N-electron ground state, we begin by placing two electrons in the one-
electron level k = 0, which has the lowest possible one-electron energy  = 0. We have 
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where the sphere of radius kF containing the occupied one-electron levels is called the 
Fermi sphere, and the factor 2 is from spin degeneracy. 

The electron density n is defined by 
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The Fermi wavenumber kF is given by 
 

  3/123 nkF  . (9) 
 
The Fermi energy is given by 
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The Fermi velocity is 
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((Note)) 
The Fermi energy F can be estimated using the number of electrons per unit volume as 

F = 3.64645x10-15 n2/3 [eV] = 1.69253 n0
2/3 [eV], 

where n and n0 is in the units of (cm-3) and n = n0×1022. The Fermi wave number kF is 
calculated as 

kF = 6.66511×107 n0
1/3 [cm-1]. 

The Fermi velocity vF is calculated as 
vF = 7.71603×107 n0

1/3 [cm/s]. 
 
 
 


